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1 Getting Started

Financial Toolbox Product Description
Analyze financial data and develop financial models

Financial Toolbox provides functions for mathematical modeling and statistical analysis
of financial data. You can optimize portfolios of financial instruments, optionally taking
into account turnover and transaction costs. The toolbox enables you to estimate risk,
analyze interest rate levels, price equity and interest rate derivatives, and measure
investment performance. Time series analysis functions and an app let you perform
transformations or regressions with missing data and convert between different trading
calendars and day-count conventions.

Key Features

• Mean-variance and CVaR-based object-oriented portfolio optimization
• Cash flow analysis, risk analysis, financial time-series modeling, date math, and

calendar math
• Basic SIA-compliant fixed-income security analysis
• Basic Black-Scholes, Black, and binomial option pricing
• Regression and estimation with missing data
• Basic GARCH estimation, simulation, and forecasting
• Technical indicators and financial charts
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Expected Users

In general, this guide assumes experience working with financial derivatives and some
familiarity with the underlying models.

In designing Financial Toolbox documentation, we assume that your title is like one of
these:

• Analyst, quantitative analyst
• Risk manager
• Portfolio manager
• Asset allocator
• Financial engineer
• Trader
• Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match
some aspects of this profile:

• Finance, economics, perhaps accounting
• Engineering, mathematics, physics, other quantitative sciences
• Focus on quantitative approaches to financial problems
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Analyze Sets of Numbers Using Matrix Functions

In this section...

“Introduction” on page 1-4
“Key Definitions” on page 1-4
“Referencing Matrix Elements” on page 1-5
“Transposing Matrices” on page 1-6

Introduction

Many financial analysis procedures involve sets of numbers; for example, a portfolio
of securities at various prices and yields. Matrices, matrix functions, and matrix
algebra are the most efficient ways to analyze sets of numbers and their relationships.
Spreadsheets focus on individual cells and the relationships between cells. While you can
think of a set of spreadsheet cells (a range of rows and columns) as a matrix, a matrix-
oriented tool like MATLAB® software manipulates sets of numbers more quickly, easily,
and naturally. For more information, see “Matrix Algebra Refresher” on page 1-7.

Key Definitions

Matrix

A rectangular array of numeric or algebraic quantities subject to mathematical
operations; the regular formation of elements into rows and columns. Described as a “m-
by-n” matrix, with m  the number of rows and n  the number of columns. The description
is always “row-by-column.” For example, here is a 2-by-3 matrix of two bonds (the rows)
with different par values, coupon rates, and coupon payment frequencies per year (the
columns) entered using MATLAB notation:

Bonds = [1000   0.06   2

          500   0.055  4]

Vector

A matrix with only one row or column. Described as a “1-by-n” or “m-by-1” matrix. The
description is always “row-by-column.” For example, here is a 1-by-4 vector of cash flows
in MATLAB notation:

Cash = [1500   4470   5280   -1299]
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Scalar

A 1-by-1 matrix; that is, a single number.

Referencing Matrix Elements

To reference specific matrix elements, use (row, column) notation. For example:

Bonds(1,2)

ans =

          0.06

Cash(3)

ans =

       5280.00

You can enlarge matrices using small matrices or vectors as elements. For example,

AddBond = [1000   0.065   2];

Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

       1000   0.06    2

        500   0.055   4

       1000   0.065   2

Likewise,

Prices = [987.50

          475.00

          995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =
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    987.50   1000   0.06    2

    475.00    500   0.055   4

    995.00   1000   0.065   2

Finally, the colon (:) is important in generating and referencing matrix elements. For
example, to reference the par value, coupon rate, and coupon frequency of the second
bond:

BondItems = Bonds(2, 2:4)

BondItems =

    500.00   0.055   4

Transposing Matrices

Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the
apostrophe or prime character (') transposes a matrix: columns become rows, rows
become columns. For example,

Cash = [1500   4470   5280   -1299]'

produces

Cash =

        1500

        4470

        5280

       -1299

More About
• “Matrix Algebra Refresher” on page 1-7
• “Using Input and Output Arguments with Functions” on page 1-17
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Matrix Algebra Refresher

In this section...

“Introduction” on page 1-7
“Adding and Subtracting Matrices” on page 1-7
“Multiplying Matrices” on page 1-8
“Dividing Matrices” on page 1-12
“Solving Simultaneous Linear Equations” on page 1-13
“Operating Element by Element” on page 1-16

Introduction

The explanations in the sections that follow should help refresh your skills for using
matrix algebra and using MATLAB functions.

In addition, William Sharpe's Macro-Investment Analysis also provides an excellent
explanation of matrix algebra operations using MATLAB. It is available on the Web at:

http://www.stanford.edu/~wfsharpe/mia/mia.htm

Tip When you are setting up a problem, it helps to “talk through” the units and
dimensions associated with each input and output matrix. In the example under
“Multiplying Matrices” on page 1-8, one input matrix has “five days' closing prices
for three stocks,” the other input matrix has “shares of three stocks in two portfolios,”
and the output matrix therefore has “five days' closing values for two portfolios.” It also
helps to name variables using descriptive terms.

Adding and Subtracting Matrices

Matrix addition and subtraction operate element-by-element. The two input matrices
must have the same dimensions. The result is a new matrix of the same dimensions
where each element is the sum or difference of each corresponding input element. For
example, consider combining portfolios of different quantities of the same stocks (“shares
of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B,
and C in portfolios R and S”).

Portfolios_PQ = [100   200
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                 500   400

                 300   150];

Portfolios_RS = [175   125

                 200   200

                 100   500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

        275           325

        700           600

        400           650

Adding or subtracting a scalar and a matrix is allowed and also operates element-by-
element.

SmallerPortf = NewPortfolios-10

SmallerPortf =

        265.00        315.00

        690.00        590.00

        390.00        640.00

Multiplying Matrices

Matrix multiplication does not operate element-by-element. It operates according to the
rules of linear algebra. In multiplying matrices, it helps to remember this key rule: the
inner dimensions must be the same. That is, if the first matrix is m-by-3, the second
must be 3-by-n. The resulting matrix is m-by-n. It also helps to “talk through” the units
of each matrix, as mentioned in “Analyze Sets of Numbers Using Matrix Functions” on
page 1-4.

Matrix multiplication also is not commutative; that is, it is not independent of order.
A*B does not equal B*A. The dimension rule illustrates this property. If A is 1-by-3
matrix and B is 3-by-1 matrix, A*B yields a scalar (1-by-1) matrix but B*A yields a 3-
by-3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For
example, a stock portfolio has three different stocks and their closing prices today are:
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ClosePrices = [42.5   15   78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100

             500

             300]

To find the value of the portfolio, multiply the vectors

PortfValue = ClosePrices * NumShares

which yields:

PortfValue =

            3.5413e+004

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. Multiplying
these vectors thus means multiplying each closing price by its respective number of
shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values =

  1.0e+004 *

    0.4250    0.1500    0.7887

    2.1250    0.7500    3.9438

    1.2750    0.4500    2.3663

which shows the closing values of 100, 500, and 300 shares of each stock, not the portfolio
value, and meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

Y y y y

X x x x

n

n

= [ ]

= [ ]

1 2

1 2

, , ,

, , ,

…

…
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then the dot product

X Y x y x y x yn ni …= + + +
1 1 2 2

is the scalar product of the two vectors. It is an exception to the commutative rule. To
compute the dot product in MATLAB, use sum(X .* Y) or sum(Y .* X). Be sure that
the two vectors have the same dimensions. To illustrate, use the previous vectors.

Value = sum(NumShares .* ClosePrices')

Value =

      3.5413e+004

Value = sum(ClosePrices .* NumShares')

Value =

      3.5413e+004

As expected, the value in these cases matches the PortfValue computed previously.

Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For
example, a portfolio matrix contains closing prices for a week. A second matrix (vector)
contains the stock quantities in the portfolio.

WeekClosePr = [42.5     15      78.875

               42.125   15.5    78.75

               42.125   15.125  79

               42.625   15.25   78.875

               43       15.25   78.625];

PortQuan = [100

            500

            300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue =

1.0e+004 *
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    3.5412

    3.5587

    3.5475

    3.5550

    3.5513

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the resulting matrix
(vector) is 5-by-1.

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation,
if A is an m-by-n matrix and B is an n-by-p matrix

A

a a a

a a a

a a a

B

n

i i in

m m mn

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

11 12 1

1 2

1 2

L

M M M

L

M M M

L

,   ==

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

b b b

b b b

b b b

j p

j p

n nj np

11 1 1

21 2 2

1

L L

L L

M M M

L L

then C = A*B is an m-by-p matrix; and the element cij in the ith row and jth column of C
is

c a b a b a bij i j i in nj= + + +1 1 2 12 … .

To illustrate, assume that there are two portfolios of the same three stocks above but
with different quantities.

Portfolios = [100   200

              500   400

              300   150];

Multiplying the 5-by-3 week's closing prices matrix by the 3-by-2 portfolios matrix yields
a 5-by-2 matrix showing each day's closing value for both portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

1.0e+004 *
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    3.5412    2.6331

    3.5587    2.6437

    3.5475    2.6325

    3.5550    2.6456

    3.5513    2.6494

Monday's values result from multiplying each Monday closing price by its respective
number of shares and summing the result for the first portfolio, then doing the same for
the second portfolio. Tuesday's values result from multiplying each Tuesday closing price
by its respective number of shares and summing the result for the first portfolio, then
doing the same for the second portfolio. And so on, through the rest of the week. With one
simple command, MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules.
It just operates element-by-element.

Portfolios = [100   200

              500   400

              300   150];

DoublePort = Portfolios * 2

DoublePort =

        200           400

       1000           800

        600           300

Dividing Matrices

Matrix division is useful primarily for solving equations, and especially for solving
simultaneous linear equations (see “Solving Simultaneous Linear Equations” on page
1-13). For example, you want to solve for X in A*X = B.

In ordinary algebra, you would divide both sides of the equation by A, and X would equal
B/A. However, since matrix algebra is not commutative (A*X ≠ X*A), different processes
apply. In formal matrix algebra, the solution involves matrix inversion. MATLAB,
however, simplifies the process by providing two matrix division symbols, left and right
(\ and /). In general,

X = A\B solves for X in A*X = B and
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X = B/A solves for X in X*A = B.

In general, matrix A must be a nonsingular square matrix; that is, it must be invertible
and it must have the same number of rows and columns. (Generally, a matrix is
invertible if the matrix times its inverse equals the identity matrix. To understand
the theory and proofs, consult a textbook on linear algebra such as Elementary Linear
Algebra by Hill listed in Appendix A.) MATLAB gives a warning message if the matrix is
singular or nearly so.

Solving Simultaneous Linear Equations

Matrix division is especially useful in solving simultaneous linear equations. Consider
this problem: Given two portfolios of mortgage-based instruments, each with certain
yields depending on the prime rate, how do you weight the portfolios to achieve certain
annual cash flows? The answer involves solving two linear equations.

A linear equation is any equation of the form

a x a y b1 2+ = ,

where a1, a2, and b are constants (with a1 and a2 not both 0), and x and y are variables.
(It is a linear equation because it describes a line in the xy-plane. For example, the
equation 2x + y = 8 describes a line such that if x = 2, then y = 4.)

A system of linear equations is a set of linear equations that you usually want to solve
at the same time; that is, simultaneously. A basic principle for exact answers in solving
simultaneous linear equations requires that there be as many equations as there are
unknowns. To get exact answers for x and y, there must be two equations. For example,
to solve for x and y in the system of linear equations

2 13

3 18

x y

x y

+ =

- = - ,

there must be two equations, which there are. Matrix algebra represents this system as
an equation involving three matrices: A for the left-side constants, X for the variables,
and B for the right-side constants

A X
x

y
B=

-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =

-

È

Î
Í

˘

˚
˙

2 1

1 3

13

18
,     ,     ,
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where A*X = B.

Solving the system simultaneously means solving for X. Using MATLAB,

A = [2  1

     1 -3];

B = [13

    -18];

X = A \ B

solves for X in A * X = B.

X = [3 7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to solve any
system of linear equations such as

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+ +

…

…

M

…++ =a x bmn n m

by representing them as matrices

A

a a a

a a a

a a a

X

x

x

n

n

m m mn

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

11 12 1

21 22 2

1 2

1L

L

M M M

L

,      
22

1

2

M M

x

B

b

b

bn m

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

,      

and solving for X in A*X = B.

To illustrate, consider this situation. There are two portfolios of mortgage-based
instruments, M1 and M2. They have current annual cash payments of $100 and $70
per unit, respectively, based on today's prime rate. If the prime rate moves down one
percentage point, their payments would be $80 and $40. An investor holds 10 units of M1
and 20 units of M2. The investor's receipts equal cash payments times units, or R = C *
U, for each prime-rate scenario. As word equations:

1-14



 Matrix Algebra Refresher

M1 M2
Prime flat: $100 * 10 units + $70 * 20 units = $2400

receipts
Prime down: $80 * 10 units + $40 * 20 units = $1600

receipts

As MATLAB matrices:

Cash = [100  70

         80  40];

Units = [10

        20];

Receipts = Cash * Units

Receipts =

       2400

       1600

Now the investor asks this question: Given these two portfolios and their characteristics,
how many units of each should they hold to receive $7000 if the prime rate stays flat and
$5000 if the prime drops one percentage point? Find the answer by solving two linear
equations.

M1 M2
Prime flat: $100 * x units + $70 * y units = $7000

receipts
Prime down: $80 * x units + $40 * y units = $5000

receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U (units).
Using MATLAB left division

Cash = [100  70

         80  40];

Receipts = [7000

            5000];
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Units = Cash \ Receipts

Units =

         43.7500

         37.5000

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to
achieve the annual receipts desired.

Operating Element by Element

Finally, element-by-element arithmetic operations are called array operations. To
indicate a MATLAB array operation, precede the operator with a period (.). Addition
and subtraction, and matrix multiplication and division by a scalar, are already array
operations so no period is necessary. When using array operations on two matrices,
the dimensions of the matrices must be the same. For example, given vectors of stock
dividends and closing prices

Dividends = [1.90  0.40  1.56  4.50];

Prices = [25.625  17.75  26.125  60.50];

Yields = Dividends ./ Prices

Yields =

    0.0741    0.0225    0.0597    0.0744

More About
• “Analyze Sets of Numbers Using Matrix Functions” on page 1-4
• “Using Input and Output Arguments with Functions” on page 1-17
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Using Input and Output Arguments with Functions

In this section...

“Input Arguments” on page 1-17
“Output Arguments” on page 1-19
“Interest Rate Arguments” on page 1-20

Input Arguments

Matrix Input

MATLAB software was designed to be a large-scale array (vector or matrix) processor.
In addition to its linear algebra applications, the general array-based processing facility
can perform repeated operations on collections of data. When MATLAB code is written
to operate simultaneously on collections of data stored in arrays, the code is said to be
vectorized. Vectorized code is not only clean and concise, but is also efficiently processed
by MATLAB.

Because MATLAB can process vectors and matrices easily, most Financial Toolbox
functions allow vector or matrix input arguments, rather than single (scalar) values.
For example, the irr function computes the internal rate of return of a cash flow
stream. It accepts a vector of cash flows and returns a scalar-valued internal rate of
return. However, it also accepts a matrix of cash flow streams, a column in the matrix
representing a different cash flow stream. In this case, irr returns a vector of internal
rates of return, each entry in the vector corresponding to a column of the input matrix.
Many other toolbox functions work similarly.

As an example, suppose that you make an initial investment of $100, from which you
then receive by a series of annual cash receipts of $10, $20, $30, $40, and $50. This cash
flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]'

which MATLAB displays as

CashFlows =

  -100

    10

    20

1-17



1 Getting Started

    30

    40

    50

The irr function can compute the internal rate of return of this stream.

Rate = irr(CashFlows)

The internal rate of return of this investment is

Rate =

    0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a scalar
output – the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three
investments.

Rate =

    0.1201    0.1201    0.1201

This simple example illustrates the power of vectorized programming. The example
shows how to collect data into a matrix and then use a toolbox function to compute
answers for the entire collection. This feature can be useful in portfolio management, for
example, where you might want to organize multiple assets into a single collection. Place
data for each asset in a different column or row of a matrix, then pass the matrix to a
Financial Toolbox function. MATLAB performs the same computation on all of the assets
at once.

Matrices of Character Vector Input

Enter MATLAB character vectors surrounded by single quotes ('string').

Character vector are stored as character arrays, one ASCII character per element. Thus,
the date character vector
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DateString = '9/16/2001'

is actually a 1-by-9 vector. Character vectors making up the rows of a matrix or vector
all must have the same length. To enter several date character vectors, therefore, use
a column vector and be sure that all character vectors are the same length. Fill in with
spaces or zeros. For example, to create a vector of dates corresponding to irregular cash
flows

DateFields = ['01/12/2001'

              '02/14/2001'

              '03/03/2001'

              '06/14/2001'

              '12/01/2001'];

DateFields actually becomes a 5-by-10 character array.

Do not mix numbers and character vectors in a matrix. If you do, MATLAB treats all
entries as characters. For example,

Item = [83  90  99 '14-Sep-1999']

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

Item =

SZc14-Sep-1999

Output Arguments

Some functions return no arguments, some return just one, and some return multiple
arguments. Functions that return multiple arguments use the syntax

[A, B, C] = function(variables...)

to return arguments A, B, and C. If you omit all but one, the function returns the first
argument. Thus, for this example if you use the syntax

X = function(variables...)

function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why could such
functions not accept vectors as arguments and return matrices, where each column in the
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output matrix corresponds to an entry in the input vector? The answer is that the output
vectors can be variable length and thus will not fit in a matrix without some convention
to indicate that the shorter columns are missing data.

Functions that require asset life as an input, and return values corresponding to
different periods over that life, cannot generally handle vectors or matrices as input
arguments. Those functions are:

amortize Amortization
depfixdb Fixed declining-balance depreciation
depgendb General declining-balance depreciation
depsoyd Sum of years' digits depreciation

For example, suppose you have a collection of assets such as automobiles and you want to
compute the depreciation schedules for them. The function depfixdb computes a stream
of declining-balance depreciation values for an asset. You might want to set up a vector
where each entry is the initial value of each asset. depfixdb also needs the lifetime of
an asset. If you were to set up such a collection of automobiles as an input vector, and
the lifetimes of those automobiles varied, the resulting depreciation streams would differ
in length according to the life of each automobile, and the output column lengths would
vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments

One common argument, both as input and output, is interest rate. All Financial Toolbox
functions expect and return interest rates as decimal fractions. Thus an interest rate of
9.5% is indicated as 0.095.

More About
• “Analyze Sets of Numbers Using Matrix Functions” on page 1-4
• “Matrix Algebra Refresher” on page 1-7
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Introduction
Financial Toolbox software contains functions that perform many common financial
tasks, including:

• “Handle and Convert Dates” on page 2-4

Calendar functions convert dates among different formats (including Excel® formats),
determine future or past dates, find dates of holidays and business days, compute
time differences between dates, find coupon dates and coupon periods for coupon
bonds, and compute time periods based on 360-, 365-, or 366-day years.

• “Format Currency” on page 2-11

The toolbox includes functions for handling decimal values in bank (currency) formats
and as fractional prices.

• “Charting Financial Data” on page 2-12

Charting functions produce various financial charts including Bollinger bands, high-
low-close charts, candlestick plots, point and figure plots, and moving-average plots.

• “Analyzing and Computing Cash Flows” on page 2-17

Cash-flow evaluation and financial accounting functions compute interest rates, rates
of return, payments associated with loans and annuities, future and present values,
depreciation, and other standard accounting calculations associated with cash-flow
streams.

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Securities Industry Association (SIA) compliant fixed-income functions compute
prices, yields, accrued interest, and sensitivities for securities such as bonds, zero-
coupon bonds, and Treasury bills. They handle odd first and last periods in price/yield
calculations, compute accrued interest and discount rates, and calculate convexity and
duration. Another set of functions analyzes term structure of interest rates, including
pricing bonds from yield curves and bootstrapping yield curves from market prices.

• “Pricing and Analyzing Equity Derivatives” on page 2-42

Derivatives analysis functions compute prices, yields, and sensitivities for derivative
securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta, gamma,
lambda, rho, theta, and vega, as well as values of call and put options.
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Binomial functions work with American options, computing put and call prices.
• “Analyzing Portfolios” on page 3-2

Portfolio analysis functions provide basic utilities to compute variances and
covariance of portfolios, find combinations to minimize variance, compute Markowitz
efficient frontiers, and calculate combined rates of return.

• Modeling volatility in time series.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
functions model the volatility of univariate economic time series. (Econometrics
Toolbox™ software provides a more comprehensive and integrated computing
environment. For information, see the Econometrics Toolbox documentation or the
financial products Web page at http://www.mathworks.com/products/finprod.)
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Handle and Convert Dates

In this section...

“Date Formats” on page 2-4
“Date Conversions” on page 2-5
“Current Date and Time” on page 2-8
“Determining Dates” on page 2-8

Date Formats

Since virtually all financial data is dated or derives from a time series, financial
functions must have extensive date-handling capabilities. You most often work with date
character vectors (14-Sep-1999) when dealing with dates. Financial Toolbox software
works internally with serial date numbers (for example, 730377). A serial date number
represents a calendar date as the number of days that has passed since a fixed base
date. In MATLAB software, serial date number 1 is January 1, 0000 A.D. MATLAB also
uses serial time to represent fractions of days beginning at midnight; for example, 6
p.m. equals 0.75 serial days. So 6:00 p.m. on 14-Sep-1999, in MATLAB, is date number
730377.75.

Note If you specify a two-digit year, MATLAB assumes that the year lies within the
100-year period centered about the current year. See the function datenum for specific
information. MATLAB internal date handling and calculations generate no ambiguous
values. However, whenever possible, programmers should use serial date numbers or
date character vectors containing four-digit years.

Many toolbox functions that require dates accept either date character vectors or serial
date numbers. If you are dealing with a few dates at the MATLAB command-line level,
date character vectors are more convenient. If you are using toolbox functions on large
numbers of dates, as in analyzing large portfolios or cash flows, performance improves if
you use date numbers.

The Financial Toolbox software provides functions that convert date character vectors to
serial date numbers, and vice versa.
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Date Conversions

Functions that convert between date formats are

datedisp Displays a numeric matrix with date entries formatted as date
character vectors.

datenum Converts a date character vector to a serial date number.
datestr Converts a serial date number to a date character vector.
m2xdate Converts MATLAB serial date number to Excel serial date number.
x2mdate Converts Excel serial date number to MATLAB serial date number.

Another function, datevec, converts a date number or date character vector to a date
vector whose elements are [Year Month Day Hour Minute Second]. Date vectors
are mostly an internal format for some MATLAB functions; you would not often use them
in financial calculations.

Input Conversions

The datenum function is important for using Financial Toolbox software efficiently.
datenum takes an input date character vector in any of several formats, with 'dd-mmm-
yyyy', 'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input
date character vector can have up to six fields formed by letters and numbers separated
by any other characters:

• The day field is an integer from 1 through 31.
• The month field is either an integer from 1 through 12 or an alphabetical character

vector with at least three characters.
• The year field is a nonnegative integer: if only two numbers are specified, then the

year is assumed to lie within the 100-year period centered about the current year; if
the year is omitted, the current year is used as the default.

• The hours, minutes, and seconds fields are optional. They are integers separated by
colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

'17-May-1999'

'17-May-99'

'17-may'

'May 17, 1999'
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'5/17/99'

'5/17'

and both of these represent the same time.

'17-May-1999, 18:30'

'5/17/99/6:30 pm'

The default format for numbers-only input follows the American convention. Thus 3/6 is
March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a matrix
variable, then later pass the variable to a function. Alternatively, you can use datenum
directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond given the
yield-to-maturity. First set up variables for the yield-to-maturity, coupon rate, and the
necessary dates.

Yield       = 0.07;

CouponRate  = 0.08;

Settle      = datenum('17-May-2000');

Maturity    = datenum('01-Oct-2000');

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date character vectors to serial date numbers directly in the
function input argument list.

bndprice(0.07, 0.08, datenum('17-May-2000'),... 

datenum('01-Oct-2000'))

bndprice is an example of a function designed to detect the presence of date character
vectors and make the conversion automatically. For these functions date character
vectors may be passed directly.

bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')

The decision to represent dates as either date character vectors or serial date numbers is
often a matter of convenience. For example, when formatting data for visual display or
for debugging date-handling code, it is often much easier to view dates as date character
vectors because serial date numbers are difficult to interpret. Alternatively, serial date
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numbers are just another type of numeric data, and can be placed in a matrix along with
any other numeric data for convenient manipulation.

Remember that if you create a vector of input date character vectors, use a column
vector, and be sure that all character vector are the same length. Fill with spaces or
zeros. See “Matrices of Character Vector Input” on page 1-18.

Output Conversions

The function datestr converts a serial date number to one of 19 different date character
vector output formats showing date, time, or both. The default output for dates is a
day-month-year character vector, for example, 24-Aug-2000. This function is useful for
preparing output reports.

Format Description

01-Mar-2000 15:45:17 day-month-year hour:minute:second
01-Mar-2000 day-month-year
03/01/00 month/day/year
Mar month, three letters
M month, single letter
3 month
03/01 month/day
1 day of month
Wed day of week, three letters
W day of week, single letter
2000 year, four numbers
99 year, two numbers
Mar01 month year
15:45:17 hour:minute:second
03:45:17 PM hour:minute:second AM or PM
15:45 hour:minute
03:45 PM hour:minute AM or PM
Q1-99 calendar quarter-year
Q1 calendar quarter
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Current Date and Time

The functions today and now return serial date numbers for the current date, and the
current date and time, respectively.

today

ans =

      730693

now

ans =

      730693.48

The MATLAB function date returns a character vector for today's date.

date

ans =

26-Jul-2000

Determining Dates

The Financial Toolbox software provides many functions for determining specific
dates, including functions which account for holidays and other nontrading days. For
example, you schedule an accounting procedure for the last Friday of every month. The
lweekdate function returns those dates for 2000; the 6 specifies Friday.

Fridates = lweekdate(6, 2000, 1:12);

Fridays = datestr(Fridates)

Fridays =

28-Jan-2000

25-Feb-2000

31-Mar-2000

28-Apr-2000

26-May-2000

30-Jun-2000

28-Jul-2000
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25-Aug-2000

29-Sep-2000

27-Oct-2000

24-Nov-2000

29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third Monday in
January. The nweekdate function determines those dates for 2001 through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);

MLKDays = datestr(MLKDates)

MLKDays =

15-Jan-2001

21-Jan-2002

20-Jan-2003

19-Jan-2004

Accounting for holidays and other nontrading days is important when examining
financial dates. The Financial Toolbox software provides the holidays function, which
contains holidays and special nontrading days for the New York Stock Exchange from
1950 through 2030, inclusive. In addition, you can use nyseclosures to evaluate
all known or anticipated closures of the New York Stock Exchange from January 1,
1885 to December 31, 2050. nyseclosures returns a vector of serial date numbers
corresponding to market closures between the dates StartDate and EndDate, inclusive.

In this example, you can use holidays to determine the standard holidays in the last
half of 2000:

LHHDates = holidays('1-Jul-2000', '31-Dec-2000');

LHHDays = datestr(LHHDates)

LHHDays =

04-Jul-2000

04-Sep-2000

23-Nov-2000

25-Dec-2000

Now use the toolbox busdate function to determine the next business day after these
holidays.

2-9



2 Performing Common Financial Tasks

LHNextDates = busdate(LHHDates);

LHNextDays = datestr(LHNextDates)

LHNextDays =

05-Jul-2000

05-Sep-2000

24-Nov-2000

26-Dec-2000

The toolbox also provides the cfdates function to determine cash-flow dates for
securities with periodic payments. This function accounts for the coupons per year, the
day-count basis, and the end-of-month rule. For example, to determine the cash-flow
dates for a security that pays four coupons per year on the last day of the month, on
an actual/365 day-count basis, enter the settlement date, the maturity date, and the
parameters.

PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);

PayDays = datestr(PayDates)

PayDays =

31-May-2000

31-Aug-2000

30-Nov-2000

28-Feb-2001

31-May-2001

31-Aug-2001

30-Nov-2001

See Also
busdate | cfdates | date | datedisp | datenum | datestr | datevec | holidays
| lweekdate | m2xdate | nweekdate | nyseclosures | x2mdate

Related Examples
• “Format Currency” on page 2-11
• “Charting Financial Data” on page 2-12
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Format Currency

Financial Toolbox software provides several functions to format currency and chart
financial data. The currency formatting functions are

cur2frac Converts decimal currency values to fractional values
cur2str Converts a value to Financial Toolbox bank format
frac2cur Converts fractional currency values to decimal values

These examples show their use.

Dec = frac2cur('12.1', 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second input
variable is the denominator of the fraction.

Str =  cur2str(-8264, 2)

returns the character vector ($8264.00). For this toolbox function, the output format
is a numerical format with dollar sign prefix, two decimal places, and negative numbers
in parentheses; for example, ($123.45) and $6789.01. The standard MATLAB bank
format uses two decimal places, no dollar sign, and a minus sign for negative numbers;
for example, −123.45 and 6789.01.

See Also
busdate | cfdates | cur2frac | cur2str | date | datedisp | datenum |
datestr | datevec | frac2cur | holidays | lweekdate | m2xdate | nweekdate |
nyseclosures | x2mdate

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
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Charting Financial Data

In this section...

“Introduction” on page 2-12
“High-Low-Close Chart” on page 2-13
“Bollinger Chart” on page 2-14

Introduction

The following toolbox financial charting functions plot financial data and produce
presentation-quality figures quickly and easily.

bolling Bollinger band chart
bollinger Time series Bollinger band
candle Candlestick chart
candle Time series candle plot
pointfig Point and figure chart
highlow High, low, open, close chart
highlow Time series High-Low plot
movavg Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control
appearance, and add labels and titles. The toolbox also provides a comprehensive set
of charting functions that work with financial time series objects, see “Chart Technical
Indicators”.

Here are two plotting examples: a high-low-close chart of sample IBM® stock price data,
and a Bollinger band chart of the same data. These examples load data from an external
file (ibm.dat), then call the functions using subsets of the data. The MATLAB variable
ibm, which is created by loading ibm.dat, is a six-column matrix where each row is
a trading day's data and where columns 2, 3, and 4 contain the high, low, and closing
prices, respectively.

Note The data in ibm.dat is fictional and for illustrative use only.
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High-Low-Close Chart

Load the data and set up matrix dimensions. load and size are standard MATLAB®
functions.

load ibm.dat;

[ro, co] = size(ibm);

Open a figure window for the chart. Use the Financial Toolbox™ highlow function to
plot high, low, and close prices for the last 50 trading days in the data file. Add labels
and title, and set axes with standard MATLAB functions. Use the Financial Toolbox
dateaxis function to provide dates for the x-axis ticks.

figure;

highlow(ibm(ro-50:ro,2),ibm(ro-50:ro,3),ibm(ro-50:ro,4),[],'b');

xlabel('');

ylabel('Price ($)');

title('International Business Machines, 941231 - 950219');

axis([0 50 -inf inf]);

dateaxis('x',6,'31-Dec-1994')
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Bollinger Chart

The bolling function in Financial Toolbox™ software produces a Bollinger band chart
using all the closing prices in an IBM® stock price matrix. A Bollinger band chart
plots actual data along with three other bands of data. The upper band is two standard
deviations above a moving average; the lower band is two standard deviations below that
moving average; and the middle band is the moving average itself. This example uses a
15-day moving average. First, load the data using the ibm.dat data file and then execute
the bolling function to plot the Bollinger bands.

load ibm.dat;

[ro, co] = size(ibm);

bolling(ibm(:,4), 15, 0);
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axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);

ylabel('Price ($)');

title(['International Business Machines']);

dateaxis('x', 6,'31-Dec-1994')

Specify the axes, labels, and titles. Use dateaxis to add the x-axis dates.
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For help using MATLAB® plotting functions, see “Create 2-D Graph and Customize
Lines” in the MATLAB documentation. See the MATLAB documentation for details on
the axis, title, xlabel, and ylabel functions.

See Also
bolling | bollinger | busdate | candle | candle | cfdates | cur2frac
| cur2str | date | dateaxis | datedisp | datenum | datestr | datevec |
frac2cur | highlow | highlow | holidays | load | lweekdate | m2xdate |
movavg | nweekdate | nyseclosures | pointfig | size | x2mdate

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Format Currency” on page 2-11
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Analyzing and Computing Cash Flows

In this section...

“Introduction” on page 2-17
“Interest Rates/Rates of Return” on page 2-17
“Present or Future Values” on page 2-18
“Depreciation” on page 2-19
“Annuities” on page 2-19

Introduction

Financial Toolbox cash-flow functions compute interest rates and rates of return, present
or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of $20,000
followed by three annual return payments, a second investment of $5,000, then four more
returns. Investments are negative cash flows, return payments are positive cash flows.

Stream = [-20000,  2000,  2500,  3500, -5000,  6500,...

            9500,  9500,  9500];

Interest Rates/Rates of Return

Several functions calculate interest rates involved with cash flows. To compute the
internal rate of return of the cash stream, execute the toolbox function irr

ROR = irr(Stream)

which gives a rate of return of 11.72%.

The internal rate of return of a cash flow may not have a unique value. Every time the
sign changes in a cash flow, the equation defining irr can give up to two additional
answers. An irr computation requires solving a polynomial equation, and the number
of real roots of such an equation can depend on the number of sign changes in the
coefficients. The equation for internal rate of return is
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where Investment is a (negative) initial cash outlay at time 0, cfn is the cash flow in the
nth period, and n is the number of periods. irr finds the rate r such that the present
value of the cash flow equals the initial investment. If all of the cfns are positive there
is only one solution. Every time there is a change of sign between coefficients, up to two
additional real roots are possible.

Another toolbox rate function, effrr, calculates the effective rate of return given an
annual interest rate (also known as nominal rate or annual percentage rate, APR)
and number of compounding periods per year. To find the effective rate of a 9% APR
compounded monthly, enter

Rate = effrr(0.09, 12)

The answer is 9.38%.

A companion function nomrr computes the nominal rate of return given the effective
annual rate and the number of compounding periods.

Present or Future Values

The toolbox includes functions to compute the present or future value of cash flows at
regular or irregular time intervals with equal or unequal payments: fvfix, fvvar,
pvfix, and pvvar. The -fix functions assume equal cash flows at regular intervals,
while the -var functions allow irregular cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed
the internal rate of return. This exercise also serves as a check on that calculation
because the net present value of a cash stream at its internal rate of return should be
zero. Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not exactly zero due to
rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's
yield, for example, often must solve a nonlinear equation. If you then use that yield to
compute the net present value of the bond's income stream, it usually does not exactly
equal the purchase price, but the difference is negligible for practical applications.
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Depreciation

The toolbox includes functions to compute standard depreciation schedules: straight line,
general declining-balance, fixed declining-balance, and sum of years' digits. Functions
also compute a complete amortization schedule for an asset, and return the remaining
depreciable value after a depreciation schedule has been applied.

This example depreciates an automobile worth $15,000 over five years with a salvage
value of $1,500. It computes the general declining balance using two different
depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known as double declining
balance). Enter

Decline1 = depgendb(15000, 1500, 5, 1.5)

Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns
Decline1 =

       4500.00       3150.00       2205.00       1543.50       2101.50

Decline2 =

       6000.00       3600.00       2160.00       1296.00        444.00

These functions return the actual depreciation amount for the first four years and the
remaining depreciable value as the entry for the fifth year.

Annuities

Several toolbox functions deal with annuities. This first example shows how to compute
the interest rate associated with a series of loan payments when only the payment
amounts and principal are known. For a loan whose original value was $5000.00 and
which was paid back monthly over four years at $130.00/month:

Rate = annurate(4*12, 130, 5000, 0, 0)

The function returns a rate of 0.0094 monthly, or about 11.28% annually.

The next example uses a present-value function to show how to compute the initial
principal when the payment and rate are known. For a loan paid at $300.00/month over
four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of $11,607.43.
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The final example computes an amortization schedule for a loan or annuity. The original
value was $5000.00 and was paid back over 12 months at an annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ...

        amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76  405.78  408.82  411.89  414.97  

         418.09 421.22  424.38  427.56  430.77  434.00]

the amount of interest paid,

Intpmt = [37.50 34.50  31.48  28.44  25.37  22.28  

          19.17 16.03  12.88   9.69   6.49   3.26]

the remaining balance for each period of the loan,

Balance = [4600.24  4197.49  3791.71  3382.89  2971.01 

           2556.03  2137.94  1716.72  1292.34   864.77 

            434.00    0.00]

and a scalar for the monthly payment.

Payment = 437.26

See Also
effrr | fvfix | fvvar | irr | nomrr | pvfix | pvvar

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21
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Pricing and Computing Yields for Fixed-Income Securities
In this section...

“Introduction” on page 2-21
“Fixed-Income Terminology” on page 2-21
“Framework” on page 2-25
“Default Parameter Values” on page 2-26
“Coupon Date Calculations” on page 2-28
“Yield Conventions” on page 2-29
“Pricing Functions” on page 2-29
“Yield Functions” on page 2-30
“Fixed-Income Sensitivities” on page 2-31

Introduction

The Financial Toolbox product provides functions for computing accrued interest, price,
yield, convexity, and duration of fixed-income securities. Various conventions exist for
determining the details of these computations. The Financial Toolbox software supports
conventions specified by the Securities Industry and Financial Markets Association
(SIFMA), used in the US markets, the International Capital Market Association
(ICMA), used mainly in the European markets, and the International Swaps and
Derivatives Association (ISDA). For historical reasons, SIFMA is referred to in Financial
Toolbox documentation as SIA and ISMA is referred to as International Capital Market
Association (ICMA).

Fixed-Income Terminology

Since terminology varies among texts on this subject, here are some basic definitions that
apply to these Financial Toolbox functions. The Glossary contains additional definitions.

The settlement date of a bond is the date when money first changes hands; that is, when a
buyer pays for a bond. It need not coincide with the issue date, which is the date a bond is
first offered for sale.

The first coupon date and last coupon date are the dates when the first and last coupons
are paid, respectively. Although bonds typically pay periodic annual or semiannual
coupons, the length of the first and last coupon periods may differ from the standard
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coupon period. The toolbox includes price and yield functions that handle these odd first
and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon period for
the fixed income security of interest, and do not necessarily coincide with actual coupon
payment dates. The toolbox includes functions that calculate both actual and quasi-
coupon dates for bonds with odd first and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon
payment dates. In this case, the bond owner is not entitled to the full value of the
coupon for that period. When a bond is purchased between coupon dates, the buyer
must compensate the seller for the pro-rata share of the coupon interest earned from
the previous coupon payment date. This pro-rata share of the coupon payment is called
accrued interest. The purchase price, the price paid for a bond, is the quoted market price
plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face value, also
known as the redemption value or par value, to the buyer. The yield-to-maturity of a bond
is the nominal compound rate of return that equates the present value of all future cash
flows (coupons and principal) to the current market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond makes
coupon payments to the holder.

Period of a Bond

Period Value Payment Schedule

0 No coupons (Zero coupon bond)
1 Annual
2 Semiannual
3 Tri-annual
4 Quarterly
6 Bi-monthly
12 Monthly

The basis of a bond refers to the basis or day-count convention for a bond. Basis is
normally expressed as a fraction in which the numerator determines the number of days
between two dates, and the denominator determines the number of days in the year. For
example, the numerator of actual/actual means that when determining the number of
days between two dates, count the actual number of days; the denominator means that
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you use the actual number of days in the given year in any calculations (either 365 or 366
days depending on whether the given year is a leap year).

The day count convention determines how accrued interest is calculated and determines
how cash flows for the bond are discounted, by that means effecting price and yield
calculations. Furthermore, the SIA convention is to use the actual/actual day count
convention for discounting cash flows in all cases.

Basis of a Bond

Basis Value Meaning Description

0 (default) actual/actual Actual days held over actual
days in coupon period.
Denominator is 365 in most
years and 366 in a leap year.

1 30/360 (SIA) Each month contains 30
days; a year contains 360
days. Payments are adjusted
for bonds that pay coupons
on the last day of February.

2 actual/360 Actual days held over 360.
3 actual/365 Actual days held over 365,

even in leap years.
4 30/360 PSA Number of days in every

month is set to 30 (including
February). If the start date
of the period is either the
31st of a month or the last
day of February, the start
date is set to the 30th, while
if the start date is the 30th of
a month and the end date is
the 31st, the end date is set
to the 30th. The number of
days in a year is 360.

5 30/360 ISDA (International
Swap Dealers Association)

Variant of 30/360 with slight
differences for calculating
number of days in a month.
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Basis Value Meaning Description

6 30E/360 European Variant of 30/360 used
primarily in Europe.

7 actual/365 Japanese All years contain 365 days.
Leap days are ignored.

8 actual/actual (ICMA) Actual days held over actual
days in coupon period.
Denominator is 365 in most
years and 366 in a leap
year. This basis assumes an
annual compounding period.

9 actual/360 (ICMA) Actual days held over 360.
This basis assumes an
annual compounding period.

10 actual/365 (ICMA) Actual days held over 365,
even in leap years. This
basis assumes an annual
compounding period.

11 30/360 (ICMA) The number of days in every
month is set to 30. If the
start date or the end date
of the period is the 31st of a
month, that date is set to the
30th. The number of days in
a year is 360.

12 actual/365 (ISDA) This day count fraction is
equal to the sum of number
of interest accrual days
falling with a leap year
divided by 366 and the
number of interest accrual
days not falling within a leap
year divided by 365.

13 BUS/252 The number of business
days between the previous
coupon payment and the
settlement data divided
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Basis Value Meaning Description

by 252. BUS/252 business
days are non-weekend,
non-holiday days. The
holidays.m file defines
holidays.

Note Although the concept of day count sounds deceptively simple, the actual calculation
of day counts can be complex. You can find a good discussion of day counts and the
formulas for calculating them in Chapter 5 of Stigum and Robinson, Money Market and
Bond Calculations in Appendix A.

The end-of-month rule affects a bond's coupon payment structure. When the rule is in
effect, a security that pays a coupon on the last actual day of a month will always pay
coupons on the last day of the month. This means, for example, that a semiannual bond
that pays a coupon on February 28 in nonleap years will pay coupons on August 31 in all
years and on February 29 in leap years.

End-of-Month Rule

End-of-Month Rule Value Meaning

1 (default) Rule in effect.
0 Rule not in effect.

Framework

Although not all Financial Toolbox functions require the same input arguments, they all
accept the following common set of input arguments.

Common Input Arguments

Input Meaning

Settle Settlement date
Maturity Maturity date
Period Coupon payment period
Basis Day-count basis
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Input Meaning

EndMonthRule End-of-month payment rule
IssueDate Bond issue date
FirstCouponDate First coupon payment date
LastCouponDate Last coupon payment date

Of the common input arguments, only Settle and Maturity are required. All others
are optional. They are set to the default values if you do not explicitly set them. By
default, the FirstCouponDate and LastCouponDate are nonapplicable. In other
words, if you do not specify FirstCouponDate and LastCouponDate, the bond is
assumed to have no odd first or last coupon periods. In this case, the bond is a standard
bond with a coupon payment structure based solely on the maturity date.

Default Parameter Values

To illustrate the use of default values in Financial Toolbox functions, consider the
cfdates function, which computes actual cash flow payment dates for a portfolio of fixed
income securities regardless of whether the first and/or last coupon periods are normal,
long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ... 

EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)

Single Bond Example

As an example, suppose that you have a bond with these characteristics:

Settle          = '20-Sep-1999'

Maturity        = '15-Oct-2007'

Period          = 2

Basis           = 0

EndMonthRule    = 1

IssueDate       = NaN

FirstCouponDate = NaN

LastCouponDate  = NaN

2-26



 Pricing and Computing Yields for Fixed-Income Securities

Note that Period, Basis, and EndMonthRule are set to their default values, and
IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE® arithmetic standard for Not-a-Number and is used to
indicate the result of an undefined operation (for example, zero divided by zero).
However, NaN is also a convenient placeholder. In the SIA functions of Financial Toolbox
software, NaN indicates the presence of a nonapplicable value. It tells the Financial
Toolbox functions to ignore the input value and apply the default. Setting IssueDate,
FirstCouponDate, and LastCouponDate to NaN in this example tells cfdates to
assume that the bond has been issued before settlement and that no odd first or last
coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)

cfdates(Settle, Maturity, Period)

cfdates(Settle, Maturity, Period, [])

cfdates(Settle, Maturity, [], Basis)

cfdates(Settle, Maturity, [], [])

cfdates(Settle, Maturity, Period, [], EndMonthRule)

cfdates(Settle, Maturity, Period, [], NaN)

cfdates(Settle, Maturity, Period, [], [], IssueDate)

cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])

cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)

cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ... 

IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing an empty
matrix ([]) or passing a NaN – all three tell cfdates (and other Financial Toolbox
functions) to use the default value for a particular input parameter.

Bond Portfolio Example

Since the previous example included only a single bond, there was no difference between
passing an empty matrix or passing a NaN for an optional input argument. For a
portfolio of bonds, however, using NaN as a placeholder is the only way to specify default
acceptance for some bonds while explicitly setting nondefault values for the remaining
bonds in the portfolio.

Now suppose that you have a portfolio of two bonds.

Settle   = '20-Sep-1999'

Maturity = ['15-Oct-2007'; '15-Oct-2010']
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These calls to cfdates all set the coupon period to its default value (Period = 2) for
both bonds.

cfdates(Settle, Maturity, 2)

cfdates(Settle, Maturity, [2 2])

cfdates(Settle, Maturity, [])

cfdates(Settle, Maturity, NaN)

cfdates(Settle, Maturity, [NaN NaN])

cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector of
maturity dates, cfdates knows that you have a two-bond portfolio.

The first call specifies a single (that is, scalar) 2 for Period. Passing a scalar tells
cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an example
of implicit scalar-expansion. The settlement date has been implicit scalar-expanded as
well.

The second call also applies the default coupon period by explicitly passing a two-element
vector of 2's. The third call passes an empty matrix, which cfdates interprets as an
invalid period, for which the default value is used. The fourth call is similar, except that
a NaN has been passed. The fifth call passes two NaN's, and has the same effect as the
third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.

cfdates(Settle, Maturity, [4 NaN])

cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets the default
Period = 2 for the second bond. The second call has the same effect as the first but
explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The default-
handling process illustrated in the examples applies to any of the optional input
arguments.

Coupon Date Calculations

Calculating coupon dates, either actual or quasi dates, is notoriously complicated.
Financial Toolbox software follows the SIA conventions in coupon date calculations.
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The first step in finding the coupon dates associated with a bond is to determine the
reference, or synchronization date (the sync date). Within the SIA framework, the order
of precedence for determining the sync date is:

1 The first coupon date
2 The last coupon date
3 The maturity date

In other words, a Financial Toolbox function first examines the FirstCouponDate
input. If FirstCouponDate is specified, coupon payment dates and quasi-coupon dates
are computed with respect to FirstCouponDate; if FirstCouponDate is unspecified,
empty ([]), or NaN, then the LastCouponDate is examined. If LastCouponDate
is specified, coupon payment dates and quasi-coupon dates are computed with
respect to LastCouponDate. If both FirstCouponDate and LastCouponDate are
unspecified, empty ([]), or NaN, the Maturity (a required input argument) serves as the
synchronization date.

Yield Conventions

There are two yield and time factor conventions that are used in the Financial Toolbox
software – these are determined by the input basis. Specifically, bases 0 to 7 are
assumed to have semiannual compounding, while bases 8 to 12 are assumed to
have annual compounding regardless of the period of the bond's coupon payments
(including zero-coupon bonds). In addition, any yield-related sensitivity (that is, duration
and convexity), when quoted on a periodic basis, follows this same convention. (See
bndconvp, bndconvy, bnddurp, bnddury, and bndkrdur.)

Pricing Functions

This example shows how easily you can compute the price of a bond with an odd
first period using the function bndprice. Assume that you have a bond with these
characteristics:

Settle          = '11-Nov-1992';

Maturity        = '01-Mar-2005';

IssueDate       = '15-Oct-1992';

FirstCouponDate = '01-Mar-1993';

CouponRate      = 0.0785;

Yield           = 0.0625;
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Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and end-
of-month rule (EndMonthRule = 1) to assume the default values. Also, assume that
there is no odd last coupon date and that the face value of the bond is $100. Calling the
function

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ... 

Maturity, [], [], [], IssueDate, FirstCouponDate)

returns a price of $113.60 and accrued interest of $0.59.

Similar functions compute prices with regular payments, odd first and last periods, and
prices of Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other functions use nonlinear formulas to compute the price of a
security. For this reason, Financial Toolbox software uses Newton's method when solving
for an independent variable within a formula. See any elementary numerical methods
textbook for the mathematics underlying Newton's method.

Yield Functions

To illustrate toolbox yield functions, compute the yield of a bond that has odd first and
last periods and settlement in the first period. First set up variables for settlement,
maturity date, issue, first coupon, and a last coupon date.

Settle          = '12-Jan-2000';

Maturity        = '01-Oct-2001';

IssueDate       = '01-Jan-2000';

FirstCouponDate = '15-Jan-2000';

LastCouponDate  = '15-Apr-2000';

Assume a face value of $100. Specify a purchase price of $95.70, a coupon rate of 4%,
quarterly coupon payments, and a 30/360 day-count convention (Basis = 1).

Price        = 95.7;

CouponRate   = 0.04;

Period       = 4;

Basis        = 1;

EndMonthRule = 1;

Calling the function
Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,... 
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Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

returns

Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities

Financial Toolbox software supports the following options for managing interest-rate risk
for one or more bonds:

• bnddurp and bnddury support duration and convexity analysis based on market
quotes and assume parallel shifts in the bond yield curve.

• bndkrdur supports key rate duration based on a market yield curve and can model
nonparallel shifts in the bond yield curve.

Calculating Duration and Convexity for Bonds

The toolbox includes functions to perform sensitivity analysis such as convexity and the
Macaulay and modified durations for fixed-income securities. The Macaulay duration
of an income stream, such as a coupon bond, measures how long, on average, the owner
waits before receiving a payment. It is the weighted average of the times payments are
made, with the weights at time T equal to the present value of the money received at
time T. The modified duration is the Macaulay duration discounted by the per-period
interest rate; that is, divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and modified
durations, and the periodic Macaulay duration for a bond with settlement (12-Jan-2000)
and maturity (01-Oct-2001) dates as above, a 5% coupon rate, and a 4.5% yield to
maturity. For simplicity, any optional input arguments assume default values (that is,
semiannual coupons, and day-count basis = 0 (actual/actual), coupon payment structure
synchronized to the maturity date, and end-of-month payment rule in effect).

CouponRate = 0.05;

Yield = 0.045;

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,... 

CouponRate, Settle, Maturity)

The durations are

ModDuration  = 1.6107 (years)
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YearDuration = 1.6470 (years)

PerDuration  = 3.2940 (semiannual periods)

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the
annualized Macaulay duration (YearDuration).

Calculating Key Rate Durations for Bonds

Key rate duration enables you to evaluate the sensitivity and price of a bond to
nonparallel changes in the spot or zero curve by decomposing the interest rate risk along
the spot or zero curve. Key rate duration refers to the process of choosing a set of key
rates and computing a duration for each rate. Specifically, for each key rate, while the
other rates are held constant, the key rate is shifted up and down (and intermediate cash
flow dates are interpolated), and then the present value of the security given the shifted
curves is computed.

The calculation of bndkrdur supports:

krdur
PV PV

PV ShiftValue
i

down up
  

  

    
=

¥ ¥

( - )
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Where PV is the current value of the instrument, PV_up and PV_down are the new
values after the discount curve has been shocked, and ShiftValue is the change in
interest rate. For example, if key rates of 3 months, 1, 2, 3, 5, 7, 10, 15, 20, 25, 30 years
were chosen, then a 30-year bond might have corresponding key rate durations of:

3M 1Y 2Y 3Y 5Y 7Y 10Y 15Y 20Y 25Y 30Y
.01 .04 .09 .21 .4 .65 1.27 1.71 1.68 1.83 7.03

The key rate durations add up to approximately equal the duration of the bond.

For example, compute the key rate duration of the U.S. Treasury Bond with maturity
date of August 15, 2028 and coupon rate of 5.5%.

Settle = datenum('18-Nov-2008'); 

CouponRate = 5.500/100;

Maturity = datenum('15-Aug-2028'); 

Price = 114.83;

For the ZeroData information on the current spot curve for this bond, refer to http://
www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml:
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ZeroDates = daysadd(Settle ,[30 90 180 360 360*2 360*3 360*5 ...

360*7 360*10 360*20 360*30]);

ZeroRates = ([0.06 0.12 0.81 1.08 1.22 1.53 2.32 2.92 3.68 4.42 4.20]/100)';

Compute the key rate duration for a specific set of rates (choose this based on the
maturities of the available hedging instruments):
krd = bndkrdur([ZeroDates ZeroRates],CouponRate,Settle,Maturity,'keyrates',[2 5 10 20])

krd =

    0.2865    0.8729    2.6451    8.5778

Note, the sum of the key rate durations approximately equals the duration of the bond:

[sum(krd) bnddurp(Price,CouponRate,Settle,Maturity)]

ans =

   12.3823   12.3919

See Also
bndconvp | bndconvy | bnddurp | bnddury | bndkrdur

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Term Structure of Interest Rates” on page 2-39
• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34
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Treasury Bills Defined

Treasury bills are short-term securities (issued with maturities of 1 year or less) sold by
the United States Treasury. Sales of these securities are frequent, usually weekly. From
time to time, the Treasury also offers longer duration securities called Treasury notes
and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not receive
periodic interest payments. Instead, at the time of sale, a percentage discount is applied
to the face value. At maturity, the holder redeems the bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this system, interest
accrues on the actual number of elapsed days between purchase and maturity, and each
year contains 360 days.

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillval01 | tbillyield |
tbillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Term Structure of Interest Rates” on page 2-39
• “Computing Treasury Bill Price and Yield” on page 2-35
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Computing Treasury Bill Price and Yield

In this section...

“Introduction” on page 2-35
“Treasury Bill Repurchase Agreements” on page 2-35
“Treasury Bill Yields” on page 2-37

Introduction

Financial Toolbox software provides the following suite of functions for computing price
and yield on Treasury bills.

Treasury Bill Functions

Function Purpose

tbilldisc2yield Convert discount rate to yield.
tbillprice Price Treasury bill given its yield or discount rate.
tbillrepo Break-even discount of repurchase agreement.
tbillyield Yield and discount of Treasury bill given its price.
tbillyield2disc Convert yield to discount rate.
tbillval01 The value of 1 basis point given the characteristics of

the Treasury bill, as represented by its settlement and
maturity dates. You can relate the basis point to discount,
money-market, or bond-equivalent yield.

For all functions with yield in the computation, you can specify yield as money-market
or bond-equivalent yield. The functions all assume a face value of $100 for each Treasury
bill.

Treasury Bill Repurchase Agreements

The following example shows how to compute the break-even discount rate. This is the
rate that correctly prices the Treasury bill such that the profit from selling the tail equals
0.

Maturity = '26-Dec-2002';
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InitialDiscount = 0.0161;

PurchaseDate = '26-Sep-2002';

SaleDate = '26-Oct-2002';

RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ... 

PurchaseDate, SaleDate, Maturity)

BreakevenDiscount =

    0.0167

You can check the result of this computation by examining the cash flows in and out from
the repurchase transaction. First compute the price of the Treasury bill on the purchase
date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ... 

PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =

   99.5930

Next compute the interest due on the repurchase agreement.

RepoInterest = ... 

RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

RepoInterest =

    0.1237

RepoInterest for a 1.49% 30-day term repurchase agreement (30/360 basis) is 0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ... 

Maturity, 3)

PriceOnSaleDate =

   99.7167

Examining the cash flows, observe that the break-even discount causes the sum of the
price on the purchase date plus the accrued 30-day interest to be equal to the price on
sale date. The next table shows the cash flows.
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Cash Flows from Repurchase Agreement

Date Cash Out Flow  Cash In Flow  

9/26/2002 Purchase T-bill 99.593 Repo money 99.593
10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168
  Repo interest 0.1238    
                      Total 199.3098   199.3098

Treasury Bill Yields

Using the same data as before, you can examine the money-market and bond-
equivalent yields of the Treasury bill at the time of purchase and sale. The function
tbilldisc2yield can perform both computations at one time.

Maturity = '26-Dec-2002';

InitialDiscount = 0.0161;

PurchaseDate = '26-Sep-2002';

SaleDate = '26-Oct-2002';

RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ... 

PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...

tbilldisc2yield([InitialDiscount; BreakevenDiscount], ... 

[PurchaseDate; SaleDate], Maturity)

BreakevenDiscount =

    0.0167

BEYield =

    0.0164

    0.0170

MMYield =

    0.0162

    0.0168

2-37



2 Performing Common Financial Tasks

For the short Treasury bill (fewer than 182 days to maturity), the money-market yield is
360/365 of the bond-equivalent yield, as this example shows.

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillval01 | tbillyield |
tbillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Term Structure of Interest Rates” on page 2-39

More About
• “Treasury Bills Defined” on page 2-34
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Term Structure of Interest Rates

In this section...

“Introduction” on page 2-39
“Deriving an Implied Zero Curve” on page 2-40

Introduction

The Financial Toolbox product contains several functions to derive and analyze interest
rate curves, including data conversion and extrapolation, bootstrapping, and interest-
rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is dealing with
market data reported in different formats. Treasury bills, for example, are quoted with
bid and asked bank-discount rates. Treasury notes and bonds, on the other hand, are
quoted with bid and asked prices based on $100 face value. To examine the full spectrum
of Treasury securities, analysts must convert data to a single format. Financial Toolbox
functions ease this conversion. This brief example uses only one security each; analysts
often use 30, 100, or more of each.

First, capture Treasury bill quotes in their reported format

%        Maturity               Days  Bid     Ask     AskYield

TBill = [datenum('12/26/2000')  53    0.0503  0.0499  0.0510];

then capture Treasury bond quotes in their reported format
%        Coupon   Maturity           Bid       Ask       AskYield

TBond = [0.08875  datenum(2001,11,5) 103+4/32  103+6/32  0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');

Next use the toolbox tbl2bond function to convert the Treasury bill data to Treasury
bond format.

TBTBond = tbl2bond(TBill)

TBTBond =

         0     730846     99.26      99.27     0.05

2-39



2 Performing Common Financial Tasks

(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up
the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =

            0     730846     99.26     99.27     0.05

         0.09     731160    103.13    103.19     0.06

The Financial Toolbox software provides a second data-preparation function,tr2bonds,
to convert the bond data into a form ready for the bootstrapping functions. tr2bonds
generates a matrix of bond information sorted by maturity date, plus vectors of prices
and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

Deriving an Implied Zero Curve

Using this market data, you can use one of the Financial Toolbox bootstrapping functions
to derive an implied zero curve. Bootstrapping is a process whereby you begin with
known data points and solve for unknown data points using an underlying arbitrage
theory. Every coupon bond can be valued as a package of zero-coupon bonds which mimic
its cash flow and risk characteristics. By mapping yields-to-maturity for each theoretical
zero-coupon bond, to the dates spanning the investment horizon, you can create a
theoretical zero-rate curve. The Financial Toolbox software provides two bootstrapping
functions: zbtprice derives a zero curve from bond data and prices, and zbtyield
derives a zero curve from bond data and yields. Using zbtprice

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

     0.05

     0.06

CurveDates =

      730846

      731160

CurveDates gives the investment horizon.
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datestr(CurveDates)

ans =

26-Dec-2000

05-Nov-2001

Additional Financial Toolbox functions construct discount, forward, and par yield curves
from the zero curve, and vice versa.
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... 

Settle);

[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);

[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,... 

Settle);

See Also
tbilldisc2yield | tbillprice | tbillrepo | tbillval01 | tbillyield |
tbillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34
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Pricing and Analyzing Equity Derivatives

In this section...

“Introduction” on page 2-42
“Sensitivity Measures” on page 2-42
“Analysis Models” on page 2-43

Introduction

These toolbox functions compute prices, sensitivities, and profits for portfolios of options
or other equity derivatives. They use the Black-Scholes model for European options
and the binomial model for American options. Such measures are useful for managing
portfolios and for executing collars, hedges, and straddles.

Sensitivity Measures

There are six basic sensitivity measures associated with option pricing: delta, gamma,
lambda, rho, theta, and vega — the “greeks.” The toolbox provides functions for
calculating each sensitivity and for implied volatility.

Delta

Delta of a derivative security is the rate of change of its price relative to the price of
the underlying asset. It is the first derivative of the curve that relates the price of the
derivative to the price of the underlying security. When delta is large, the price of the
derivative is sensitive to small changes in the price of the underlying security.

Gamma

Gamma of a derivative security is the rate of change of delta relative to the price of the
underlying asset; that is, the second derivative of the option price relative to the security
price. When gamma is small, the change in delta is small. This sensitivity measure is
important for deciding how much to adjust a hedge position.

Lambda

Lambda, also known as the elasticity of an option, represents the percentage change in
the price of an option relative to a 1% change in the price of the underlying security.
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Rho

Rho is the rate of change in option price relative to the risk-free interest rate.

Theta

Theta is the rate of change in the price of a derivative security relative to time. Theta is
usually very small or negative since the value of an option tends to drop as it approaches
maturity.

Vega

Vega is the rate of change in the price of a derivative security relative to the volatility
of the underlying security. When vega is large the security is sensitive to small changes
in volatility. For example, options traders often must decide whether to buy an option to
hedge against vega or gamma. The hedge selected usually depends upon how frequently
one rebalances a hedge position and also upon the standard deviation of the price of the
underlying asset (the volatility). If the standard deviation is changing rapidly, balancing
against vega is usually preferable.

Implied Volatility

The implied volatility of an option is the standard deviation that makes an option price
equal to the market price. It helps determine a market estimate for the future volatility
of a stock and provides the input volatility (when needed) to the other Black-Scholes
functions.

Analysis Models

Toolbox functions for analyzing equity derivatives use the Black-Scholes model for
European options and the binomial model for American options. The Black-Scholes
model makes several assumptions about the underlying securities and their behavior.
The binomial model, on the other hand, makes far fewer assumptions about the
processes underlying an option. For further explanation, see Options, Futures, and Other
Derivatives by John Hull in Appendix A.

Black-Scholes Model

Using the Black-Scholes model entails several assumptions:

• The prices of the underlying asset follow an Ito process. (See Hull, page 222.)
• The option can be exercised only on its expiration date (European option).

2-43



2 Performing Common Financial Tasks

• Short selling is permitted.
• There are no transaction costs.
• All securities are divisible.
• There is no riskless arbitrage.
• Trading is a continuous process.
• The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the call and put
prices of a European option and its delta, gamma, lambda, and implied volatility. The
asset price is $100.00, the exercise price is $95.00, the risk-free interest rate is 10%, the
time to maturity is 0.25 years, the volatility is 0.50, and the dividend rate is 0. Simply
executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);

[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);

GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);

VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);

[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);

yields:

• The option call price OptCall = $13.70
• The option put price OptPut = $6.35
• delta for a call CallVal = 0.6665 and delta for a put PutVal = -0.3335
• gamma GammaVal = 0.0145
• vega VegaVal = 18.1843
• lambda for a call LamCall = 4.8664 and lambda for a put LamPut = –5.2528

Now as a computation check, find the implied volatility of the option using the call option
price from blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);

The function returns an implied volatility of 0.500, the original blsprice input.

Binomial Model

The binomial model for pricing options or other equity derivatives assumes that the
probability over time of each possible price follows a binomial distribution. The basic
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assumption is that prices can move to only two values, one up and one down, over any
short time period. Plotting the two values, and then the subsequent two values each,
and then the subsequent two values each, and so on over time, is known as “building a
binomial tree.” This model applies to American options, which can be exercised any time
up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset
price is $100.00, the exercise price is $95.00, the risk-free interest rate is 10%, and the
time to maturity is 0.25 years. It computes the tree in increments of 0.05 years, so there
are 0.25/0.05 = 5 periods in the example. The volatility is 0.50, this is a call (flag = 1),
the dividend rate is 0, and it pays a dividend of $5.00 after three periods (an ex-dividend
date). Executing the toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,... 

0.05,  0.50, 1, 0, 5.0, 3); 

returns the tree of prices of the underlying asset

StockPrice =

100.00     111.27     123.87     137.96     148.69     166.28

     0      89.97     100.05     111.32     118.90     132.96

     0          0      81.00      90.02      95.07     106.32

     0          0          0      72.98      76.02      85.02

     0          0          0          0      60.79      67.98

     0          0          0          0          0      54.36

and the tree of option values.

OptionPrice =

12.10      19.17      29.35      42.96      54.17      71.28

    0       5.31       9.41      16.32      24.37      37.96

    0          0       1.35       2.74       5.57      11.32

    0          0          0          0          0          0

    0          0          0          0          0          0

    0          0          0          0          0          0

The output from the binomial function is a binary tree. Read the StockPrice matrix
this way: column 1 shows the price for period 0, column 2 shows the up and down prices
for period 1, column 3 shows the up-up, up-down, and down-down prices for period 2, and
so on. Ignore the zeros. The OptionPrice matrix gives the associated option value for
each node in the price tree. Ignore the zeros that correspond to a zero in the price tree.

2-45



2 Performing Common Financial Tasks

See Also
binprice | blkimpv | blkprice | blsdelta | blsgamma | blsimpv | blslambda |
blsprice | blsrho | blstheta | blsvega | opprofit

Related Examples
• “Handle and Convert Dates” on page 2-4
• “Charting Financial Data” on page 2-12
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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About Life Tables

Life tables are used for life insurance and work with the probability distribution
of human mortality. This distribution, which is age-dependent, has a number of
characteristic features that are consequences of biological, cultural, and behavioral
factors. In most cases, the practitioners of life studies use life tables that contain age-
dependent series for specific demographics. The tables are in a standard format with
standard notation that is specific to the life studies field. An example of a life table is
shown in Table 1 from CDC life tables for the United States.

In many cases, these life tables can have numerous variations such as abridged tables
(which pose challenges due to the granularity of the data) and different termination
criteria (that can make it difficult to compare tables or to compute life expectancies).

Most raw life tables have one or more of the first three series in this table (qx, lx, and dx)
and the notation for these three series is standard in the field.

• The qx series is basically the discrete hazard function for human mortality.
• The lx series is the survival function multiplied by a radix of 100,000.
• The dx series is the discrete probability density for the distribution as a function of

age.

Financial Toolbox can handle arbitrary life table data supporting several standard
models of mortality and provides various interpolation methods to calibrate and analyze
the life table data.

Although primarily designed for life insurance applications, the life tables functions
(lifetableconv, lifetablefit, and lifetablegen can also be used by social
scientists, behavioral psychologists, public health officials, and medical researchers.
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Life Tables Theory

Life tables are based on hazard functions and survival functions which are, in turn,
derived from probability distributions. Specifically, given a continuous probability
distribution, its cumulative distribution function is F(x) and its probability density
function is f(x) = d F(x)/dx.

For the analysis of mortality, the random variable of interest X is the distribution of ages
at which individuals die within a population. So, the probability that someone dies by age
x is

Pr[ ] ( )X x F x£ =

The survival function, (s(x)), which characterizes the probability that an individual lives
beyond a specified age x > 0, is

s x P X x

F x

( ) r[ ]

( )

= >

= -1

For a continuous probability distribution, the hazard function is a function of the survival
function with
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and the survival functions is a function of the hazard function with
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Life table models generally specify either the hazard function or the survival function.
However, life tables are discrete and work with discrete versions of the hazard
and survival functions. Three series are used for life tables and the notation is the
convention. The discrete hazard function is denoted as
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q h x

s x

s x

x ª

= -
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( )

( )
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1

which is the probability a person at age x dies by age x + 1 (where x is in years). The
discrete survival function is presented in terms of an initial number of survivors at birth
called the life table radix (which is usually 100,000 individuals) and is denoted as

l l s x
x

= 0 ( )

with radix l0 = 100000. This number, lx, represents the number of individuals out of
100,000 at birth who are still alive at age x.

A third series is related to the probability density function which is the number of
"standardized" deaths in a given year denoted as

d l l
x x x

= -
+1

Based on a few additional rules about how to initialize and terminate these series, any
one series can be derived from any of the other series.

See Also
lifetableconv | lifetablefit | lifetablegen

Related Examples
• “Case Study for Life Tables Analysis” on page 2-50
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Case Study for Life Tables Analysis

This example shows how to use the basic workflow for life tables.

Load the life table data file.

load us_lifetable_2009

Calibrate life table from survival data with the default heligman-pollard parametric
model.

a = lifetablefit(x, lx);

Generate life table series from the calibrated mortality model.

qx = lifetablegen((0:100), a);

display(qx(1:40,:))

    0.0063    0.0069    0.0057

    0.0005    0.0006    0.0004

    0.0002    0.0003    0.0002

    0.0002    0.0002    0.0002

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0002    0.0002    0.0001

    0.0002    0.0002    0.0002

    0.0002    0.0003    0.0002

    0.0003    0.0004    0.0002

    0.0004    0.0005    0.0002

    0.0005    0.0006    0.0003

    0.0006    0.0008    0.0003

    0.0007    0.0009    0.0003

    0.0008    0.0011    0.0003

    0.0008    0.0012    0.0004

    0.0009    0.0013    0.0004

    0.0009    0.0014    0.0005

    0.0010    0.0014    0.0005
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    0.0010    0.0015    0.0005

    0.0010    0.0015    0.0006

    0.0010    0.0015    0.0006

    0.0010    0.0015    0.0007

    0.0010    0.0014    0.0007

    0.0011    0.0014    0.0007

    0.0011    0.0014    0.0008

    0.0011    0.0014    0.0008

    0.0011    0.0014    0.0009

    0.0011    0.0014    0.0009

    0.0012    0.0015    0.0010

    0.0012    0.0015    0.0011

    0.0013    0.0016    0.0011

    0.0014    0.0017    0.0012

    0.0015    0.0018    0.0013

Plot the qx series and display the legend. The series qx is the conditional probability that
a person at age  will die between age  and the next age in the series

plot((0:100), log(qx));

legend(series, 'location', 'southeast');

title('Conditional Probability of Dying within One Year of Current Age');

xlabel('Age');

ylabel('Log Probability');
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See Also
lifetableconv | lifetablefit | lifetablegen

More About
• “About Life Tables” on page 2-47
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Portfolio Analysis

• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• “Portfolio Construction Examples” on page 3-7
• “Portfolio Selection and Risk Aversion” on page 3-9
• “portopt Migration to Portfolio Object” on page 3-14
• “frontcon Migration to Portfolio Object” on page 3-25
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
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Analyzing Portfolios

Portfolio managers concentrate their efforts on achieving the best possible trade-off
between risk and return. For portfolios constructed from a fixed set of assets, the risk/
return profile varies with the portfolio composition. Portfolios that maximize the return,
given the risk, or, conversely, minimize the risk for the given return, are called optimal.
Optimal portfolios define a line in the risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. Different
investors have different levels of risk tolerance. Selecting the adequate portfolio for a
particular investor is a difficult process. The portfolio manager can hedge the risk related
to a particular portfolio along the efficient frontier with partial investment in risk-free
assets. The definition of the capital allocation line, and finding where the final portfolio
falls on this line, if at all, is a function of:

• The risk/return profile of each asset
• The risk-free rate
• The borrowing rate
• The degree of risk aversion characterizing an investor

Financial Toolbox software includes a set of portfolio optimization functions designed to
find the portfolio that best meets investor requirements.

Warning frontcon has been removed. Use Portfolio instead.

portopt has been partially removed and will no longer accept ConSet or varargin
arguments. portopt will only solve the portfolio problem for long-only fully invested
portfolios. Use Portfolio instead.

See Also
abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples
• “Portfolio Optimization Functions” on page 3-4
• “Portfolio Construction Examples” on page 3-7
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 Analyzing Portfolios

• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
• “Plotting an Efficient Frontier Using portopt” on page 10-26

More About
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Optimization Functions

The portfolio optimization functions assist portfolio managers in constructing portfolios
that optimize risk and return.

Capital Allocation Description

portalloc Computes the optimal risky portfolio on the efficient frontier, based
on the risk-free rate, the borrowing rate, and the investor's degree
of risk aversion. Also generates the capital allocation line, which
provides the optimal allocation of funds between the risky portfolio
and the risk-free asset.

Efficient Frontier
Computation

Description

frontcon Computes portfolios along the efficient frontier for a given group of
assets. The computation is based on sets of constraints representing
the maximum and minimum weights for each asset, and the
maximum and minimum total weight for specified groups of assets.

Warning frontcon has been removed. Use Portfolio instead.
For more information on migrating frontcon code to Portfolio,
see “frontcon Migration to Portfolio Object” on page 3-25.

frontier Computes portfolios along the efficient frontier for a given group of
assets. Generates a surface of efficient frontiers showing how asset
allocation influences risk and return over time.

portopt Computes portfolios along the efficient frontier for a given group of
assets. The computation is based on a set of user-specified linear
constraints. Typically, these constraints are generated using the
constraint specification functions described below.

Warning portopt has been partially removed and will no longer
accept ConSet or varargin arguments. portopt will only solve
the portfolio problem for long-only fully invested portfolios. Use
Portfolio instead. For more information on migrating portopt
code to Portfolio, see “portopt Migration to Portfolio Object” on
page 3-14.

3-4



 Portfolio Optimization Functions

Constraint
Specification

Description

portcons Generates the portfolio constraints matrix for a portfolio of asset
investments using linear inequalities. The inequalities are of the
type A*Wts' <= b, where Wts is a row vector of weights.

portvrisk Portfolio value at risk (VaR) returns the maximum potential loss
in the value of a portfolio over one period of time, given the loss
probability level RiskThreshold.

pcalims Asset minimum and maximum allocation. Generates a constraint
set to fix the minimum and maximum weight for each individual
asset.

pcgcomp Group-to-group ratio constraint. Generates a constraint set
specifying the maximum and minimum ratios between pairs of
groups.

pcglims Asset group minimum and maximum allocation. Generates a
constraint set to fix the minimum and maximum total weight for
each defined group of assets.

pcpval Total portfolio value. Generates a constraint set to fix the total
value of the portfolio.

Constraint
Conversion

Description

abs2active Transforms a constraint matrix expressed in absolute weight
format to an equivalent matrix expressed in active weight format.

active2abs Transforms a constraint matrix expressed in active weight format
to an equivalent matrix expressed in absolute weight format.

Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfolio) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-18.
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See Also
abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples
• “Portfolio Construction Examples” on page 3-7
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “portopt Migration to Portfolio Object” on page 3-14
• “frontcon Migration to Portfolio Object” on page 3-25

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Construction Examples

In this section...

“Introduction” on page 3-7
“Efficient Frontier Example” on page 3-7

Introduction

The efficient frontier computation functions require information about each asset
in the portfolio. This data is entered into the function via two matrices: an expected
return vector and a covariance matrix. The expected return vector contains the average
expected return for each asset in the portfolio. The covariance matrix is a square matrix
representing the interrelationships between pairs of assets. This information can be
directly specified or can be estimated from an asset return time series with the function
ewstats.

Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfolio) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-18.

Efficient Frontier Example

frontcon has been removed. To model the efficient frontier, use the Portfolio object
instead. For example, using the Portfolio object, you can model an efficient frontier:

• “Obtaining Portfolios Along the Entire Efficient Frontier” on page 4-104
• “Obtaining Endpoints of the Efficient Frontier” on page 4-107
• “Obtaining Efficient Portfolios for Target Returns” on page 4-110
• “Obtaining Efficient Portfolios for Target Risks” on page 4-113
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-116
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-124
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See Also
abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples
• “Portfolio Optimization Functions” on page 3-4
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “portopt Migration to Portfolio Object” on page 3-14
• “frontcon Migration to Portfolio Object” on page 3-25

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Selection and Risk Aversion

In this section...

“Introduction” on page 3-9
“Optimal Risky Portfolio” on page 3-10

Introduction

One of the factors to consider when selecting the optimal portfolio for a particular
investor is the degree of risk aversion. This level of aversion to risk can be characterized
by defining the investor's indifference curve. This curve consists of the family of
risk/return pairs defining the trade-off between the expected return and the risk. It
establishes the increment in return that a particular investor requires to make an
increment in risk worthwhile. Typical risk aversion coefficients range from 2.0 through
4.0, with the higher number representing lesser tolerance to risk. The equation used to
represent risk aversion in Financial Toolbox software is

U = E(r) - 0.005*A*sig^2

where:

U is the utility value.

E(r) is the expected return.

A is the index of investor's aversion.

sig is the standard deviation.
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Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfolio) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-18.

Optimal Risky Portfolio

This example computes the optimal risky portfolio on the efficient frontier based on the
risk-free rate, the borrowing rate, and the investor's degree of risk aversion. You do this
with the function portalloc.

First generate the efficient frontier data using portopt.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance  = [ 0.005   -0.010    0.004;

                  -0.010    0.040   -0.002;
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                   0.004   -0.002    0.023];

Consider 20 different points along the efficient frontier.

NumPorts = 20;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 

ExpCovariance, NumPorts);

Calling portopt, while specifying output arguments, returns the corresponding vectors
and arrays representing the risk, return, and weights for each of the portfolios along
the efficient frontier. Use these as the first three input arguments to the function
portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the
risky portfolio and the risk-free asset, using these values for the risk-free rate, borrowing
rate, and investor's degree of risk aversion.

RisklessRate  =  0.08

BorrowRate    =  0.12

RiskAversion  =  3

Calling portalloc without specifying any output arguments gives a graph displaying
the critical points.

portalloc (PortRisk, PortReturn, PortWts, RisklessRate,... 

BorrowRate, RiskAversion);
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Calling portalloc while specifying the output arguments returns the variance
(RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) allocated
to the optimal risky portfolio. It also returns the fraction (RiskyFraction) of the
complete portfolio allocated to the risky portfolio, and the variance (OverallRisk)
and expected return (OverallReturn) of the optimal overall portfolio. The overall
portfolio combines investments in the risk-free asset and in the risky portfolio. The
actual proportion assigned to each of these two investments is determined by the degree
of risk aversion characterizing the investor.
[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,... 

OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,... 

RisklessRate, BorrowRate, RiskAversion)

RiskyRisk = 0.1288

RiskyReturn = 0.1791

RiskyWts = 0.0057 0.5879 0.4064

RiskyFraction = 1.1869

OverallRisk = 0.1529

OverallReturn = 0.1902
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The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance
specified allows borrowing money to invest in the risky portfolio, and that no money
is invested in the risk-free asset. This borrowed capital is added to the original capital
available for investment. In this example, the customer tolerates borrowing 18.69% of the
original capital amount.

See Also
abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples
• “Portfolio Optimization Functions” on page 3-4
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “portopt Migration to Portfolio Object” on page 3-14
• “frontcon Migration to Portfolio Object” on page 3-25

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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portopt Migration to Portfolio Object

In this section...

“Migrate portopt Without Output Arguments” on page 3-14
“Migrate portopt with Output Arguments” on page 3-16
“Migrate portopt for Target Returns Within Range of Efficient Portfolio Returns” on
page 3-18
“Migrate portopt for Target Return Outside Range of Efficient Portfolio Returns” on
page 3-19
“Migrate portopt Using portcons Output for ConSet” on page 3-20
“Integrate Output from portcons pcalims, pcglims, and pcgcomp with a Portfolio Object”
on page 3-22

Migrate portopt Without Output Arguments

This example shows how to migrate portopt without output arguments to a Portfolio
object.

The basic portopt functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

portopt(ExpReturn, ExpCovariance, NumPorts);
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To migrate a portopt syntax without output arguments to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

plotFrontier(p, NumPorts);
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Without output arguments, portopt plots the efficient frontier. The Portfolio object has
similar behavior although the Portfolio object writes to the current figure window rather
than create a new window each time a plot is generated.

Migrate portopt with Output Arguments

This example shows how to migrate portopt with output arguments to a Portfolio
object.

With output arguments, the basic functionality of portopt returns portfolio moments
and weights. Once the Portfolio object is set up, moments and weights are obtained in
separate steps.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;
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 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts);

display(PortWts);

PortWts =

    0.2103    0.2746    0.1157    0.1594    0.2400

    0.1744    0.2657    0.1296    0.2193    0.2110

    0.1386    0.2567    0.1436    0.2791    0.1821

    0.1027    0.2477    0.1575    0.3390    0.1532

    0.0668    0.2387    0.1714    0.3988    0.1242

    0.0309    0.2298    0.1854    0.4587    0.0953

         0    0.2168    0.1993    0.5209    0.0629

         0    0.1791    0.2133    0.5985    0.0091

         0    0.0557    0.2183    0.7260         0

         0         0         0    1.0000         0

To migrate a portopt syntax with output arguments:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(PortWts);

PortWts =

    0.2103    0.1744    0.1386    0.1027    0.0668    0.0309         0         0         0         0

    0.2746    0.2657    0.2567    0.2477    0.2387    0.2298    0.2168    0.1791    0.0557         0

    0.1157    0.1296    0.1436    0.1575    0.1714    0.1854    0.1993    0.2133    0.2183         0

    0.1594    0.2193    0.2791    0.3390    0.3988    0.4587    0.5209    0.5985    0.7260    1.0000

    0.2400    0.2110    0.1821    0.1532    0.1242    0.0953    0.0629    0.0091         0         0
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The Portfolio object returns PortWts with portfolios going down columns, not across
rows. Portfolio risks and returns are still in column format.

Migrate portopt for Target Returns Within Range of Efficient Portfolio
Returns

This example shows how to migrate portopt target returns within range of efficient
portfolio returns to a Portfolio object.

portopt can obtain portfolios with specific targeted levels of return but requires that the
targeted returns fall within the range of efficient returns. The Portfolio object handles
this by selecting portfolios at the ends of the efficient frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

 Efficient    Target

    0.0500    0.0500

    0.0600    0.0600

    0.0700    0.0700

    0.0800    0.0800

    0.0900    0.0900

To migrate a portopt syntax for target returns within range of efficient portfolio returns
to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;
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TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

 Efficient    Target

    0.0500    0.0500

    0.0600    0.0600

    0.0700    0.0700

    0.0800    0.0800

    0.0900    0.0900

Migrate portopt for Target Return Outside Range of Efficient Portfolio
Returns

This example shows how to migrate portopt target returns outside of range of efficient
portfolio returns to a Portfolio object.

When the target return is outside of the range of efficient portfolio returns, portopt
generates an error. The Portfolio object handles this effectively by selecting portfolios at
the ends of the efficient frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

> In portopt at 85 

Error using portopt (line 297)

One or more requested returns are greater than the maximum achievable return of 0.093400.
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To migrate a portopt syntax for target returns outside of the range of efficient portfolio
returns to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [

0.0427391, 0.0934 ].

 Will return portfolios associated with endpoints of the range for these

    values. 

> In Portfolio/estimateFrontierByReturn (line 106) 

 Efficient    Target

    0.0500    0.0500

    0.0600    0.0600

    0.0700    0.0700

    0.0800    0.0800

    0.0900    0.0900

    0.0934    0.1000

Migrate portopt Using portcons Output for ConSet

This example shows how to migrate portopt when the ConSet output from portcons is
used with portopt.

portopt accepts as input the outputs from portcons, pcalims, pcglims, and
pcgcomp. This example focuses on portcons. portcons sets up linear constraints for
portopt in the form A*Port <= b. In a matrix ConSet = [ A, b ] and break into
separate A and b arrays with A = ConSet(:,1:end-1); and b = ConSet(:,end);.
In addition, to illustrate default problem with additional group constraints, consider
three groups. Assets 2, 3, and 4 can constitute up to 80% of portfolio, Assets 1 and 2
can constitute up to 70% of portfolio, and Assets 3, 4, and 5 can constitute up to 90% of
portfolio.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);

UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, [], ConSet);

disp([PortRisk, PortReturn]);

Error using portopt (line 83)

In the current and future releases, portopt will no longer accept ConSet or varargin arguments.

'It will only solve the portfolio problem for long-only fully-invested portfolios.    

To solve more general problems, use the Portfolio object.

See the release notes for details, including examples to make the conversion.

To migrate portopt to a Portfolio object when the ConSet output from portcons is
used with portopt:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);

UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

A = ConSet(:,1:end-1);

b = ConSet(:,end);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setInequality(p, A, b);     % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427

0.1292    0.0465
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0.1306    0.0503

0.1328    0.0540

0.1358    0.0578

0.1395    0.0615

0.1440    0.0653

0.1504    0.0690

0.1590    0.0728

0.1806    0.0766

The constraints are entered directly into the Portfolio object with the setInequality or
addInequality functions.

Integrate Output from portcons pcalims, pcglims, and pcgcomp with a
Portfolio Object

This example shows how to integrate output from pcalims, pcalims, pcglims, or
pcgcomp with a Portfolio object implementation.

portcons, pcalims, pcglims, and pcgcomp setup linear constraints for portopt in
the form A*Port <= b. Although some functions permit two outputs, assume that the
output is a single matrix ConSet. Break into separate A and b arrays with:

• A = ConSet(:,1:end-1);

• b = ConSet(:,end);

In addition, to illustrate default problem with additional group constraints, consider
three groups:

• Assets 2, 3, and 4 can constitute up to 80% of portfolio.
• Assets 1 and 2 can constitute up to 70% of portfolio.
• Assets 3, 4, and 5 can constitute up to 90% of portfolio.

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

To integrate the ConSet output of portcons with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];
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NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);

UpperGroup = GroupBounds(:,2);

ConSet = portcons('default', 5, 'grouplims', Groups, LowerGroup, UpperGroup);

A = ConSet(:,1:end-1);

b = ConSet(:,end);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);    % implement default constraints here

p = setInequality(p, A, b);     % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

    0.1288    0.0427

    0.1292    0.0465

    0.1306    0.0503

    0.1328    0.0540

    0.1358    0.0578

    0.1395    0.0615

    0.1440    0.0653

    0.1504    0.0690

    0.1590    0.0728

    0.1806    0.0766

To integrate the output of pcalims and pcglims with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);

UpperGroup = GroupBounds(:,2);

AssetMin = [ 0; 0; 0; 0; 0 ];

AssetMax = [ 0.8; 0.8; 0.8; 0.8; 0.8 ];

[Aa, ba] = pcalims(AssetMin, AssetMax);

[Ag, bg] = pcglims(Groups, LowerGroup, UpperGroup);
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p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);    % implement default constraints first

p = addInequality(p, Aa, ba);    % implement bound constraints here

p = addInequality(p, Ag, bg);    % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427

0.1292    0.0465

0.1306    0.0503

0.1328    0.0540

0.1358    0.0578

0.1395    0.0615

0.1440    0.0653

0.1504    0.0690

0.1590    0.0728

0.1806    0.0766

See Also
addInequality | estimateFrontier | estimateFrontierByReturn |
estimatePortMoments | pcalims | pcgcomp | pcglims | portcons | Portfolio |
portopt | setAssetMoments | setDefaultConstraints | setInequality

Related Examples
• “frontcon Migration to Portfolio Object” on page 3-25

More About
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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 frontcon Migration to Portfolio Object

frontcon Migration to Portfolio Object
In this section...

“Migrate frontcon Without Output Arguments” on page 3-25
“Migrate frontcon with Output Arguments” on page 3-26
“Migrate frontcon for Target Returns Within Range of Efficient Portfolio Returns” on
page 3-27
“Migrate frontcon for Target Returns Outside Range of Efficient Portfolio Returns” on
page 3-28
“Migrate frontcon Syntax When Using Bounds” on page 3-30
“Migrate frontcon Syntax When Using Groups” on page 3-31

Migrate frontcon Without Output Arguments

This example shows how to migrate frontcon without output arguments to a Portfolio
object.

The basic frontcon functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

frontcon(ExpReturn, ExpCovariance, NumPorts);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax without output arguments to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;
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p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

plotFrontier(p, NumPorts);

The Portfolio object writes to the current figure window rather than create a new window
each time a plot is generated.

Migrate frontcon with Output Arguments

This example shows how to migrate frontcon with output arguments to a Portfolio
object.

The basic frontcon functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts);

display(PortWts);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax with output arguments:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(PortWts);

PortWts =

    0.2103    0.1744    0.1386    0.1027    0.0668    0.0309         0         0         0         0

    0.2746    0.2657    0.2567    0.2477    0.2387    0.2298    0.2168    0.1791    0.0557         0

    0.1157    0.1296    0.1436    0.1575    0.1714    0.1854    0.1993    0.2133    0.2183         0

    0.1594    0.2193    0.2791    0.3390    0.3988    0.4587    0.5209    0.5985    0.7260    1.0000

    0.2400    0.2110    0.1821    0.1532    0.1242    0.0953    0.0629    0.0091         0         0

The Portfolio object returns PortWts with portfolios going down columns, not across
rows. Portfolio risks and returns are still in column format.

Migrate frontcon for Target Returns Within Range of Efficient Portfolio
Returns

This example shows how to migrate frontcon target returns within range of efficient
portfolio returns to a Portfolio object.

frontcon can obtain portfolios with specific targeted levels of return but requires
that the targeted returns fall within the range of efficient returns. The Portfolio object
handles this by selecting portfolios at the ends of the efficient frontier.
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ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax for target returns within range of efficient portfolio
returns to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

Efficient    Target

    0.0500    0.0500

    0.0600    0.0600

    0.0700    0.0700

    0.0800    0.0800

    0.0900    0.0900

Migrate frontcon for Target Returns Outside Range of Efficient Portfolio
Returns

This example shows how to migrate frontcon target returns outside of range of efficient
portfolio returns to a Portfolio object.
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When the target return is outside of the range of efficient portfolio returns, frontcon
generates an error. The Portfolio object handles this effectively by selecting portfolios at
the ends of the efficient frontier.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax for target returns outside of the range of efficient
portfolio returns to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(' Efficient    Target');

disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [

0.0427391, 0.0934 ].

 Will return portfolios associated with endpoints of the range for these

    values. 

> In Portfolio/estimateFrontierByReturn (line 106) 

 Efficient    Target

    0.0500    0.0500

    0.0600    0.0600

    0.0700    0.0700

    0.0800    0.0800

    0.0900    0.0900
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    0.0934    0.1000

Migrate frontcon Syntax When Using Bounds

This example shows how to migrate frontcon syntax for AssetBounds to a Portfolio
object.

Use frontcon with an input specification for AssetBounds that contains the lower and
upper bounds on the weight allocated to each asset in the portfolio:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [], AssetBounds);

disp([PortRisk, PortReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax using AssetBounds to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];

LowerBound = AssetBounds(1,:);

UpperBound = AssetBounds(2,:);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

p = setBounds(p, LowerBound, UpperBound);
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PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427

0.1291    0.0457

0.1299    0.0487

0.1313    0.0516

0.1332    0.0546

0.1356    0.0576

0.1385    0.0605

0.1419    0.0635

0.1461    0.0665

0.1519    0.0694

Migrate frontcon Syntax When Using Groups

This example shows how to migrate frontcon syntax for Groups and GroupBounds to a
Portfolio object.

Use frontcon with an input specification for Groups (asset groups or classes.) and
GroupBounds (the lower and upper bounds of the total weights of all assets in a group).
Consider three groups: Assets 2, 3, and 4 can constitute up to 80% of a portfolio, Assets 1
and 2 can constitute up to 70% of a portfolio, and Assets 3, 4, and 5 can constitute up to
90% of a portfolio.
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

[PortRisk, PortReturn, PortWgts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [], [], ...

 Groups, GroupBounds);

disp([PortRisk, PortReturn]);

Undefined function or variable 'frontcon'.

To migrate a frontcon syntax using Groups and GroupBounds to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569,  0.0092,  0.0039,  0.0070,  0.0022;

 0.0092,  0.0380,  0.0035,  0.0197,  0.0028;

 0.0039,  0.0035,  0.0997,  0.0100,  0.0070;

 0.0070,  0.0197,  0.0100,  0.0461,  0.0050;

 0.0022,  0.0028,  0.0070,  0.0050,  0.0573 ];

NumPorts = 10;

Groups = [ 0 1 1 1 0; 1 1 0 0 0; 0 0 1 1 1 ];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup = GroupBounds(:,1);

UpperGroup = GroupBounds(:,2);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p);

p = setGroups(p, Groups, LowerGroup, UpperGroup);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288    0.0427

0.1292    0.0465

0.1306    0.0503

0.1328    0.0540

0.1358    0.0578

0.1395    0.0615

0.1440    0.0653

0.1504    0.0690

0.1590    0.0728

0.1806    0.0766

See Also
addInequality | estimateFrontier | estimateFrontierByReturn |
estimatePortMoments | pcalims | pcgcomp | pcglims | portcons | Portfolio |
portopt | setAssetMoments | setBounds | setDefaultConstraints | setGroups
| setInequality

Related Examples
• “portopt Migration to Portfolio Object” on page 3-14

More About
• “Portfolio Object Workflow” on page 4-18
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External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Constraint Specification Using a Portfolio Object

In this section...

“Constraints for Efficient Frontier” on page 3-34
“Linear Constraint Equations” on page 3-36
“Specifying Group Constraints” on page 3-39

Constraints for Efficient Frontier

This example computes the efficient frontier of portfolios consisting of three different
assets, INTC, XON, and RD, given a list of constraints. The expected returns for INTC,
XON, and RD are respectively as follows:

ExpReturn = [0.1 0.2 0.15]; 

The covariance matrix is

ExpCovariance  =  [ 0.005   -0.010    0.004;

                   -0.010    0.040   -0.002;

                    0.004   -0.002    0.023];

• Constraint 1

• Allow short selling up to 10% of the portfolio value in any asset, but limit the
investment in any one asset to 110% of the portfolio value.

• Constraint 2

• Consider two different sectors, technology and energy, with the following table
indicating the sector each asset belongs to.

Asset INTC XON RD
Sector Technology Energy Energy

Constrain the investment in the Energy sector to 80% of the portfolio value, and
the investment in the Technology sector to 70%.

To solve this problem, use Portfolio, passing in a list of asset constraints.
Consider eight different portfolios along the efficient frontier:

NumPorts = 8;

3-34



 Constraint Specification Using a Portfolio Object

To introduce the asset bounds constraints specified in Constraint 1, create the
matrix AssetBounds, where each column represents an asset. The upper row
represents the lower bounds, and the lower row represents the upper bounds.
Since the bounds are the same for each asset, only one pair of bounds is needed
because of scalar expansion.

AssetBounds = [-0.1, 1.1];

Constraint 2 must be entered in two parts, the first part defining the groups, and
the second part defining the constraints for each group. Given the information
above, you can build a matrix of 1s and 0s indicating whether a specific asset
belongs to a group. Each column represents an asset, and each row represents a
group. This example has two groups: the technology group, and the energy group.
Create the matrix Groups as follows.

Groups =  [0   1   1; 

           1   0   0];

The GroupBounds matrix allows you to specify an upper and lower bound for each
group. Each row in this matrix represents a group. The first column represents the
minimum allocation, and the second column represents the maximum allocation
to each group. Since the investment in the Energy sector is capped at 80% of the
portfolio value, and the investment in the Technology sector is capped at 70%,
create the GroupBounds matrix using this information.

GroupBounds = [0   0.80;

               0   0.70];

Now use Portfolio to obtain the vectors and arrays representing the risk,
return, and weights for each of the eight portfolios computed along the efficient
frontier. A budget constraint is added to ensure that the portfolio weights sum to
1.
p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);

p = setBounds(p, AssetBounds(1), AssetBounds(2));

p = setBudget(p, 1, 1);

p = setGroups(p, Groups, GroupBounds(:,1), GroupBounds(:,2));

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk

PortReturn

PortWts
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PortRisk =

    0.0416

    0.0499

    0.0624

    0.0767

    0.0920

    0.1100

    0.1378

    0.1716

PortReturn =

    0.1279

    0.1361

    0.1442

    0.1524

    0.1605

    0.1687

    0.1768

    0.1850

PortWts =

    0.7000    0.6031    0.4864    0.3696    0.2529    0.2000    0.2000    0.2000

    0.2582    0.3244    0.3708    0.4172    0.4636    0.5738    0.7369    0.9000

    0.0418    0.0725    0.1428    0.2132    0.2835    0.2262    0.0631   -0.1000

The outputs are represented as columns for the portfolio’s risk and return.
Portfolio weights are identified as corresponding column vectors in a matrix.

Linear Constraint Equations

While the Portfolio object allows you to enter a fixed set of constraints related
to minimum and maximum values for groups and individual assets, you often need
to specify a larger and more general set of constraints when finding the optimal
risky portfolio. Portfolio also addresses this need, by accepting an arbitrary set of
constraints.
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This example requires specifying the minimum and maximum investment in various
groups.

Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure

North America 0.30 0.75
Europe 0.10 0.55
Latin America 0.20 0.50
Asia 0.50 0.50

The minimum and maximum exposure in Asia is the same. This means that you require
a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence
between funds and groups is shown in the table below.

Group Membership

Group Fund 1 Fund 2 Fund 3

North America X X
Europe X
Latin America X
Asia X X

Using the information in these two tables, build a mathematical representation of the
constraints represented. Assume that the vector of weights representing the exposure of
each asset in a portfolio is called Wts = [W1 W2 W3].

Specifically

1. W1 + W2 ≥ 0.30
2. W1 + W2 ≤ 0.75
3. W3 ≥ 0.10
4. W3 ≤ 0.55
5. W1 ≥ 0.20
6. W1 ≤ 0.50
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7. W2 + W3 = 0.50

Since you must represent the information in the form A*Wts <= b, multiply equations 1,
3 and 5 by –1. Also turn equation 7 into a set of two inequalities: W2 + W3 ≥ 0.50 and W2
+ W3 ≤ 0.50. (The intersection of these two inequalities is the equality itself.) Thus

1. -W1 - W2 ≤ -0.30
2. W1 + W2 ≤ 0.75
3. -W3 ≤ -0.10
4. W3 ≤ 0.55
5. -W1 ≤ -0.20
6. W1 ≤ 0.50
7. -W2 - W3 ≤ -0.50
8. W2 + W3 ≤ 0.50

Bringing these equations into matrix notation gives

A = [-1    -1     0;

      1     1     0;

      0     0    -1;

      0     0     1;

     -1     0     0;

      1     0     0;

      0    -1    -1;

      0     1     1]

b = [-0.30;

      0.75;

     -0.10;

      0.55;

     -0.20;

      0.50;

     -0.50;

      0.50]

One approach to solving this portfolio problem is to explicitly use the setInequality
function:

p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);

p = setBounds(p, AssetBounds(1), AssetBounds(2));
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p = setBudget(p, 1, 1);

p = setInequality(p, A, b);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk

PortReturn

PortWts

PortRisk =

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

PortReturn =

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

PortWts =

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios
were requested, all eight portfolios are the same. Note that the solution to this portfolio
problem using the setInequality function is the same as using the setGroups
function in the next example (“Specifying Group Constraints” on page 3-39).

Specifying Group Constraints

The example above (“Linear Constraint Equations” on page 3-36) defines a constraint
matrix that specifies a set of typical scenarios. It defines groups of assets, specifies
upper and lower bounds for total allocation in each of these groups, and it sets the total
allocation of one group to a fixed value. Constraints like these are common occurrences.
Portfolio enables you to simplify the creation of the constraint matrix for these and
other common portfolio requirements.
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An alternative approach for solving the portfolio problem is to use the Portfolio object
to define:

• A Group matrix, indicating the assets that belong to each group.
• A GroupMin vector, indicating the minimum bounds for each group.
• A GroupMax vector, indicating the maximum bounds for each group.

Based on the table Group Membership, build the Group matrix, with each row
representing a group, and each column representing an asset.

Group = [1    1    0;

         0    0    1;

         1    0    0;

         0    1    1];

The table Maximum and Minimum Group Exposure has the information to build
GroupMin and GroupMax.

GroupMin = [0.30  0.10  0.20  0.50];

GroupMax = [0.75  0.55  0.50  0.50];

Now use Portfolio and the setInequality function to obtain the vectors and arrays
representing the risk, return, and weights for the portfolios computed along the efficient
frontier.

p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);

p = setBounds(p, AssetBounds(1), AssetBounds(2));

p = setBudget(p, 1, 1);

p = setGroups(p, Group, GroupMin, GroupMax);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk

PortReturn

PortWts

PortRisk =

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586

    0.0586
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PortReturn =

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

    0.1375

PortWts =

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios
were requested, all eight portfolios are the same. Note that the solution to this portfolio
problem using the setGroups function is the same as using the setInequality
function in the previous example (“Linear Constraint Equations” on page 3-36).

See Also
estimateFrontier | estimatePortMoments | Portfolio | setGroups |
setInequality

Related Examples
• “Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page

4-63
• “Working with Bound Constraints Using Portfolio Object” on page 4-68
• “Working with Budget Constraints Using Portfolio Object” on page 4-71
• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Inequality Constraints Using Portfolio Object” on page

4-84
• “Working with Average Turnover Constraints Using Portfolio Object” on page

4-87
• “Working with One-way Turnover Constraints Using Portfolio Object” on page

4-91
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• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-95
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Active Returns and Tracking Error Efficient Frontier

Suppose that you want to identify an efficient set of portfolios that minimize the variance
of the difference in returns with respect to a given target portfolio, subject to a given
expected excess return. The mean and standard deviation of this excess return are often
called the active return and active risk, respectively. Active risk is sometimes referred
to as the tracking error. Since the objective is to track a given target portfolio as closely
as possible, the resulting set of portfolios is sometimes referred to as the tracking error
efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such
that the index return series may be expressed as a linear combination of the available
assets. This example illustrates how to construct a frontier that minimizes the active
risk (tracking error) subject to attaining a given level of return. That is, it computes the
tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target
return series and subtract it from the return series of the individual assets. In this
manner, you specify the expected mean and covariance of the active returns, and
compute the efficient frontier subject to the usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted)
returns but converts the constraints from the usual absolute weight format to active
weight format.

Consider a portfolio of five assets with the following expected returns, standard
deviations, and correlation matrix based on absolute weekly asset returns.

NumAssets    =  5;

ExpReturn    = [0.2074  0.1971  0.2669  0.1323  0.2535]/100;

Sigmas       = [2.6570  3.6297  3.9916  2.7145  2.6133]/100;

Correlations = [1.0000  0.6092  0.6321  0.5833  0.7304

                0.6092  1.0000  0.8504  0.8038  0.7176

                0.6321  0.8504  1.0000  0.7723  0.7236

                0.5833  0.8038  0.7723  1.0000  0.7225

                0.7304  0.7176  0.7236  0.7225  1.0000];

Convert the correlations and standard deviations to a covariance matrix using
corr2cov.
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ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is an equally weighted portfolio formed
from the five assets. The sum of index weights equals 1, satisfying the standard full
investment budget equality constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix using portcons. The constraint matrix AbsConSet
is expressed in absolute format (unadjusted for the index), and is formatted as [A b],
corresponding to constraints of the form A*w <= b. Each row of AbsConSet corresponds
to a constraint, and each column corresponds to an asset. Allow no short-selling and
full investment in each asset (lower and upper bounds of each asset are 0 and 1,
respectively). In particular, note that the first two rows correspond to the budget equality
constraint; the remaining rows correspond to the upper/lower investment bounds.

AbsConSet = portcons('PortValue', 1, NumAssets, ... 

'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));

Now transform the absolute constraints to active constraints with abs2active.

ActiveConSet = abs2active(AbsConSet, Index);

An examination of the absolute and active constraint matrices reveals that they differ
only in the last column (the columns corresponding to the b in A*w <= b).

[AbsConSet(:,end)  ActiveConSet(:,end)]

ans =

    1.0000         0

   -1.0000         0

    1.0000    0.8000

    1.0000    0.8000

    1.0000    0.8000

    1.0000    0.8000

    1.0000    0.8000

         0    0.2000

         0    0.2000

         0    0.2000

         0    0.2000

         0    0.2000

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero
active budget constraint. The general transformation is as follows:

3-44



 Active Returns and Tracking Error Efficient Frontier

b b A Indexactive absolute= - ¥ .

Now construct the Portfolio object and plot the tracking error efficient frontier with 21
portfolios.
p = Portfolio('AssetMean', ExpReturn, 'AssetCovar', ExpCovariance);

p = p.setInequality(ActiveConSet(:,1:end-1), ActiveConSet(:,end));

[ActiveRisk, ActiveReturn] = p.plotFrontier(21);

plot(ActiveRisk*100, ActiveReturn*100, 'blue')

grid('on')

xlabel('Active Risk (Standard Deviation in Percent)')

ylabel('Active Return (Percent)')

title('Tracking Error Efficient Frontier')

Of particular interest is the lower-left portfolio along the frontier. This zero-risk/zero-
return portfolio has a practical economic significance. It represents a full investment in
the index portfolio itself. Each tracking error efficient portfolio (each row in the array
ActiveWeights) satisfies the active budget constraint, and thus represents portfolio
investment allocations with respect to the index portfolio. To convert these allocations to
absolute investment allocations, add the index to each efficient portfolio.
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ActiveWeights = p.estimateFrontier(21);

AbsoluteWeights = ActiveWeights + repmat(Index, 1, 21);

See Also
abs2active | active2abs | estimateFrontier | frontier | pcalims | pcgcomp
| pcglims | pcpval | plotFrontier | portalloc | portcons | Portfolio |
portvrisk | setInequality

Related Examples
• “Portfolio Optimization Functions” on page 3-4
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Plotting an Efficient Frontier Using portopt” on page 10-26

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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4

Mean-Variance Portfolio Optimization
Tools

• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Portfolio Object” on page 4-20
• “Creating the Portfolio Object” on page 4-25
• “Common Operations on the Portfolio Object” on page 4-33
• “Setting Up an Initial or Current Portfolio” on page 4-38
• “Setting Up a Tracking Portfolio” on page 4-41
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page

4-44
• “Working with a Riskless Asset” on page 4-56
• “Working with Transaction Costs” on page 4-58
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Working with Bound Constraints Using Portfolio Object” on page 4-68
• “Working with Budget Constraints Using Portfolio Object” on page 4-71
• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-84
• “Working with Average Turnover Constraints Using Portfolio Object” on page 4-87
• “Working with One-way Turnover Constraints Using Portfolio Object” on page

4-91
• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-95
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99



4 Mean-Variance Portfolio Optimization Tools

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Obtaining Endpoints of the Efficient Frontier” on page 4-107
• “Obtaining Efficient Portfolios for Target Returns” on page 4-110
• “Obtaining Efficient Portfolios for Target Risks” on page 4-113
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-116
• “Choosing and Controlling the Solver for Mean-Variance Portfolio Optimization” on

page 4-119
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-124
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130
• “Troubleshooting Portfolio Optimization Results” on page 4-133
• “Portfolio Optimization Examples” on page 4-139
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Against a Benchmark” on page 4-181
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Portfolio Optimization Theory

In this section...

“Portfolio Optimization Problems” on page 4-3
“Portfolio Problem Specification” on page 4-3
“Return Proxy” on page 4-4
“Risk Proxy” on page 4-6
“Portfolio Set for Optimization Using Portfolio Object” on page 4-8
“Default Portfolio Problem” on page 4-16

Portfolio Optimization Problems

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe.
A portfolio specifies either holdings or weights in each individual asset in the asset
universe. The convention is to specify portfolios in terms of weights, although the
portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The
proxy for risk is a function that characterizes either the variability or losses associated
with portfolio choices. The proxy for return is a function that characterizes either
the gross or net benefits associated with portfolio choices. The terms “risk” and “risk
proxy” and “return” and “return proxy” are interchangeable. The fundamental insight
of Markowitz (see “Portfolio Optimization” on page A-11) is that the goal of the
portfolio choice problem is to seek minimum risk for a given level of return and to seek
maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called
the efficient frontier.

Portfolio Problem Specification

To specify a portfolio optimization problem, you need the following:
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• Proxy for portfolio return (μ)
• Proxy for portfolio risk (Σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization
problems:

• The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see
Markowitz [46], [47] at “Portfolio Optimization” on page A-11). This object has
either gross or net portfolio returns as the return proxy, the variance of portfolio
returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set.

• The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional
value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at
“Portfolio Optimization” on page A-11), which is generally referred to as CVaR
portfolio optimization. CVaR portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses conditional
value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object (PortfolioMAD) implements what is known as mean-
absolute deviation portfolio optimization (see Konno and Yamazaki [50] at “Portfolio
Optimization” on page A-11), which is generally referred to as MAD portfolio
optimization. MAD portfolio optimization works with the same return proxies
and portfolio sets as mean-variance portfolio optimization but uses mean-absolute
deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function m : X RÆ  on a portfolio set X R
n

Ã  that
characterizes the rewards associated with portfolio choices. In most cases, the proxy for
portfolio return has two general forms, gross and net portfolio returns. Both portfolio
return forms separate the risk-free rate r0 so that the portfolio x XŒ  contains only risky
assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns
y1,...,yS has a mean of asset returns

m
S

ys
s

S

=

=

Â
1

1

,
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and (sample) covariance of asset returns

C
S

y m y ms s
T

s

S

=
-

- -

=

Â
1

1
1

( )( ) .

These moments (or alternative estimators that characterize these moments) are used
directly in mean-variance portfolio optimization to form proxies for portfolio risk and
return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x XŒ  is

m( ) ( ) ,x r m r x
T

= + -0 01

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the
Portfolio object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x XŒ  is

m( ) ( ) max{ , } max{ , },x r m r x b x x s x x
T T T

= + - - - - -0 0 0 01 0 0

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).
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b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is
necessary to incorporate prices into such costs. The properties in the Portfolio object to
specify net portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function Â Æ: X R  on a portfolio set X R
n

Ã  that
characterizes the risks associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x XŒ  is

Â ( ) =x x Cx
T

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is
AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of
portfolio returns, the square root, which is the standard deviation of portfolio returns,
is often reported and displayed. Moreover, this quantity is often called the “risk” of the
portfolio. For details, see Markowitz (“Portfolio Optimization” on page A-11).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x XŒ , which is also known as expected
shortfall, is defined as
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CVaR x f x y p y dy

f x y VaR x

a a
a

( ) =
-

≥
Ú

1

1
( , ) ( ) ,

( , ) ( )

where:

α is the probability level such that 0 < α < 1.

f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaR x f x Ya g g a( ) = £[ ] ≥{ }min : Pr ( , ) .

An alternative formulation for CVaR has the form:

CVaR x VaR x f x y VaR x p y dy

Rn

a a aa
( ) max ,( ( , ) ( )) ( )= ( ) +

-
-{ }Ú

1

1
0

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that
the value-at-risk VaRα(x) for portfolio x is the portfolio return such that the probability
of portfolio returns falling below this level is (1 –α). Given VaRα(x) for a portfolio x, the
conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the
value-at-risk return.

Note: Value-at-risk is a positive value for losses so that the probability level α indicates
the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is CVaRα(x) for a given portfolio x XŒ

and a Œ ( , )0 1 . The value-at-risk, or VaR, for a given probability level is estimated
whenever CVaR is estimated.
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In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR
based on the given scenarios. Better scenario samples yield more reliable estimates of
VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization”
on page A-11.

Mean Absolute-Deviation

The mean-absolute-deviation (MAD) for a portfolio x XŒ  is defined as

( ) ( )x
S

y m xs
T

s

S

= -Â Â
=

1

1

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).

f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m
S

ys
s

S

=

=

Â
1

1

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page
A-11.

Portfolio Set for Optimization Using Portfolio Object

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.
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When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). The
most general portfolio set handled by the portfolio optimization tools can have any of
these constraints:

• Linear inequality constraints
• Linear equality constraints
• Bound constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints
• Tracking error constraints

Linear Inequality Constraints

Linear inequality constraints are general linear constraints that model relationships
among portfolio weights that satisfy a system of inequalities. Linear inequality
constraints take the form

A x bI I£

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI
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• NumAssets for n

The default is to ignore these constraints.

Linear Equality Constraints

Linear equality constraints are general linear constraints that model relationships among
portfolio weights that satisfy a system of equalities. Linear equality constraints take the
form

A x bE E=

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

Portfolio object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

Bound Constraints

Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is
often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem.
To obtain explicit bounds for a given portfolio set, use the estimateBounds function.
Bound constraints take the form

l x u
B B

£ £

where:
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x is the portfolio (n vector).

lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

• LowerBound for lB

• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
4-16) has lB = 0 with uB set implicitly through a budget constraint.

Budget Constraints

Budget constraints are specialized linear constraints that confine the sum of portfolio
weights to fall either above or below specific bounds. The constraints take the form

l x uS
T

S£ £1

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

• LowerBudget for lS

• UpperBudget for uS
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• NumAssets for n

The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
4-16) has lS = uS = 1, which means that the portfolio weights sum to 1. If the portfolio
optimization problem includes possible movements in and out of cash, the budget
constraint specifies how far portfolios can go into cash. For example, if lS = 0 and uS = 1,
then the portfolio can have 0–100% invested in cash. If cash is to be a portfolio choice,
set RiskFreeRate (r0) to a suitable value (see “Return Proxy” on page 4-4 and
“Working with a Riskless Asset” on page 4-56).

Group Constraints

Group constraints are specialized linear constraints that enforce “membership” among
groups of assets. The constraints take the form

l Gx uG G£ £

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each
row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

• GroupMatrix for G
• LowerGroup for lG

• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.

4-12



 Portfolio Optimization Theory

Group Ratio Constraints

Group ratio constraints are specialized linear constraints that enforce relationships
among groups of assets. The constraints take the form

l G x G x u G xRi B i A i Ri B i( ) ( ) ( )£ £

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).

GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group
associated with that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR

• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints

Turnover constraint is a linear absolute value constraint that ensures estimated optimal
portfolios differ from an initial portfolio by no more than a specified amount. Although
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portfolio turnover is defined in many ways, the turnover constraints implemented in
Financial Toolbox computes portfolio turnover as the average of purchases and sales.
Average turnover constraints take the form

1

2
1 0

T
x x| |- £t

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.

One-way Turnover Constraints

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales. The constraints take the forms

1 0 0
T

B
x xmax , -{ } £ t

1 0 0
T

Sx xmax , -{ } £ t

where:
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x is the portfolio (n vector)

1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio or
PortfolioCVaR object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note: The average turnover constraint (see “Working with Average Turnover Constraints
Using Portfolio Object” on page 4-87) with τ is not a combination of the one-way
turnover constraints with τ = τB = τS.

Tracking Error Constraints

Tracking error constraint, within a portfolio optimization framework, is an additional
constraint to specify the set of feasible portfolios known as a portfolio set. The tracking-
error constraint has the form

( ) ( )x x C x xT
T

T T- - £t
2

where:

x is the portfolio (n vector).

xT is the tracking portfolio against which risk is to be measured (n vector).

τT is the upper bound for tracking error (scalar).
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n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• TrackingPort for xT

• TrackingError for τT

The default is to ignore this constraint.

Note: The tracking error constraints can be used with any of the other supported
constraints in the Portfolio object without restrictions. However, since the portfolio
set necessarily and sufficiently must be a non-empty compact set, the application of a
tracking error constraint may result in an empty portfolio set. Use estimateBounds to
confirm that the portfolio set is non-empty and compact.

Default Portfolio Problem

The default portfolio optimization problem has a risk and return proxy associated with
a given problem, and a portfolio set that specifies portfolio weights to be nonnegative
and to sum to 1. The lower bound combined with the budget constraint is sufficient to
ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio
optimization problem characterizes a long-only investor who is fully invested in a
collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem.
After setting up the problem, data in the form of a mean and covariance of asset
returns are then used to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the
additional specification of a probability level that must be set explicitly. Generally,
“typical” values for this level are 0.90 or 0.95. After setting up the problem, data in
the form of scenarios of asset returns are then used to solve portfolio optimization
problems.

• For MAD portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of scenarios of asset returns are then used to
solve portfolio optimization problems.

See Also
Portfolio
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Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• Portfolio
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)

4-17

http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html


4 Mean-Variance Portfolio Optimization Tools

Portfolio Object Workflow

The Portfolio object workflow for creating and modeling a mean-variance portfolio is:

1 Create a Portfolio.

Create a Portfolio object for mean-variance portfolio optimization. For more
information, see “Creating the Portfolio Object” on page 4-25.

2 Estimate the mean and covariance for returns.

Evaluate the mean and covariance for portfolio asset returns, including assets
with missing data and financial time series data. For more information, see “Asset
Returns and Moments of Asset Returns Using Portfolio Object” on page 4-44.

3 Specify the Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality,
bound, budget, group, group ratio, turnover, and tracking error constraints. For
more information, see “Working with Portfolio Constraints Using Defaults” on page
4-63.

4 Validate the Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the
Portfolio Problem for Portfolio Object” on page 4-99.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a portfolio. For more
information, see “Estimate Efficient Portfolios for Entire Efficient Frontier for
Portfolio Object” on page 4-104 and “Estimate Efficient Frontiers for Portfolio
Object” on page 4-121.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more
information, see “Postprocessing Results to Set Up Tradable Portfolios” on page
4-130.

For an example of this workflow, see “Asset Allocation Case Study” on page 4-167 and
“Portfolio Optimization Examples” on page 4-139.
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Related Examples
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Optimization Theory” on page 4-3

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
• Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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Portfolio Object

In this section...

“Portfolio Object Properties and Functions” on page 4-20
“Working with Portfolio Objects” on page 4-20
“Setting and Getting Properties” on page 4-21
“Displaying Portfolio Objects” on page 4-22
“Saving and Loading Portfolio Objects” on page 4-22
“Estimating Efficient Portfolios and Frontiers” on page 4-22
“Arrays of Portfolio Objects” on page 4-22
“Subclassing Portfolio Objects” on page 4-23
“Conventions for Representation of Data” on page 4-23

Portfolio Object Properties and Functions

The Portfolio object implements mean-variance portfolio optimization. Every property
and function of the Portfolio object is public, although some properties and functions
are hidden. See Portfolio for the properties and functions of the Portfolio object. The
Portfolio object is a value object where every instance of the object is a distinct version
of the object. Since the Portfolio object is also a MATLAB object, it inherits the default
functions associated with MATLAB objects.

Working with Portfolio Objects

The Portfolio object and its functions are an interface for mean-variance portfolio
optimization. So, almost everything you do with the Portfolio object can be done using the
associated functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the Portfolio function to create the Portfolio object or use the various set

functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a Portfolio object, you can save
and load objects from your workspace and create and manipulate arrays of objects. After
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settling on a problem, which, in the case of mean-variance portfolio optimization, means
that you have either data or moments for asset returns and a collection of constraints
on your portfolios, use the Portfolio function to set the properties for the Portfolio
object. The Portfolio function lets you create an object from scratch or update an
existing object. Since the Portfolio object is a value object, it is easy to create a basic
object, then use functions to build upon the basic object to create new versions of the
basic object. This is useful to compare a basic problem with alternatives derived from the
basic problem. For details, see “Creating the Portfolio Object” on page 4-25.

Setting and Getting Properties

You can set properties of a Portfolio object using either the Portfolio function or
various set functions.

Note: Although you can also set properties directly, it is not recommended since error-
checking is not performed when you set a property directly.

The Portfolio function supports setting properties with name-value pair arguments
such that each argument name is a property and each value is the value to assign to that
property. For example, to set the AssetMean and AssetCovar properties in an existing
Portfolio object p with the values m and C, use the syntax:

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

In addition to the Portfolio function, which lets you set individual properties one at
a time, groups of properties are set in a Portfolio object with various “set” and “add”
functions. For example, to set up an average turnover constraint, use the setTurnover
function to specify the bound on portfolio average turnover and the initial portfolio. To
get individual properties from a Portfolio object, obtain properties directly or use an
assortment of “get” functions that obtain groups of properties from a Portfolio object. The
Portfolio function and set functions have several useful features:

• The Portfolio function and set functions try to determine the dimensions of your
problem with either explicit or implicit inputs.

• The Portfolio function and set functions try to resolve ambiguities with default
choices.

• The Portfolio function and set functions perform scalar expansion on arrays when
possible.

4-21



4 Mean-Variance Portfolio Optimization Tools

• The associated Portfolio object functions try to diagnose and warn about problems.

Displaying Portfolio Objects

The Portfolio object uses the default display functions provided by MATLAB, where
display and disp display a Portfolio object and its properties with or without the object
variable name.

Saving and Loading Portfolio Objects

Save and load Portfolio objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers

Estimating efficient portfolios and efficient frontiers is the primary purpose of the
portfolio optimization tools. A collection of “estimate” and “plot” functions provide ways
to explore the efficient frontier. The “estimate” functions obtain either efficient portfolios
or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of
functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

• At the endpoints of the efficient frontier
• That attain targeted values for return proxies
• That attain targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or
current portfolio to each efficient portfolio. At the efficient frontier level, a collection of
functions plot the efficient frontier and estimate either risk or return proxies for efficient
portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk
and return proxies in subsequent analyses.

Arrays of Portfolio Objects

Although all functions associated with a Portfolio object are designed to work on a scalar
Portfolio object, the array capabilities of MATLAB enables you to set up and work with
arrays of Portfolio objects. The easiest way to do this is with the repmat function. For
example, to create a 3-by-2 array of Portfolio objects:
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p = repmat(Portfolio, 3, 2);

disp(p)

After setting up an array of Portfolio objects, you can work on individual Portfolio objects
in the array by indexing. For example:

p(i,j) = Portfolio(p(i,j), ... );

This example calls the Portfolio function for the (i,j) element of a matrix of Portfolio
objects in the variable p.

If you set up an array of Portfolio objects, you can access properties of a particular
Portfolio object in the array by indexing so that you can set the lower and upper bounds
lb and ub for the (i,j,k) element of a 3-D array of Portfolio objects with

p(i,j,k) = setBounds(p(i,j,k),lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

Portfolio object functions work on only one Portfolio object at a time.

Subclassing Portfolio Objects

You can subclass the Portfolio object to override existing functions or to add new
properties or functions. To do so, create a derived class from the Portfolio class. This
gives you all the properties and functions of the Portfolio class along with any new
features that you choose to add to your subclassed object. The Portfolio class is derived
from an abstract class called AbstractPortfolio. Because of this, you can also create
a derived class from AbstractPortfolio that implements an entirely different form of
portfolio optimization using properties and functions of the AbstractPortfolio class.

Conventions for Representation of Data

The portfolio optimization tools follow these conventions regarding the representation of
different quantities associated with portfolio optimization:

• Asset returns or prices are in matrix form with samples for a given asset going down
the rows and assets going across the columns. In the case of prices, the earliest dates
must be at the top of the matrix, with increasing dates going down.

• The mean and covariance of asset returns are stored in a vector and a matrix and the
tools have no requirement that the mean must be either a column or row vector.

• Portfolios are in vector or matrix form with weights for a given portfolio going down
the rows and distinct portfolios going across the columns.
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• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio

risks and returns).

See Also
Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Creating the Portfolio Object

In this section...

“Syntax” on page 4-25
“Portfolio Problem Sufficiency” on page 4-26
“Portfolio Function Examples” on page 4-26

To create a fully specified mean-variance portfolio optimization problem, instantiate the
Portfolio object using the Portfolio function. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax

Use the Portfolio function to create an instance of an object of the Portfolio class.
You can use the Portfolio function in several ways. To set up a portfolio optimization
problem in a Portfolio object, the simplest syntax is:

p = Portfolio;

This syntax creates a Portfolio object, p, such that all object properties are empty.

The Portfolio function also accepts collections of argument name-value pair
arguments for properties and their values. The Portfolio function accepts inputs for
public properties with the general syntax:

 p = Portfolio('property1', value1, 'property2', value2, ... );

If a Portfolio object already exists, the syntax permits the first (and only the first
argument) of the Portfolio function to be an existing object with subsequent argument
name-value pair arguments for properties to be added or modified. For example, given an
existing Portfolio object in p, the general syntax is:

p = Portfolio(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 4-30). The Portfolio function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a Portfolio object is a value object so that, given
portfolio p, the following code creates two objects, p and q, that are distinct:
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q = Portfolio(p, ...)

Portfolio Problem Sufficiency

A mean-variance portfolio optimization is completely specified with the Portfolio object if
these two conditions are met:

• The moments of asset returns must be specified such that the property AssetMean
contains a valid finite mean vector of asset returns and the property AssetCovar
contains a valid symmetric positive-semidefinite matrix for the covariance of asset
returns.

The first condition is satisfied by setting the properties associated with the moments
of asset returns.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is
closed and bounded.

The second condition is satisfied by an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets
must be bounded, either explicit or implicit constraints can be imposed, and several
functions, such as estimateBounds, provide ways to ensure that your problem is
properly formulated.

Although the general sufficiency conditions for mean-variance portfolio optimization
go beyond these two conditions, the Portfolio object implemented in Financial Toolbox
implicitly handles all these additional conditions. For more information on the
Markowitz model for mean-variance portfolio optimization, see “Portfolio Optimization”
on page A-11.

Portfolio Function Examples

If you create a Portfolio object, p, with no input arguments, you can display it using
disp:

p = Portfolio;

disp(p); Portfolio

Portfolio with properties:

         BuyCost: []

        SellCost: []

4-26



 Creating the Portfolio Object

    RiskFreeRate: []

       AssetMean: []

      AssetCovar: []

   TrackingError: []

    TrackingPort: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: []

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: []

      UpperBound: []

     LowerBudget: []

     UpperBudget: []

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

The approaches listed provide a way to set up a portfolio optimization problem with the
Portfolio function. The set functions offer additional ways to set and modify collections
of properties in the Portfolio object.

Using the Portfolio Function for a Single-Step Setup

You can use the Portfolio function to directly set up a “standard” portfolio
optimization problem, given a mean and covariance of asset returns in the variables m
and C:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];
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p = Portfolio('assetmean', m, 'assetcovar', C, ...

'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0);

The LowerBound property value undergoes scalar expansion since AssetMean and
AssetCovar provide the dimensions of the problem.

You can use dot notation with the function plotFrontier.

p.plotFrontier;

Using the Portfolio Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” portfolio
optimization problem, given a mean and covariance of asset returns in the variables m
and C (which also illustrates that argument names are not case-sensitive):

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];
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p = Portfolio;

p = Portfolio(p, 'assetmean', m, 'assetcovar', C);

p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);

p = Portfolio(p, 'lowerbound', 0);

 

plotFrontier(p);

This way works because the calls to the Portfolio function are in this particular order.
In this case, the call to initialize AssetMean and AssetCovar provides the dimensions
for the problem. If you were to do this step last, you would have to explicitly dimension
the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;
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p = Portfolio(p, 'LowerBound', zeros(size(m)));

p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

 

plotFrontier(p);

If you did not specify the size of LowerBound but, instead, input a scalar argument, the
Portfolio function assumes that you are defining a single-asset problem and produces
an error at the call to set asset moments with four assets.

Shortcuts for Property Names

The Portfolio function has shorter argument names that replace longer argument
names associated with specific properties of the Portfolio object. For example, rather
than enter 'assetcovar', the Portfolio function accepts the case-insensitive name
'covar' to set the AssetCovar property in a Portfolio object. Every shorter argument
name corresponds with a single property in the Portfolio function. The one exception
is the alternative argument name 'budget', which signifies both the LowerBudget
and UpperBudget properties. When 'budget' is used, then the LowerBudget and
UpperBudget properties are set to the same value to form an equality budget constraint.

4-30



 Creating the Portfolio Object

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

covar AssetCovar

assetnames or assets AssetList

mean AssetMean

be bEquality

bi bInequality

group GroupMatrix

lb LowerBound

n or num NumAssets

rfr RiskFreeRate

ub UpperBound

budget UpperBudget and LowerBudget

For example, this call to the Portfolio function uses these shortcuts for properties and
is equivalent to the previous examples:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0);

plotFrontier(p);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly, however no error-checking is
done on your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;
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    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p.NumAssets = numel(m);

p.AssetMean = m;

p.AssetCovar = C;

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

plotFrontier(p);

See Also
estimateBounds | Portfolio

Related Examples
• “Common Operations on the Portfolio Object” on page 4-33
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Common Operations on the Portfolio Object

In this section...

“Naming a Portfolio Object” on page 4-33
“Configuring the Assets in the Asset Universe” on page 4-33
“Setting Up a List of Asset Identifiers” on page 4-34
“Truncating and Padding Asset Lists” on page 4-35

Naming a Portfolio Object

To name a Portfolio object, use the Name property. Name is informational and has no
effect on any portfolio calculations. If the Name property is nonempty, Name is the title
for the efficient frontier plot generated by plotFrontier. For example, if you set up an
asset allocation fund, you could name the Portfolio object Asset Allocation Fund:

p = Portfolio('Name','Asset Allocation Fund');

disp(p.Name);

Asset Allocation Fund

Configuring the Assets in the Asset Universe

The fundamental quantity in the Portfolio object is the number of assets in the asset
universe. This quantity is maintained in the NumAssets property. Although you can
set this property directly, it is usually derived from other properties such as the mean
of asset returns and the initial portfolio. In some instances, the number of assets may
need to be set directly. This example shows how to set up a Portfolio object that has four
assets:

p = Portfolio('NumAssets', 4);

disp(p.NumAssets);

4

After setting the NumAssets property, you cannot modify it (unless no other properties
are set that depend on NumAssets). The only way to change the number of assets in an
existing Portfolio object with a known number of assets is to create a new Portfolio object.
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Setting Up a List of Asset Identifiers

When working with portfolios, you must specify a universe of assets. Although you can
perform a complete analysis without naming the assets in your universe, it is helpful to
have an identifier associated with each asset as you create and work with portfolios. You
can create a list of asset identifiers as a cell vector of character vectors in the property
AssetList. You can set up the list using the next two functions.

Setting Up Asset Lists Using the Portfolio Function

Suppose that you have a Portfolio object, p, with assets with symbols 'AA'', 'BA',
'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using
the Portfolio function:
p = Portfolio('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character
vectors, and that it is necessary to pass a cell array into the Portfolio function to set
AssetList. In addition, notice that the property NumAssets is set to 5 based on the
number of symbols used to create the asset list:

disp(p.NumAssets);

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of
asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = Portfolio;

p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list
without creating a cell array of character vectors. For example, given the list of assets
symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:

p = Portfolio;

p = setAssetList(p,'AA', 'BA', 'CAT', 'DD', 'ETR');
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disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a Portfolio object, it creates a default asset list according to the
name specified in the hidden public property defaultforAssetList (which is 'Asset'
by default). The number of asset names created depends on the number of assets in the
property NumAssets. If NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a Portfolio object p is created with NumAssets = 5, then this code
fragment shows the default naming behavior:

p = Portfolio('numassets',5);

p = setAssetList(p);

disp(p.AssetList);

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = Portfolio('numassets',5);

p.defaultforAssetList = 'ETF'; 

p = setAssetList(p);

disp(p.AssetList);

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'

Truncating and Padding Asset Lists

If the NumAssets property is already set and you pass in too many or too few identifiers,
the Portfolio function, and the setAssetList function truncate or pad the list with
numbered default asset names that use the name specified in the hidden public property
defaultforAssetList. If the list is truncated or padded, a warning message indicates
the discrepancy. For example, assume that you have a Portfolio object with five ETFs and
you only know the first three CUSIPs '921937835', '922908769', and '922042775'.
Use this syntax to create an asset list that pads the remaining asset identifiers with
numbered 'UnknownCUSIP' placeholders:
p = Portfolio('numassets',5);

p.defaultforAssetList = 'UnknownCUSIP';

p = setAssetList(p,'921937835', '922908769', '922042775');

disp(p.AssetList);

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets. 
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> In Portfolio.setAssetList at 121 

    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four
assets. This example illustrates truncation of the asset list using the Portfolio
function:
p = Portfolio('numassets',4);

p = Portfolio(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });

disp(p.AssetList);

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 

> In Portfolio.checkarguments at 434

  In Portfolio.Portfolio>Portfolio.Portfolio at 171 

    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether
to convert asset names to uppercase letters. The default value for uppercaseAssetList
is false. This example shows how to use the uppercaseAssetList flag to force
identifiers to be uppercase letters:

p = Portfolio;

p.uppercaseAssetList = true;

p = setAssetList(p,{ 'aa', 'ba', 'cat', 'dd', 'etr' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
checkFeasibility | estimateBounds | Portfolio | setAssetList |
setInitPort | setTrackingPort

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 4-38
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page

4-44
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139
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More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Setting Up an Initial or Current Portfolio

In many applications, creating a new optimal portfolio requires comparing the new
portfolio with an initial or current portfolio to form lists of purchases and sales. The
Portfolio object property InitPort lets you identify an initial or current portfolio.
The initial portfolio also plays an essential role if you have either transaction costs or
turnover constraints. The initial portfolio need not be feasible within the constraints
of the problem. This can happen if the weights in a portfolio have shifted such that
some constraints become violated. To check if your initial portfolio is feasible, use the
checkFeasibility function described in “Validating Portfolios” on page 4-101.
Suppose that you have an initial portfolio in x0, then use the Portfolio function to set
up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = Portfolio('InitPort', x0);

disp(p.InitPort);

 0.3000

 0.2000

 0.2000

      0

As with all array properties, you can set InitPort with scalar expansion. This is helpful
to set up an equally weighted initial portfolio of, for example, 10 assets:

p = Portfolio('NumAssets', 10, 'InitPort', 1/10);

disp(p.InitPort);

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

To clear an initial portfolio from your Portfolio object, use either the Portfolio or the
setInitPort function with an empty input for the InitPort property. If transaction
costs or turnover constraints are set, it is not possible to clear the InitPort property in
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this way. In this case, to clear InitPort, first clear the dependent properties and then
clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial
portfolio in x0, use setInitPort to set the InitPort property:

p = Portfolio;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

 0.3000

 0.2000

 0.2000

      0

To create an equally weighted portfolio of four assets, use setInitPort:

p = Portfolio;

p = setInitPort(p, 1/4, 4);

disp(p.InitPort);

 0.2500

 0.2500

 0.2500

 0.2500

Portfolio object functions that work with either transaction costs or turnover constraints
also depend on the InitPort property. So, the set functions for transaction costs or
turnover constraints permit the assignment of a value for the InitPort property as part
of their implementation. For details, see “Working with Average Turnover Constraints
Using Portfolio Object” on page 4-87, “Working with One-way Turnover Constraints
Using Portfolio Object” on page 4-91, and “Working with Transaction Costs” on page
4-58 for details. If either transaction costs or turnover constraints are used, then
the InitPort property must have a nonempty value. Absent a specific value assigned
through the Portfolio function or various set functions, the Portfolio object sets
InitPort to 0 and warns if BuyCost, SellCost, or Turnover properties are set. The
following example illustrates what happens if an average turnover constraint is specified
with an initial portfolio:

p = Portfolio('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);

disp(p.InitPort);
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 0.3000

 0.2000

 0.2000

      0

In contrast, this example shows what happens if an average turnover constraint is
specified without an initial portfolio:
p = Portfolio('Turnover', 0.3);

disp(p.InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.

Will set NumAssets = 1 and InitPort = 0. 

> In Portfolio.checkarguments at 367

  In Portfolio.Portfolio>Portfolio.Portfolio at 171 

     0

See Also
checkFeasibility | estimateBounds | Portfolio | setAssetList |
setInitPort

Related Examples
• “Setting Up a Tracking Portfolio” on page 4-41
• “Common Operations on the Portfolio Object” on page 4-33
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page

4-44
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Setting Up a Tracking Portfolio

Given a benchmark or tracking portfolio, you can ensure that the risk of a portfolio
relative to the benchmark portfolio is no greater than a specified amount. The Portfolio
object property TrackingPort lets you identify a tracking portfolio. For more
information on using a tracking portfolio with tracking error constraints, see “Working
with Tracking Error Constraints Using Portfolio Object” on page 4-95.

The tracking error constraints can be used with any of the other supported constraints
in the Portfolio object without restrictions. However, since the portfolio set necessarily
and sufficiently must be a non-empty compact set, the application of a tracking error
constraint can result in an empty portfolio set. Use estimateBounds to confirm that the
portfolio set is non-empty and compact.

Suppose that you have an initial portfolio in x0, then use the Portfolio function to set
up a tracking portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = Portfolio('TrackingPort', x0);

disp(p.TrackingPort);

0.3000

    0.2000

    0.2000

         0

As with all array properties, you can set TrackingPort with scalar expansion. This is
helpful to set up an equally weighted tracking portfolio of, for example, 10 assets:

p = Portfolio('NumAssets', 10, 'TrackingPort', 1/10);

disp(p.TrackingPort);

0.1000

    0.1000

    0.1000

    0.1000

    0.1000

    0.1000

    0.1000

    0.1000

    0.1000

    0.1000

4-41



4 Mean-Variance Portfolio Optimization Tools

To clear a tracking portfolio from your Portfolio object, use either the Portfolio or
the setTrackingPort function with an empty input for the TrackingPort property.
If transaction costs or turnover constraints are set, it is not possible to clear the
TrackingPort property in this way. In this case, to clear TrackingPort, first clear the
dependent properties and then clear theTrackingPort property.

The TrackingPort property can also be set with setTrackingPort which lets you
specify the number of assets if you want to use scalar expansion. For example, given an
initial portfolio in x0, use setTrackingPort to set the TrackingPort property:

p = Portfolio;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setTrackingPort(p, x0);

disp(p.TrackingPort);

 0.3000

 0.2000

 0.2000

      0

To create an equally weighted portfolio of four assets, use setTrackingPort:

p = Portfolio;

p = setTrackingPort(p, 1/4, 4);

disp(p.TrackingPort);

 0.2500

 0.2500

 0.2500

 0.2500

See Also
checkFeasibility | estimateBounds | Portfolio | setAssetList |
setInitPort | setTrackingError | setTrackingPort

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 4-38
• “Common Operations on the Portfolio Object” on page 4-33
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page

4-44
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• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Asset Returns and Moments of Asset Returns Using Portfolio Object

In this section...

“Assignment Using the Portfolio Function” on page 4-44
“Assignment Using the setAssetMoments Function” on page 4-45
“Scalar Expansion of Arguments” on page 4-46
“Estimating Asset Moments from Prices or Returns” on page 4-47
“Estimating Asset Moments with Missing Data” on page 4-51
“Estimating Asset Moments from Time Series Data” on page 4-52

Since mean-variance portfolio optimization problems require estimates for the mean
and covariance of asset returns, the Portfolio object has several ways to set and get the
properties AssetMean (for the mean) and AssetCovar (for the covariance). In addition,
the return for a riskless asset is kept in the property RiskFreeRate so that all assets
in AssetMean and AssetCovar are risky assets. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Assignment Using the Portfolio Function

Suppose that you have a mean and covariance of asset returns in variables m and C. The
properties for the moments of asset returns are set using the Portfolio function:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

p = Portfolio('AssetMean', m, 'AssetCovar', C);

disp(p.NumAssets);

disp(p.AssetMean);

disp(p.AssetCovar);

4

    0.0042

    0.0083

    0.0100

    0.0150
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    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

Notice that the Portfolio object determines the number of assets in NumAssets from the
moments. The Portfolio function enables separate initialization of the moments, for
example:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

 

p = Portfolio;

p = Portfolio(p, 'AssetMean', m);

p = Portfolio(p, 'AssetCovar', C);

[assetmean, assetcovar] = p.getAssetMoments

assetmean =

    0.0042

    0.0083

    0.0100

    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

The getAssetMoments function lets you get the values for AssetMean and AssetCovar
properties at the same time.

Assignment Using the setAssetMoments Function

You can also set asset moment properties using the setAssetMoments function. For
example, given the mean and covariance of asset returns in the variables m and C, the
asset moment properties can be set:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

 

p = Portfolio;

p = setAssetMoments(p, m, C);

[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.0042

    0.0083

    0.0100

    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

Scalar Expansion of Arguments

Both the Portfolio function and the setAssetMoments function perform scalar
expansion on arguments for the moments of asset returns. When using the Portfolio
function, the number of assets must be already specified in the variable NumAssets. If
NumAssets has not already been set, a scalar argument is interpreted as a scalar with
NumAssets set to 1. setAssetMoments provides an additional optional argument to
specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns,
a diagonal matrix is formed such that a scalar expands along the diagonal and a vector
becomes the diagonal. This example demonstrates scalar expansion for four jointly
independent assets with a common mean 0.1 and common variance 0.03:

p = Portfolio;

p = setAssetMoments(p, 0.1, 0.03, 4);

[assetmean, assetcovar] = getAssetMoments(p)

assetmean =
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    0.1000

    0.1000

    0.1000

    0.1000

assetcovar =

    0.0300         0         0         0

         0    0.0300         0         0

         0         0    0.0300         0

         0         0         0    0.0300

If at least one argument is properly dimensioned, you do not need to include the
additional NumAssets argument. This example illustrates a constant-diagonal
covariance matrix and a mean of asset returns for four assets:

p = Portfolio;

p = setAssetMoments(p, [ 0.05; 0.06; 0.04; 0.03 ], 0.03);

[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.0500

    0.0600

    0.0400

    0.0300

assetcovar =

    0.0300         0         0         0

         0    0.0300         0         0

         0         0    0.0300         0

         0         0         0    0.0300

In addition, scalar expansion works with the Portfolio function if NumAssets is
known, or is deduced from the inputs.

Estimating Asset Moments from Prices or Returns

Another way to set the moments of asset returns is to use the estimateAssetMoments
function which accepts either prices or returns and estimates the mean and covariance
of asset returns. Either prices or returns are stored as matrices with samples going down
the rows and assets going across the columns. In addition, prices or returns can be stored
in a financial time series (fints) object (see “Estimating Asset Moments from Time
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Series Data” on page 4-52). To illustrate using estimateAssetMoments, generate
random samples of 120 observations of asset returns for four assets from the mean and
covariance of asset returns in the variables m and C with portsim. The default behavior
of portsim creates simulated data with estimated mean and covariance identical to the
input moments m and C. In addition to a return series created by portsim in the variable
X, a price series is created in the variable Y:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

Y = ret2tick(X);

Note: Portfolio optimization requires that you use total returns and not just price
returns. So, "returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of
examples demonstrates equivalent ways to estimate asset moments for the Portfolio
object. A Portfolio object is created in p with the moments of asset returns set
directly in the Portfolio function, and a second Portfolio object is created in q to
obtain the mean and covariance of asset returns from asset return data in X using
estimateAssetMoments:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

 

X = portsim(m', C, 120);

p = Portfolio('mean', m, 'covar', C);

q = Portfolio;

q = estimateAssetMoments(q, X);

 

[passetmean, passetcovar] = getAssetMoments(p)
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[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042

    0.0083

    0.0100

    0.0150

qassetcovar =

    0.0005    0.0003    0.0002    0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

    0.0000    0.0010    0.0028    0.0102

Notice how either approach has the same moments. The default behavior of
estimateAssetMoments is to work with asset returns. If, instead, you have asset prices
in the variable Y, estimateAssetMoments accepts a name-value pair argument name
'DataFormat' with a corresponding value set to 'prices' to indicate that the input
to the function is in the form of asset prices and not returns (the default value for the
'DataFormat' argument is 'returns'). This example compares direct assignment of
moments in the Portfolio object p with estimated moments from asset price data in Y in
the Portfolio object q:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;
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C = C/12;

 

X = portsim(m', C, 120);

Y = ret2tick(X);

p = Portfolio('mean',m,'covar',C);

        

q = Portfolio;

q = estimateAssetMoments(q, Y, 'dataformat', 'prices');

 

[passetmean, passetcovar] = getAssetMoments(p)

[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042

    0.0083

    0.0100

    0.0150

qassetcovar =

    0.0005    0.0003    0.0002    0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

    0.0000    0.0010    0.0028    0.0102

4-50



 Asset Returns and Moments of Asset Returns Using Portfolio Object

Estimating Asset Moments with Missing Data

Often when working with multiple assets, you have missing data indicated by NaN values
in your return or price data. Although “Multivariate Normal Regression” on page 9-2
goes into detail about regression with missing data, the estimateAssetMoments
function has a name-value pair argument name 'MissingData' that indicates with a
Boolean value whether to use the missing data capabilities of Financial Toolbox software.
The default value for 'MissingData' is false which removes all samples with NaN
values. If, however, 'MissingData' is set to true, estimateAssetMoments uses the
ECM algorithm to estimate asset moments. This example illustrates how this works on
price data with missing values:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

 

X = portsim(m', C, 120);

Y = ret2tick(X);

Y(1:20,1) = NaN;

Y(1:12,4) = NaN;

p = Portfolio('mean',m,'covar',C);

        

q = Portfolio;

q = estimateAssetMoments(q, Y, 'dataformat', 'prices');

 

r = Portfolio;

r = estimateAssetMoments(r, Y, 'dataformat', 'prices', 'missingdata', true);

[passetmean, passetcovar] = getAssetMoments(p)

[qassetmean, qassetcovar] = getAssetMoments(q)

[rassetmean, rassetcovar] = getAssetMoments(r)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010
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    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

qassetmean =

    0.0045

    0.0082

    0.0101

    0.0091

qassetcovar =

    0.0006    0.0003    0.0001   -0.0000

    0.0003    0.0023    0.0017    0.0011

    0.0001    0.0017    0.0048    0.0029

   -0.0000    0.0011    0.0029    0.0112

rassetmean =

    0.0045

    0.0083

    0.0100

    0.0113

rassetcovar =

    0.0008    0.0005    0.0001   -0.0001

    0.0005    0.0032    0.0022    0.0015

    0.0001    0.0022    0.0063    0.0040

   -0.0001    0.0015    0.0040    0.0144

The Portfolio object p contains raw moments, the object q contains estimated moments
in which NaN values are discarded, and the object r contains raw moments that
accommodate missing values. Each time you run this example, you will get different
estimates for the moments in q and r, and these will also differ from the moments in p.

Estimating Asset Moments from Time Series Data

The estimateAssetMoments function also accepts asset returns or prices stored in
financial time series (fints) objects. estimateAssetMoments implicitly works with
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matrices of data or data in a fints object using the same rules for whether the data are
returns or prices.

To illustrate, use fints to create a fints objects Xfts that contains asset returns
generated with portsim (see “Estimating Asset Moments from Prices or Returns” on
page 4-47) and add series labels:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

 

X = portsim(m', C, 120);

d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';

Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});

Xfts = tomonthly(Xfts);

Xfts.Bonds = X(:,1);

Xfts.LargeCap = X(:,2);

Xfts.SmallCap = X(:,3);

Xfts.Emerging = X(:,4);

p = Portfolio('mean',m,'covar',C);

        

q = Portfolio;

q = estimateAssetMoments(q, Xfts);

 

[passetmean, passetcovar] = getAssetMoments(p)

[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042

    0.0083
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    0.0100

    0.0150

qassetcovar =

    0.0005    0.0003    0.0002    0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

    0.0000    0.0010    0.0028    0.0102

As you can see, the moments match. The argument name-value inputs 'DataFormat'
to handle return or price data and 'MissingData' to ignore or use samples with
missing values also work for fints data. In addition, estimateAssetMoments also
extracts asset names or identifiers from a fints object with the argument name
'GetAssetList' set to true (its default value is false). If the 'GetAssetList'
value is true, the identifiers are used to set the AssetList property of the object. Thus,
repeating the formation of the Portfolio object q from the previous example with the
'GetAssetList' flag set to true extracts the series labels from the fints object:

q = estimateAssetMoments(q, Xfts, 'getassetlist', true);

disp(q.AssetList)

'Bonds'    'LargeCap'    'SmallCap'    'Emerging'

Note if you set the 'GetAssetList' flag set to true and your input data is in a matrix,
estimateAssetMoments uses the default labeling scheme from setAssetList
described in “Setting Up a List of Asset Identifiers” on page 4-34.

See Also
estimateAssetMoments | getAssetMoments | Portfolio | setAssetMoments |
setCosts

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
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• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with a Riskless Asset

You can specify a riskless asset with the mean and covariance of asset returns in the
AssetMean and AssetCovar properties such that the riskless asset has variance of 0
and is completely uncorrelated with all other assets. In this case, the Portfolio object
uses a separate RiskFreeRate property that stores the rate of return of a riskless asset.
Thus, you can separate your universe into a riskless asset and a collection of risky assets.
For example, assume that your riskless asset has a return in the scalar variable r0, then
the property for the RiskFreeRate is set using the Portfolio function:

r0 = 0.01/12;

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

p = Portfolio('RiskFreeRate', r0, 'AssetMean', m, 'AssetCovar', C);

disp(p.RiskFreeRate);

 8.3333e-004

Note: If your problem has a budget constraint such that your portfolio weights must sum
to 1, then the riskless asset is irrelevant.

See Also
estimateAssetMoments | getAssetMoments | Portfolio | setAssetMoments

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139
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More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Transaction Costs

The difference between net and gross portfolio returns is transaction costs. The net
portfolio return proxy has distinct proportional costs to purchase and to sell assets which
are maintained in the Portfolio object properties BuyCost and SellCost. Transaction
costs are in units of total return and, as such, are proportional to the price of an asset so
that they enter the model for net portfolio returns in return form. For example, suppose
that you have a stock currently priced $40 and your usual transaction costs are 5 cents
per share. Then the transaction cost for the stock is 0.05/40 = 0.00125 (as defined in
“Net Portfolio Returns” on page 4-5). Costs are entered as positive values and credits are
entered as negative values.

Setting Transaction Costs Using the Portfolio Function

To set up transaction costs, you must specify an initial or current portfolio in the
InitPort property. If the initial portfolio is not set when you set up the transaction
cost properties, InitPort is 0. The properties for transaction costs can be set using
thePortfolio function. For example, assume that purchase and sale transaction
costs are in the variables bc and sc and an initial portfolio is in the variable x0, then
transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort); 

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013
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    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs Using the setCosts Function

You can also set the properties for transaction costs using setCosts. Assume that you
have the same costs and initial portfolio as in the previous example. Given a Portfolio
object p with an initial portfolio already set, use setCosts to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0);

p = setCosts(p, bc, sc);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);    

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000
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    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to
setCosts so that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio;

p = setCosts(p, bc, sc, x0);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);  

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs with Scalar Expansion

Both the Portfolio function and the setCosts function implement scalar expansion on
the arguments for transaction costs and the initial portfolio. If the NumAssets property
is already set in the Portfolio object, scalar arguments for these properties are expanded
to have the same value across all dimensions. In addition, setCosts lets you specify
NumAssets as an optional final argument. For example, assume that you have an initial
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portfolio x0 and you want to set common transaction costs on all assets in your universe.
You can set these costs in any of these equivalent ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0);

p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio;

p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your Portfolio object, use either the Portfolio function or setCosts
with empty inputs for the properties to be cleared. For example, you can clear sales costs
from the Portfolio object p in the previous example:

p = Portfolio(p, 'SellCost', []);

See Also
estimateAssetMoments | getAssetMoments | Portfolio | setAssetMoments |
setCosts

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
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• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Portfolio Constraints Using Defaults

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). For
information on the workflow when using Portfolio objects, see “Portfolio Object Workflow”
on page 4-18.

Setting Default Constraints for Portfolio Weights Using Portfolio Object

The “default” portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although
this is a superfluous constraint to impose on the problem.

Setting Default Constraints Using the Portfolio Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the Portfolio
function to set up a default problem and explicitly set bounds and budget constraints:

p = Portfolio('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);

disp(p);

 Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: []

      AssetCovar: []

   TrackingError: []
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    TrackingPort: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: 20

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number
of assets is already known in a Portfolio object, use setDefaultConstraints with no
arguments to set up the necessary bound and budget constraints. Suppose that you have
20 assets to set up the portfolio set for a default problem:

p = Portfolio('NumAssets', 20);

p = setDefaultConstraints(p);

disp(p);

 Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: []

      AssetCovar: []

   TrackingError: []

    TrackingPort: []

        Turnover: []
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     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: 20

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as
an optional argument to form a portfolio set for a default problem. Suppose that you have
20 assets:

p = Portfolio;

p = setDefaultConstraints(p, 20);

disp(p);

Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: []

      AssetCovar: []

   TrackingError: []

    TrackingPort: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: 20

       AssetList: []
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        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Working with Bound Constraints Using Portfolio Object” on page 4-68
• “Working with Budget Constraints Using Portfolio Object” on page 4-71
• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Inequality Constraints Using Portfolio Object” on page

4-84
• “Working with Average Turnover Constraints Using Portfolio Object” on page

4-87
• “Working with One-way Turnover Constraints Using Portfolio Object” on page

4-91
• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-95
• “Creating the Portfolio Object” on page 4-25
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
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• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Bound Constraints Using Portfolio Object

Bound constraints are optional linear constraints that maintain upper and lower bounds
on portfolio weights (see “Bound Constraints” on page 4-10). Although every portfolio
set must be bounded, it is not necessary to specify a portfolio set with explicit bound
constraints. For example, you can create a portfolio set with an implicit upper bound
constraint or a portfolio set with average turnover constraints. The bound constraints
have properties LowerBound for the lower-bound constraint and UpperBound
for the upper-bound constraint. Set default values for these constraints using the
setDefaultConstraints function (see “Setting Default Constraints for Portfolio
Weights Using Portfolio Object” on page 4-63).

Setting Bounds Using the Portfolio Function

The properties for bound constraints are set through the Portfolio function. Suppose
that you have a balanced fund with stocks that can range from 50% to 75% of your
portfolio and bonds that can range from 25% to 50% of your portfolio. The bound
constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = Portfolio('LowerBound', lb, 'UpperBound', ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

 2

 0.5000

 0.2500

 0.7500

 0.5000

To continue with this example, you must set up a budget constraint. For details, see
“Working with Budget Constraints Using Portfolio Object” on page 4-71.

Setting Bounds Using the setBounds Function

You can also set the properties for bound constraints using setBounds. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
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bonds that can range from 25% to 50% of your portfolio. Given a Portfolio object p, use
setBounds to set the bound constraints:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = Portfolio;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

  2

  0.5000

  0.2500

  0.7500

  0.5000

Setting Bounds Using the Portfolio Function or setBounds Function

Both the Portfolio function and setBounds function implement scalar expansion on
either the LowerBound or UpperBound properties. If the NumAssets property is already
set in the Portfolio object, scalar arguments for either property expand to have the same
value across all dimensions. In addition, setBounds lets you specify NumAssets as an
optional argument. Suppose that you have a universe of 500 assets and you want to set
common bound constraints on all assets in your universe. Specifically, you are a long-only
investor and want to hold no more than 5% of your portfolio in any single asset. You can
set these bound constraints in any of these equivalent ways:
p = Portfolio('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);

or

p = Portfolio('NumAssets', 500);

p = setBounds(p, 0, 0.05);

or

p = Portfolio;

p = setBounds(p, 0, 0.05, 500);

To clear bound constraints from your Portfolio object, use either the Portfolio function
or setBounds with empty inputs for the properties to be cleared. For example, to clear
the upper-bound constraint from the Portfolio object p in the previous example:
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p = Portfolio(p, 'UpperBound', []);

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Budget Constraints Using Portfolio Object

The budget constraint is an optional linear constraint that maintains upper and
lower bounds on the sum of portfolio weights (see “Budget Constraints” on page 4-11).
Budget constraints have properties LowerBudget for the lower budget constraint and
UpperBudget for the upper budget constraint. If you set up a portfolio optimization
problem that requires portfolios to be fully invested in your universe of assets, you can
set LowerBudget to be equal to UpperBudget. These budget constraints can be set
with default values equal to 1 using setDefaultConstraints (see “Setting Default
Constraints for Portfolio Weights Using Portfolio Object” on page 4-63).

Setting Budget Constraints Using the Portfolio Function

The properties for the budget constraint can also be set using the Portfolio function.
Suppose that you have an asset universe with many risky assets and a riskless asset and
you want to ensure that your portfolio never holds more than 1% cash, that is, you want
to ensure that you are 99–100% invested in risky assets. The budget constraint for this
portfolio can be set with:

p = Portfolio('LowerBudget', 0.99, 'UpperBudget', 1);

disp(p.LowerBudget);

disp(p.UpperBudget);

 0.9900

1

Setting Budget Constraints Using the setBudget Function

You can also set the properties for a budget constraint using setBudget. Suppose that
you have a fund that permits up to 10% leverage which means that your portfolio can be
from 100% to 110% invested in risky assets. Given a Portfolio object p, use setBudget to
set the budget constraints:

p = Portfolio;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

1
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 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the
borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate
property, see “Working with a Riskless Asset” on page 4-56. To clear either bound for
the budget constraint from your Portfolio object, use either the Portfolio function or
setBudget with empty inputs for the properties to be cleared. For example, clear the
upper-budget constraint from the Portfolio object p in the previous example with:

p = Portfolio(p, 'UpperBudget', []);

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Group Constraints Using Portfolio Object

Group constraints are optional linear constraints that group assets together and enforce
bounds on the group weights (see “Group Constraints” on page 4-12). Although the
constraints are implemented as general constraints, the usual convention is to form
a group matrix that identifies membership of each asset within a specific group with
Boolean indicators (either true or false or with 1 or 0) for each element in the group
matrix. Group constraints have properties GroupMatrix for the group membership
matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the
upper-bound constraint on groups.

Setting Group Constraints Using the Portfolio Function

The properties for group constraints are set through the Portfolio function. Suppose
that you have a portfolio of five assets and want to ensure that the first three assets
constitute no more than 30% of your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];

p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the
same result.

G = [ true true true false false ];

p = Portfolio('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0
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0.3000

Setting Group Constraints Using the setGroups and addGroups Functions

You can also set the properties for group constraints using setGroups. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute
no more than 30% of your portfolio. Given a Portfolio object p, use setGroups to set the
group constraints:

G = [ true true true false false ];

p = Portfolio;

p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose you want to add another group constraint to make odd-numbered assets
constitute at least 20% of your portfolio. Set up an augmented group matrix and
introduce infinite bounds for unconstrained group bounds or use the addGroups function
to build up group constraints. For this example, create another group matrix for the
second group constraint:
p = Portfolio;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

 5

1     1     1     0     0

1     0     1     0     1

  -Inf
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0.2000

0.3000

  Inf

addGroups determines which bounds are unbounded so you only need to focus on the
constraints that you want to set.

The Portfolio function and setGroups and addGroups implement scalar expansion
on either the LowerGroup or UpperGroup properties based on the dimension of the
group matrix in the property GroupMatrix. Suppose that you have a universe of 30
assets with 6 asset classes such that assets 1–5, assets 6–12, assets 13–18, assets 19–22,
assets 23–27, and assets 28–30 constitute each of your 6 asset classes and you want each
asset class to fall from 0% to 25% of your portfolio. Let the following group matrix define
your groups and scalar expansion define the common bounds on each group:
p = Portfolio;

G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));

p = setGroups(p, G, 0, 0.25);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

30

  Columns 1 through 16

     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     1     1     1     1     1     1     1     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 17 through 30

     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     1     1     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     1     1     1     1     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     1     1     1     1     1     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     1     1     1

     0

     0

     0

     0

     0

     0

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500
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See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Group Ratio Constraints Using Portfolio Object
Group ratio constraints are optional linear constraints that maintain bounds on
proportional relationships among groups of assets (see “Group Ratio Constraints” on
page 4-13). Although the constraints are implemented as general constraints, the usual
convention is to specify a pair of group matrices that identify membership of each asset
within specific groups with Boolean indicators (either true or false or with 1 or 0)
for each element in each of the group matrices. The goal is to ensure that the ratio of a
base group compared to a comparison group fall within specified bounds. Group ratio
constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the Portfolio Function

The properties for group ratio constraints are set using the Portfolio function. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1–3) and three nonfinanical companies (assets 4–6). To set group ratio
constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies

GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies

p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false
elements that yield the same result:
GA = [ true true true false false false ];    % financial companies
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GB = [ false false false true true true ];    % nonfinancial companies

p = Portfolio('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions

You can also set the properties for group ratio constraints using setGroupRatio. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1–3) and three nonfinanical companies (assets 4–6). Given a Portfolio
object p, use setGroupRatio to set the group constraints:
GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = Portfolio;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights
in odd-numbered assets constitute at least 20% of the weights in nonfinancial assets your
portfolio. You can set up augmented group ratio matrices and introduce infinite bounds
for unconstrained group ratio bounds, or you can use the addGroupRatio function to
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build up group ratio constraints. For this example, create another group matrix for the
second group constraint:
p = Portfolio;

GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies

GB = [ false false false true true true ];   % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

 6

1     1     1     0     0     0

1     0     1     0     1     0

0     0     0     1     1     1

0     0     0     1     1     1

  -Inf

0.2000

0.5000

  Inf

Notice that addGroupRatio determines which bounds are unbounded so you only need
to focus on the constraints you want to set.

The Portfolio function, setGroupRatio, and addGroupRatio implement scalar
expansion on either the LowerRatio or UpperRatio properties based on the dimension
of the group matrices in GroupA and GroupB properties.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
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• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Linear Equality Constraints Using Portfolio Object

Linear equality constraints are optional linear constraints that impose systems of
equalities on portfolio weights (see “Linear Equality Constraints” on page 4-10). Linear
equality constraints have properties AEquality, for the equality constraint matrix, and
bEquality, for the equality constraint vector.

Setting Linear Equality Constraints Using the Portfolio Function

The properties for linear equality constraints are set using the Portfolio function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. To set this constraint:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio('AEquality', A, 'bEquality', b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and addEquality
Functions

You can also set the properties for linear equality constraints using setEquality.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. Given a Portfolio object p, use setEquality to set the
linear equality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;

p = setEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);
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5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last
three assets also constitute 50% of your portfolio. You can set up an augmented system
of linear equalities or use addEquality to build up linear equality constraints. For this
example, create another system of equalities:

p = Portfolio;

A = [ 1 1 1 0 0 ];    % first equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0     0     1     1     1

0.5000

0.5000

The Portfolio function, setEquality, and addEquality implement scalar expansion
on the bEquality property based on the dimension of the matrix in the AEquality
property.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover
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Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Linear Inequality Constraints Using Portfolio Object

Linear inequality constraints are optional linear constraints that impose systems of
inequalities on portfolio weights (see “Linear Inequality Constraints” on page 4-9).
Linear inequality constraints have properties AInequality for the inequality constraint
matrix, and bInequality for the inequality constraint vector.

Setting Linear Inequality Constraints Using the Portfolio Function

The properties for linear inequality constraints are set using the Portfolio function.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets are no more than 50% of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio('AInequality', A, 'bInequality', b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions

You can also set the properties for linear inequality constraints using setInequality.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets constitute no more than 50% of your portfolio. Given a Portfolio object p, use
setInequality to set the linear inequality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;

p = setInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);
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5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the
last three assets constitute at least 50% of your portfolio. You can set up an augmented
system of linear inequalities or use the addInequality function to build up linear
inequality constraints. For this example, create another system of inequalities:

p = Portfolio;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0     0    -1    -1    -1

0.5000

-0.5000

The Portfolio function, setInequality, and addInequality implement scalar
expansion on the bInequality property based on the dimension of the matrix in the
AInequality property.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover
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Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Average Turnover Constraints Using Portfolio Object

The turnover constraint is an optional linear absolute value constraint (see “Average
Turnover Constraints” on page 4-13) that enforces an upper bound on the average of
purchases and sales. The turnover constraint can be set using the Portfolio function
or the setTurnover function. The turnover constraint depends on an initial or current
portfolio, which is assumed to be zero if not set when the turnover constraint is set. The
turnover constraint has properties Turnover, for the upper bound on average turnover,
and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the Portfolio Function

The properties for the turnover constraints are set using the Portfolio function.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and you want to
ensure that average turnover is no more than 30%. To set this turnover constraint:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = Portfolio('Turnover', 0.3, 'InitPort', x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);
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Note if the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 4-38).
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Setting Average Turnover Constraints Using the setTurnover Function

You can also set properties for portfolio turnover using setTurnover to specify both
the upper bound for average turnover and an initial portfolio. Suppose that you have an
initial portfolio of 10 assets in a variable x0 and want to ensure that average turnover
is no more than 30%. Given a Portfolio object p, use setTurnover to set the turnover
constraint with and without the initial portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);
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or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio;

p = setTurnover(p, 0.3, x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);
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0.0700

0.1000
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0.1500
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0.0800

0.1000

setTurnover implements scalar expansion on the argument for the initial portfolio.
If the NumAssets property is already set in the Portfolio object, a scalar argument
for InitPort expands to have the same value across all dimensions. In addition,
setTurnover lets you specify NumAssets as an optional argument. To clear turnover
from your Portfolio object, use the Portfolio function or setTurnover with empty
inputs for the properties to be cleared.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
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• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with One-way Turnover Constraints Using Portfolio
Object

One-way turnover constraints are optional constraints (see “One-way Turnover
Constraints” on page 4-14) that enforce upper bounds on net purchases or net sales.
One-way turnover constraints can be set using the Portfolio function or the
setOneWayTurnover function. One-way turnover constraints depend upon an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraints are
set. One-way turnover constraints have properties BuyTurnover, for the upper bound on
net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the
portfolio against which turnover is computed.

Setting One-way Turnover Constraints Using the Portfolio Function

The Properties for the one-way turnover constraints are set using the Portfolio
function. Suppose that you have an initial portfolio with 10 assets in a variable x0 and
you want to ensure that turnover on purchases is no more than 30% and turnover on
sales is no more than 20% of the initial portfolio. To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = Portfolio('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);
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If the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 4-38).

Setting Turnover Constraints Using the setOneWayTurnover Function

You can also set properties for portfolio turnover using setOneWayTurnover to specify
the upper bounds for turnover on purchases (BuyTurnover) and sales (SellTurnover)
and an initial portfolio. Suppose that you have an initial portfolio of 10 assets in a
variable x0 and want to ensure that turnover on purchases is no more than 30% and that
turnover on sales is no more than 20% of the initial portfolio. Given a Portfolio object p,
use setOneWayTurnover to set the turnover constraints with and without the initial
portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio('InitPort', x0);

p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);  
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or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio;

p = setOneWayTurnover(p, 0.3, 0.2, x0);

disp(p.NumAssets);

disp(p.BuyTurnover);
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disp(p.SellTurnover);

disp(p.InitPort);   
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setOneWayTurnover implements scalar expansion on the argument for the initial
portfolio. If the NumAssets property is already set in the Portfolio object, a scalar
argument for InitPort expands to have the same value across all dimensions. In
addition, setOneWayTurnover lets you specify NumAssets as an optional argument.
To remove one-way turnover from your Portfolio object, use the Portfolio function or
setOneWayTurnover with empty inputs for the properties to be cleared.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
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• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Working with Tracking Error Constraints Using Portfolio Object

Tracking error constraints are optional constraints (see “Tracking Error Constraints”
on page 4-15) that measure the risk relative to a portfolio called a tracking portfolio.
Tracking error constraints can be set using the Portfolio function or the
setTrackingError function.

The tracking error constraint is an optional quadratic constraint that enforces an upper
bound on tracking error, which is the relative risk between a portfolio and a designated
tracking portfolio. For more information, see “Tracking Error Constraints” on page 4-15.

The tracking error constraint can be set using the Portfolio function or the
setTrackingPort and setTrackingError functions. The tracking error constraint
depends on a tracking portfolio, which is assumed to be zero if not set when the tracking
error constraint is set. The tracking error constraint has properties TrackingError, for
the upper bound on tracking error, and TrackingPort, for the portfolio against which
tracking error is computed.

Note: The initial portfolio in the Portfolio object property InitPort is distinct from the
tracking portfolio in the Portfolio object property TrackingPort.

Setting Tracking Error Constraints Using the Portfolio Function

The properties for the tracking error constraints are set using the Portfolio function.
Suppose that you have a tracking portfolio of 10 assets in a variable x0 and you want to
ensure that the tracking error of any portfolio on the efficient frontier is no more than 8%
relative to this portfolio. To set this constraint:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = Portfolio('TrackingError', 0.08, 'TrackingPort', x0);

disp(p.NumAssets);

disp(p.TrackingError);

disp(p.TrackingPort);
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Note that if the NumAssets or TrackingPort properties are not set before or when the
tracking error constraint is set, various rules are applied to assign default values to these
properties (see “Setting Up a Tracking Portfolio” on page 4-41).

Setting Tracking Error Constraints Using the setTrackingError Function

You can also set properties for portfolio tracking error using the setTrackingError
function to specify both the upper bound for tracking error and a designated tracking
portfolio. Suppose that you have a tracking portfolio of 10 assets in a variable x0 and
want to ensure that tracking error is no more than 8%. Given a Portfolio object p, use
setTrackingError to set the tracking error constraint with and without the initial
portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio('TrackingPort', x0);

p = setTrackingError(p, 0.08);

disp(p.NumAssets);

disp(p.TrackingError);

disp(p.TrackingPort);  
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or
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x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio('TrackingPort', x0);

p = setTrackingError(p, 0.08, x0);

disp(p.NumAssets);

disp(p.TrackingError);

disp(p.TrackingPort);  
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Note that if the NumAssets or TrackingPort properties are not set before or when the
tracking error constraint is set, various rules are applied to assign default values to these
properties (see “Setting Up a Tracking Portfolio” on page 4-41).

setTrackingError implements scalar expansion on the argument for the tracking
portfolio. If the NumAssets property is already set in the Portfolio object, a scalar
argument for TrackingPort expands to have the same value across all dimensions.
In addition, setTrackingError lets you specify NumAssets as an optional argument.
To clear tracking error from your Portfolio object, use the Portfolio function or
setTrackingError with empty inputs for the properties to be cleared.

See Also
Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setInequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
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• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• “Setting Up a Tracking Portfolio” on page 4-41

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Validate the Portfolio Problem for Portfolio Object

In this section...

“Validating a Portfolio Set” on page 4-99
“Validating Portfolios” on page 4-101

In some cases, you may want to validate either your inputs to, or outputs from, a
portfolio optimization problem. Although most error checking that occurs during the
problem setup phase catches most difficulties with a portfolio optimization problem, the
processes to validate portfolio sets and portfolios are time consuming and are best done
offline. So, the portfolio optimization tools have specialized functions to validate portfolio
sets and portfolios. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-18.

Validating a Portfolio Set

Since it is necessary and sufficient that your portfolio set must be a nonempty, closed,
and bounded set to have a valid portfolio optimization problem, the estimateBounds
function lets you examine your portfolio set to determine if it is nonempty and, if
nonempty, whether it is bounded. Suppose that you have the following portfolio set which
is an empty set because the initial portfolio at 0 is too far from a portfolio that satisfies
the budget and turnover constraint:

p = Portfolio('NumAssets', 3, 'Budget', 1);

p = setTurnover(p, 0.3, 0);

If a portfolio set is empty, estimateBounds returns NaN bounds and sets the
isbounded flag to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN

   NaN

   NaN

ub =

   NaN
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   NaN

   NaN

isbounded =

     []

Suppose that you create an unbounded portfolio set as follows:

p = Portfolio('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf

ub =

  1.0e-008 *

   -0.3712

       Inf

isbounded =

     0

In this case, estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Finally, suppose that you created a portfolio set that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are
useful if you are concerned with the actual range of portfolio choices for individual assets
in your portfolio set:
p = Portfolio;

p = setBudget(p, 1,1);

p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);

        

[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000

    0.2000
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    0.3000

    0.2000

ub =

    0.3000

    0.3000

    0.7000

    0.6000

isbounded =

     1

In this example, all but the second asset has tighter upper bounds than the input upper
bound implies.

Validating Portfolios

Given a portfolio set specified in a Portfolio object, you often want to check if specific
portfolios are feasible with respect to the portfolio set. This can occur with, for
example, initial portfolios and with portfolios obtained from other procedures. The
checkFeasibility function determines whether a collection of portfolios is feasible.
Suppose that you perform the following portfolio optimization and want to determine if
the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the Portfolio object p, estimate efficient portfolios in pwgt, and
then confirm that these portfolios are feasible relative to the initial problem:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =
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     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an
additional a turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);

checkFeasibility(q, pwgt)

ans =

     0     0     0     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible
relative to the new problem in Portfolio object q. Solving the second problem using
checkFeasibility demonstrates that the efficient portfolio for Portfolio object q is
feasible relative to the initial problem:

qwgt = estimateFrontier(q);

checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
checkFeasibility | estimateBounds | Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
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• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio
Object

There are two ways to look at a portfolio optimization problem that depends on what you
are trying to do. One goal is to estimate efficient portfolios and the other is to estimate
efficient frontiers. This section focuses on the former goal and “Estimate Efficient
Frontiers for Portfolio Object” on page 4-121 focuses on the latter goal. For information
on the workflow when using Portfolio objects, see “Portfolio Object Workflow” on page
4-18.

Obtaining Portfolios Along the Entire Efficient Frontier

The most basic way to obtain optimal portfolios is to obtain points over the entire range
of the efficient frontier. Given a portfolio optimization problem in a Portfolio object, the
estimateFrontier function computes efficient portfolios spaced evenly according to
the return proxy from the minimum to maximum return efficient portfolios. The number
of portfolios estimated is controlled by the hidden property defaultNumPorts which is
set to 10. A different value for the number of portfolios estimated is specified as input to
estimateFrontier. This example shows the default number of efficient portfolios over
the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

disp(pwgt);

0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0         0         0         0

0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049    0.2314    0.0579         0

0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320    0.1394    0.1468         0

0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630    0.6292    0.7953    1.0000

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt);

    0.8891    0.3865         0         0
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    0.0369    0.3129    0.4049         0

    0.0404    0.0893    0.1320         0

    0.0336    0.2113    0.4630    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales
to get from your initial portfolio to each efficient portfolio on the efficient frontier. For
example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0         0         0         0

0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049    0.2314    0.0579         0

0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320    0.1394    0.1468         0

0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630    0.6292    0.7953    1.0000

pbuy =

0.5891    0.4215    0.2540    0.0865         0         0         0         0         0         0

     0         0         0    0.0129    0.1049    0.1969    0.1049         0         0         0

     0         0         0         0         0         0         0         0         0         0

     0         0    0.0521    0.1113    0.1705    0.2297    0.3630    0.5292    0.6953    0.9000

psell =

0         0         0         0    0.0810    0.2485    0.3000    0.3000    0.3000    0.3000

0.2631    0.1711    0.0791         0         0         0         0    0.0686    0.2421    0.3000

0.1596    0.1433    0.1270    0.1107    0.0944    0.0781    0.0680    0.0606    0.0532    0.2000

0.0664    0.0071         0         0         0         0         0         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 4-107
• “Obtaining Efficient Portfolios for Target Returns” on page 4-110
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• “Obtaining Efficient Portfolios for Target Risks” on page 4-113
• “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-116
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-124
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Obtaining Endpoints of the Efficient Frontier

In many cases, you might be interested in the endpoint portfolios for the efficient
frontier. Suppose that you want to determine the range of returns from minimum
to maximum to refine a search for a portfolio with a specific target return. Use the
estimateFrontierLimits function to obtain the endpoint portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

disp(pwgt);   

    0.8891         0

    0.0369         0

    0.0404         0

    0.0336    1.0000

The estimatePortMoments function shows the range of risks and returns for efficient
portfolios:

[prsk, pret] = estimatePortMoments(p, pwgt);

disp([prsk, pret]);

 0.0769    0.0590

 0.3500    0.1800

Starting from an initial portfolio, estimateFrontierLimits also returns purchases
and sales to get from the initial portfolio to the endpoint portfolios on the efficient
frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and
sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;
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      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierLimits(p);

 

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.8891         0

    0.0369         0

    0.0404         0

    0.0336    1.0000

pbuy =

    0.5891         0

         0         0

         0         0

         0    0.9000

psell =

         0    0.3000

    0.2631    0.3000

    0.1596    0.2000

    0.0664         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver
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Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Obtaining Efficient Portfolios for Target Returns

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolios returns
and obtains efficient portfolios with the specified returns. For example, assume that you
have a universe of four assets where you want to obtain efficient portfolios with target
portfolio returns of 6%, 9%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);

pwgt =

    0.8772    0.5032    0.1293

    0.0434    0.2488    0.4541

    0.0416    0.0780    0.1143

    0.0378    0.1700    0.3022

In some cases, you can request a return for which no efficient portfolio exists. Based on
the previous example, suppose that you want a portfolio with a 5% return (which is the
return of the first asset). A portfolio that is fully invested in the first asset, however,
is inefficient. estimateFrontierByReturn warns if your target returns are outside
the range of efficient portfolio returns and replaces it with the endpoint portfolio of the
efficient frontier closest to your target return:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.05, 0.09, 0.12]);
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display(pwgt);

Warning: One or more target return values are outside the feasible range [ 0.0590468, 0.18 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In Portfolio.estimateFrontierByReturn at 70 

pwgt =

    0.8891    0.5032    0.1293

    0.0369    0.2488    0.4541

    0.0404    0.0780    0.1143

    0.0336    0.1700    0.3022

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of
the Efficient Frontier” on page 4-107 and “Obtaining Portfolio Risks and Returns” on
page 4-121).

pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret);

pret =

    0.0590

    0.1800

This result indicates that efficient portfolios have returns that range between 5.9% and
18%.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, to obtain purchases and sales with
target returns of 6%, 9%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.8772    0.5032    0.1293

    0.0434    0.2488    0.4541

    0.0416    0.0780    0.1143

    0.0378    0.1700    0.3022

pbuy =
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    0.5772    0.2032         0

         0         0    0.1541

         0         0         0

         0    0.0700    0.2022

psell =

         0         0    0.1707

    0.2566    0.0512         0

    0.1584    0.1220    0.0857

    0.0622         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Obtaining Efficient Portfolios for Target Risks

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Suppose that you have a universe of
four assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

 p = Portfolio;

 p = setAssetMoments(p, m, C);

 p = setDefaultConstraints(p);

 pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

 display(pwgt);

pwgt =

    0.3984    0.2659    0.1416

    0.3064    0.3791    0.4474

    0.0882    0.1010    0.1131

    0.2071    0.2540    0.2979

In some cases, you can request a risk for which no efficient portfolio exists. Based on
the previous example, suppose that you want a portfolio with 7% risk (individual assets
in this universe have risks ranging from 8% to 35%). It turns out that a portfolio with
7% risk cannot be formed with these four assets. estimateFrontierByRisk warns if
your target risks are outside the range of efficient portfolio risks and replaces it with the
endpoint of the efficient frontier closest to your target risk:

pwgt = estimateFrontierByRisk(p, 0.07)

Warning: One or more target risk values are outside the feasible range [ 0.0769288, 0.35 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In Portfolio.estimateFrontierByRisk at 82 

pwgt =

    0.8891

    0.0369

    0.0404
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    0.0336

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the
Efficient Frontier” on page 4-107 and “Obtaining Portfolio Risks and Returns” on page
4-121).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk);

prsk =

    0.0769

    0.3500

This result indicates that efficient portfolios have risks that range from 7.7% to 35%.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from
the example with target risks of 12%, 14%, and 16%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.3984    0.2659    0.1416

    0.3064    0.3791    0.4474

    0.0882    0.1010    0.1131

    0.2071    0.2540    0.2979

pbuy =

    0.0984         0         0

    0.0064    0.0791    0.1474

         0         0         0

    0.1071    0.1540    0.1979

psell =
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         0    0.0341    0.1584

         0         0         0

    0.1118    0.0990    0.0869

         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Efficient Portfolio That Maximizes Sharpe Ratio
The Sharpe ratio is defined as the ratio
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where x R
n

Œ  and r0 is the risk-free rate (μ and Σ proxies for portfolio return and risk).
For more information, see “Portfolio Optimization Theory” on page 4-3.

Portfolios that maximize the Sharpe ratio are portfolios on the efficient frontier that
satisfy a number of theoretical conditions in finance. For example, such portfolios are
called tangency portfolios since the tangent line from the risk-free rate to the efficient
frontier touches the efficient frontier at portfolios that maximize the Sharpe ratio.

To obtain efficient portfolios that maximizes the Sharpe ratio, the
estimateMaxSharpeRatio function accepts a Portfolio object and obtains efficient
portfolios that maximize the Sharpe Ratio.

Suppose that you have a universe with four risky assets and a riskless asset and you
want to obtain a portfolio that maximizes the Sharpe ratio, where, in this example, r0 is
the return for the riskless asset.

r0 = 0.03;

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 

p = Portfolio('RiskFreeRate', r0);

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateMaxSharpeRatio(p);

display(pwgt);

pwgt =

    0.4251

    0.2917

    0.0856
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    0.1977

If you start with an initial portfolio, estimateMaxSharpeRatio also returns purchases
and sales to get from your initial portfolio to the portfolio that maximizes the Sharpe
ratio. For example, given an initial portfolio in pwgt0, you can obtain purchases and
sales from the previous example:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateMaxSharpeRatio(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.4251

    0.2917

    0.0856

    0.1977

pbuy =

    0.1251

         0

         0

    0.0977

psell =

         0

    0.0083

    0.1144

         0

If you do not specify an initial portfolio, the purchase and sale weights assume that you
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
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estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Choosing and Controlling the Solver for Mean-Variance Portfolio
Optimization

The default solver for mean-variance portfolio optimization is lcprog, which implements
a linear complementarity programming (LCP) algorithm. Although lcprog works for
most problems, you can adjust arguments to control the algorithm. Alternatively, the
mean-variance portfolio optimization tools let you use any of the variations of quadprog
from Optimization Toolbox™ software. Unlike Optimization Toolbox which uses the
trust-region-reflective algorithm as the default algorithm for quadprog, the
portfolio optimization tools use the interior-point-convex algorithm. For details
about quadprog and quadratic programming algorithms and options, see “Quadratic
Programming Algorithms”.

To modify either lcprog or to specify quadprog as your solver, use the setSolver
function to set the hidden properties solverType and solverOptions that specify and
control the solver. Since the solver properties are hidden, you cannot set these using the
Portfolio function. The default solver is lcprog so you do not need to use setSolver
to specify this solver. To use quadprog, you must set up the interior-point-convex
version of quadprog using:

p = Portfolio;

p = setSolver(p, 'quadprog');

display(p.solverType);

quadprog

and you can switch back tolcprog with:

p = setSolver(p, 'lcprog');

display(p.solverType);

lcprog

In both cases, setSolver sets up default options associated with either solver. If you
want to specify additional options associated with a given solver, setSolver accepts
these options with argument name-value pair arguments in the function call. For
example, if you intend to use quadprog and want to use the active-set algorithm, call
setSolver with:

p = setSolver(p, 'quadprog', 'Algorithm', 'active-set');

display(p.solverOptions.Algorithm);

active-set
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In addition, if you want to specify any of the options for quadprog that are normally set
through optimoptions, setSolver accepts an optimoptions object as the second
argument. For example, you can start with the default options for quadprog set by
setSolver and then change the algorithm to 'trust-region-reflective' with no
displayed output:
p = Portfolio;

options = optimoptions('quadprog', 'Algorithm', 'trust-region-reflective', 'Display', 'off');

p = setSolver(p, 'quadprog', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Estimate Efficient Frontiers for Portfolio Object

Whereas “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object”
on page 4-104 focused on estimation of efficient portfolios, this section focuses on the
estimation of efficient frontiers. For information on the workflow when using Portfolio
objects, see “Portfolio Object Workflow” on page 4-18.

Obtaining Portfolio Risks and Returns

Given any portfolio and, in particular, efficient portfolios, the functions
estimatePortReturn, estimatePortRisk, and estimatePortMoments provide
estimates for the return (or return proxy), risk (or the risk proxy), and, in the case of
mean-variance portfolio optimization, the moments of expected portfolio returns. Each
function has the same input syntax but with different combinations of outputs. Suppose
that you have this following portfolio optimization problem that gave you a collection of
portfolios along the efficient frontier in pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = Portfolio('AssetMean', m, 'AssetCovar', C, 'InitPort', pwgt0);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain
risks and returns for your initial portfolio and the portfolios on the efficient frontier:

[prsk0, pret0] = estimatePortMoments(p, pwgt0);

[prsk, pret] = estimatePortMoments(p, pwgt);

or

prsk0 = estimatePortRisk(p, pwgt0);

pret0 = estimatePortReturn(p, pwgt0);

prsk = estimatePortRisk(p, pwgt);

pret = estimatePortReturn(p, pwgt);

In either case, you obtain these risks and returns:

display(prsk0);
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display(pret0);

display(prsk);

display(pret);

prsk0 =

    0.1103

pret0 =

    0.0870

prsk =

    0.0769

    0.0831

    0.0994

    0.1217

    0.1474

    0.1750

    0.2068

    0.2487

    0.2968

    0.3500

pret =

    0.0590

    0.0725

    0.0859

    0.0994

    0.1128

    0.1262

    0.1397

    0.1531

    0.1666

    0.1800

Note that the returns and risks are at the periodicity of the moments of asset returns so
that, if you have values for AssetMean and AssetCovar in terms of monthly returns,
the estimates for portfolio risk and return are in terms of monthly returns as well.
In addition, the estimate for portfolio risk in the mean-variance case is the standard
deviation of portfolio returns, not the variance of portfolio returns.
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See Also
estimatePortMoments | estimatePortReturn | plotFrontier | Portfolio

Related Examples
• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-124
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Plotting the Efficient Frontier for a Portfolio Object

The plotFrontier function creates a plot of the efficient frontier for a given portfolio
optimization problem. This function accepts several types of inputs and generates a
plot with an optional possibility to output the estimates for portfolio risks and returns
along the efficient frontier. plotFrontier has four different ways that it can be used. In
addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort
property, plotFrontier also displays the return versus risk of the initial portfolio
on the same plot. If you have a well-posed portfolio optimization problem set up in a
Portfolio object and you use plotFrontier, you will get a plot of the efficient frontier
with the default number of portfolios on the frontier (the default number is currently 10
and is maintained in the hidden property defaultNumPorts). This example illustrates a
typical use of plotFrontier to create a new plot:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

 

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

plotFrontier(p);
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The Name property appears as the title of the efficient frontier plot if you set it in the
Portfolio object. Without an explicit name, the title on the plot would be “Efficient
Frontier.” If you want to obtain a specific number of portfolios along the efficient frontier,
use plotFrontier with the number of portfolios that you want. Suppose that you have
the Portfolio object from the previous example and you want to plot 20 portfolios along
the efficient frontier and to obtain 20 risk and return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);

display([pret, prsk]);

ans =

    0.0590    0.0769

    0.0654    0.0784

    0.0718    0.0825

    0.0781    0.0890

    0.0845    0.0973

    0.0909    0.1071

    0.0972    0.1179

    0.1036    0.1296
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    0.1100    0.1418

    0.1163    0.1545

    0.1227    0.1676

    0.1291    0.1810

    0.1354    0.1955

    0.1418    0.2128

    0.1482    0.2323

    0.1545    0.2535

    0.1609    0.2760

    0.1673    0.2995

    0.1736    0.3239

    0.1800    0.3500

Plotting Existing Efficient Portfolios

If you already have efficient portfolios from any of the "estimateFrontier" functions (see
“Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on page
4-104), pass them into plotFrontier directly to plot the efficient frontier:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

 

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);

plotFrontier(p, pwgt);

Plotting Existing Efficient Portfolio Risks and Returns

If you already have efficient portfolio risks and returns, you can use the interface to
plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

4-127



4 Mean-Variance Portfolio Optimization Tools

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

 

p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

[prsk, pret] = estimatePortMoments(p, p.estimateFrontier(20));

plotFrontier(p, prsk, pret);

See Also
estimatePortMoments | estimatePortReturn | plotFrontier | Portfolio

Related Examples
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
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• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Postprocessing Results to Set Up Tradable Portfolios

After obtaining efficient portfolios or estimates for expected portfolio risks and returns,
use your results to set up trades to move toward an efficient portfolio. For information on
the workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Setting Up Tradable Portfolios

Suppose that you set up a portfolio optimization problem and obtained portfolios on
the efficient frontier. Use the dataset object from Statistics and Machine Learning
Toolbox™ to form a blotter that lists your portfolios with the names for each asset. For
example, suppose that you want to obtain five portfolios along the efficient frontier.
You can set up a blotter with weights multiplied by 100 to view the allocations for each
portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

 

 p = Portfolio('InitPort', pwgt0);

 p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

 p = setAssetMoments(p, m, C);

 p = setDefaultConstraints(p);

 pwgt = estimateFrontier(p, 5);

 

 pnames = cell(1,5);

   for i = 1:5

       pnames{i} = sprintf('Port%d',i);

   end

 

 Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);

 display(Blotter);

Blotter = 

                          Port1     Port2     Port3     Port4     Port5

    Bonds                 88.906    51.216    13.525         0      0  

    Large-Cap Equities    3.6875    24.387    45.086    27.479      0  

    Small-Cap Equities    4.0425    7.7088    11.375    13.759      0  

    Emerging Equities      3.364    16.689    30.014    58.762    100  

This result indicates that you would invest primarily in bonds at the minimum-risk/
minimum-return end of the efficient frontier (Port1), and that you would invest
completely in emerging equity at the maximum-risk/maximum-return end of the efficient
frontier (Port5). You can also select a particular efficient portfolio, for example, suppose
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that you want a portfolio with 15% risk and you add purchase and sale weights outputs
obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

 

p = Portfolio('InitPort', pwgt0);

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

 

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...

     {'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);

 

display(Blotter);

Blotter = 

                          Initial    Weight    Purchases    Sales 

    Bonds                 30         20.299         0       9.7007

    Large-Cap Equities    30         41.366    11.366            0

    Small-Cap Equities    20         10.716         0       9.2838

    Emerging Equities     10         27.619    17.619            0

If you have prices for each asset (in this example, they can be ETFs), add them to your
blotter and then use the tools of the dataset object to obtain shares and shares to be
traded. For an example, see “Asset Allocation Case Study” on page 4-167.

See Also
checkFeasibility | estimateAssetMoments | Portfolio

Related Examples
• “Troubleshooting Portfolio Optimization Results” on page 4-133
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139
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More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Troubleshooting Portfolio Optimization Results

Portfolio Object Destroyed When Modifying

If a Portfolio object is destroyed when modifying, remember to pass an existing object
into the Portfolio function if you want to modify it, otherwise it creates a new object.
See “Creating the Portfolio Object” on page 4-25 for details.

Optimization Fails with “Bad Pivot” Message

If the optimization fails with a "bad pivot" message from lcprog, try a larger value for
tolpiv which is a tolerance for pivot selection in the lcprog algorithm (try 1.0e-7,
for example) or try the interior-point-convex version of quadprog. For details, see
“Choosing and Controlling the Solver for Mean-Variance Portfolio Optimization” on page
4-119, the help header for lcprog, and the quadprog documentation.

Speed of Optimization

Although it is difficult to characterize when one algorithm is faster than the other, the
default solver, lcprog is generally faster for smaller problems and the quadprog solver
is generally faster for larger problems. If one solver seems to take too much time, try the
other solver. To change solvers, use setSolver.

Matrix Incompatibility and "Non-Conformable" Errors

If you get matrix incompatibility or "non-conformable" errors, the representation of
data in the tools follows a specific set of basic rules described in “Conventions for
Representation of Data” on page 4-23.

Missing Data Estimation Fails

If asset return data has missing or NaN values, the estimateAssetMoments function
with the 'missingdata' flag set to true may fail with either too many iterations or a
singular covariance. To correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a
covariance matrix that may be singular without difficulties. If you have missing
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or NaN values in your data, the supported missing data feature requires that your
covariance matrix must be positive-definite, that is, nonsingular.

• estimateAssetMoments uses default settings for the missing data estimation
procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with
either the ECM estimation functions such as ecmnmle or with your own functions.

mv_optim_transform Errors

If you obtain optimization errors such as:
Error using mv_optim_transform (line 233)

Portfolio set appears to be either empty or unbounded. Check constraints.

Error in Portfolio/estimateFrontier (line 63)

 [A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

or

Error using mv_optim_transform (line 238)

Cannot obtain finite lower bounds for specified portfolio set.

Error in Portfolio/estimateFrontier (line 63)

 [A, b, f0, f, H, g, lb] = mv_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors
(and similar errors) can occur if your portfolio set is either empty and, if nonempty,
unbounded. Specifically, the portfolio optimization algorithm requires that your portfolio
set have at least a finite lower bound. The best way to deal with these problems is to
use the validation functions in “Validate the Portfolio Problem for Portfolio Object”
on page 4-99. Specifically, use estimateBounds to examine your portfolio set, and
use checkFeasibility to ensure that your initial portfolio is either feasible and, if
infeasible, that you have sufficient turnover to get from your initial portfolio to the
portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover or
tracking-error and gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense

If you obtain efficient portfolios that do not seem to make sense, this can happen if you
forget to set specific constraints or you set incorrect constraints. For example, if you allow
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portfolio weights to fall between 0 and 1 and do not set a budget constraint, you can get
portfolios that are 100% invested in every asset. Although it may be hard to detect, the
best thing to do is to review the constraints you have set with display of the object. If you
get portfolios with 100% invested in each asset, you can review the display of your object
and quickly see that no budget constraint is set. Also, you can use estimateBounds
and checkFeasibility to determine if the bounds for your portfolio set make sense
and to determine if the portfolios you obtained are feasible relative to an independent
formulation of your portfolio set.

Efficient Frontiers Do Not Make Sense

If you obtain efficient frontiers that do not seem to make sense, this can happen for some
cases of mean and covariance of asset returns. It is possible for some mean-variance
portfolio optimization problems to have difficulties at the endpoints of the efficient
frontier. It is generally rare for standard problems but can occur with, for example,
unusual combinations of turnover constraints and transaction costs. In most cases, the
workaround of setting the hidden property enforcePareto produces a single portfolio
for the entire efficient frontier, where any other solutions are not Pareto optimal (which
is what efficient portfolios must be).

An example of a portfolio optimization problem that has difficulties at the endpoints of
the efficient frontier is this standard mean-variance portfolio problem (long-only with a
budget constraint) with the following mean and covariance of asset returns:
m = [ 1; 2; 3 ];

C = [ 1 1 0; 1 1 0; 0 0 1 ]; 

p = Portfolio;

p = Portfolio(p, 'assetmean', m, 'assetcovar', C);

p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);

p = Portfolio(p, 'lowerbound', 0);

plotFrontier(p);
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To workaround this problem, set the hidden Portfolio object property for
enforcePareto. This property instructs the optimizer to perform extra steps to ensure
a Pareto-optimal solution. This slows down the solver, but guarantees a Pareto-optimal
solution.
p.enforcePareto = true;

plotFrontier(p);
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See Also
checkFeasibility | estimateAssetMoments | Portfolio

Related Examples
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139
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More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Optimization Examples

The following sequence of examples highlights features of the Portfolio object in the
Financial Toolbox™. Specifically, the examples show how to set up mean-variance
portfolio optimization problems that focus on the two-fund theorem, the impact of
transaction costs and turnover constraints, how to obtain portfolios that maximize the
Sharpe ratio, and how to set up two popular hedge-fund strategies - dollar-neutral and
130-30 portfolios.

Set up the Data

Every example works with moments for monthly total returns of a universe of 30 "blue-
chip" stocks. Although derived from real data, these data are for illustrative purposes
and are not meant to be representative of specific assets or of market performance.
The data are contained in the file BlueChipStockMoments.mat with a list of asset
identifiers in the variable AssetList, a mean and covariance of asset returns in the
variables AssetMean and AssetCovar, and the mean and variance of cash and market
returns in the variables CashMean, CashVar, MarketMean, and MarketVar. Since most
of the analysis requires the use of the standard deviation of asset returns as the proxy for
risk, cash and market variances are converted into standard deviations.

load BlueChipStockMoments

mret = MarketMean;

mrsk = sqrt(MarketVar);

cret = CashMean;

crsk = sqrt(CashVar);

Create a Portfolio Object

The first step is to create a "standard" Portfolio object with the Portfolio constructor and
to incorporate the list of assets, the risk-free rate, and the moments of asset returns into
the object.

p = Portfolio('AssetList', AssetList, 'RiskFreeRate', CashMean);

p = setAssetMoments(p, AssetMean, AssetCovar);

To provide a basis for comparison, set up an equal-weight portfolio and make it the initial
portfolio in the Portfolio object. Keep in mind that the hedged portfolios to be constructed
later will require a different initial portfolio. Once the initial portfolio is created, the
estimatePortMoments method estimates the mean and standard deviation of equal-
weight portfolio returns.
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p = setInitPort(p, 1/p.NumAssets);

[ersk, eret] = estimatePortMoments(p, p.InitPort);

A specialized "helper" function portfolioexamples_plot makes it possible to plot all
results to be developed here. This first plot shows the distribution of individual assets
according to their means and standard deviations of returns. In addition, the equal-
weight, market, and cash portfolios are plotted on the same plot. Note that the plot
function converts monthly total returns into annualized total returns.

clf;

portfolioexamples_plot('Asset Risks and Returns', ...

 {'scatter', mrsk, mret, {'Market'}}, ...

 {'scatter', crsk, cret, {'Cash'}}, ...

 {'scatter', ersk, eret, {'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Set up a Portfolio Optimization Problem

Set up a "standard" or default mean-variance portfolio optimization problem with the
setDefaultConstraints method that requires fully-invested long-only portfolios
(non-negative weights that must sum to 1). Given this initial problem, estimate the
efficient frontier with the methods estimateFrontier and estimatePortMoments,
where estimateFrontier estimates efficient portfolios and estimatePortMoments
estimates risks and returns for portfolios. The next figure overlays the efficient frontier
on the previous plot.

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);
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[prsk, pret] = estimatePortMoments(p, pwgt);

% Plot efficient frontier

clf;

portfolioexamples_plot('Efficient Frontier', ...

 {'line', prsk, pret}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

Illustrate the Tangent Line to the Efficient Frontier

Tobin's mutual fund theorem (Tobin 1958) says that the portfolio allocation problem
can be viewed as a decision to allocate between a riskless asset and a risky portfolio.
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In the mean-variance framework, cash can serve as a proxy for a riskless asset and an
efficient portfolio on the efficient frontier serves as the risky portfolio such that any
allocation between cash and this portfolio dominates all other portfolios on the efficient
frontier. This portfolio is called a tangency portfolio because it is located at the point on
the efficient frontier where a tangent line that originates at the riskless asset touches the
efficient frontier.

Given that the Portfolio object already has the risk-free rate, obtain the tangent line by
creating a copy of the Portfolio object with a budget constraint that permits allocation
between 0% and 100% in cash. Since the Portfolio object is a value object, it is easy to
create a copy by assigning the output of either the constructor or set methods to a new
instance of the object. The plot shows the efficient frontier with Tobin's allocations that
form the tangent line to the efficient frontier.

q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot efficient frontier with tangent line (0 to 1 cash)

clf;

portfolioexamples_plot('Efficient Frontier with Tangent Line', ...

 {'line', prsk, pret}, ...

 {'line', qrsk, qret, [], [], 1}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Note that cash actually has a small risk so that the tangent line does not pass through
the cash asset.

Obtain Range of Risks and Returns

To obtain efficient portfolios with target values of either risk or return, it is necessary to
obtain the range of risks and returns among all portfolios on the efficient frontier. This
can be accomplished with the estimateFrontierLimits method.

[rsk, ret] = estimatePortMoments(p, estimateFrontierLimits(p));

display(rsk);

display(ret);
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rsk =

    0.0348

    0.0903

ret =

    0.0094

    0.0179

The range of monthly portfolio returns is between 0.9% and 1.8% and the range for
portfolio risks is between 3.5% and 9.0%. In annualized terms, the range of portfolio
returns is 11.2% to 21.5% and the range of portfolio risks is 12.1% to 31.3%.

Find a Portfolio with a Targeted Return and Targeted Risk

Given the range of risks and returns, it is possible to locate specific portfolios on
the efficient frontier that have target values for return and risk using the methods
estimateFrontierByReturn and estimateFrontierByRisk.

TargetReturn = 0.20;            % input target annualized return and risk here

TargetRisk = 0.15;

% Obtain portfolios with targeted return and risk

awgt = estimateFrontierByReturn(p, TargetReturn/12);

[arsk, aret] = estimatePortMoments(p, awgt);

bwgt = estimateFrontierByRisk(p, TargetRisk/sqrt(12));

[brsk, bret] = estimatePortMoments(p, bwgt);

% Plot efficient frontier with targeted portfolios

clf;

portfolioexamples_plot('Efficient Frontier with Targeted Portfolios', ...

 {'line', prsk, pret}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', arsk, aret, {sprintf('%g%% Return',100*TargetReturn)}}, ...

 {'scatter', brsk, bret, {sprintf('%g%% Risk',100*TargetRisk)}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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To see what these targeted portfolios look like, use the dataset object to set up "blotters"
that contain the portfolio weights and asset names (which are obtained from the Portfolio
object).

aBlotter = dataset({100*awgt(awgt > 0),'Weight'}, 'obsnames', p.AssetList(awgt > 0));

fprintf('Portfolio with %g%% Target Return\n', 100*TargetReturn);

disp(aBlotter);

bBlotter = dataset({100*bwgt(bwgt > 0),'Weight'}, 'obsnames', p.AssetList(bwgt > 0));

fprintf('Portfolio with %g%% Target Risk\n', 100*TargetRisk);

disp(bBlotter);
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Portfolio with 20% Target Return

            Weight 

    CAT      1.1445

    INTC    0.17452

    MO       9.6521

    MSFT    0.85862

    UTX      56.918

    WMT      31.253

Portfolio with 15% Target Risk

            Weight

    INTC    2.2585

    JNJ     9.2162

    MMM     16.603

    MO      15.388

    MSFT    4.4467

    PG       4.086

    UTX     10.281

    WMT     25.031

    XOM      12.69

Transactions Costs

The Portfolio object makes it possible to account for transaction costs as part of the
optimization problem. Although individual costs can be set for each asset, use the scalar
expansion features of the Portfolio object's methods to set up uniform transaction costs
across all assets and compare efficient frontiers with gross versus net portfolio returns.

BuyCost = 0.0020;

SellCost = 0.0020;

q = setCosts(p, BuyCost, SellCost);

qwgt = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot efficient frontiers with gross and net returns

clf;

portfolioexamples_plot('Efficient Frontier with and without Transaction Costs', ...

 {'line', prsk, pret, {'Gross'}, ':b'}, ...

 {'line', qrsk, qret, {'Net'}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...
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 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

Turnover Constraint

In addition to transaction costs, the Portfolio object can handle turnover constraints. The
following example demonstrates that a turnover constraint produces an efficient frontier
in the neighborhood of an initial portfolio that may restrict trading. Moreover, the
introduction of a turnover constraint often implies that multiple trades may be necessary
to shift from an initial portfolio to an unconstrained efficient frontier. Consequently, the
turnover constraint introduces a form of time diversification that can spread trades out
over multiple time periods. In this example, note that the sum of purchases and sales
from the estimateFrontier method confirms that the turnover constraint has been
satisfied.
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BuyCost = 0.0020;

SellCost = 0.0020;

Turnover = 0.2;

q = setCosts(p, BuyCost, SellCost);

q = setTurnover(q, Turnover);

[qwgt, qbuy, qsell] = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot efficient frontier with turnover constraint

clf;

portfolioexamples_plot('Efficient Frontier with Turnover Constraint', ...

 {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...

 {'line', qrsk, qret, {sprintf('%g%% Turnover', 100*Turnover)}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

fprintf('Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n', ...

    100*Turnover);

disp(100*sum(qbuy));

fprintf('Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n', ...

    100*Turnover);

disp(100*sum(qsell));

Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover 20%)

  Columns 1 through 7

   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

  Columns 8 through 14

   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

  Columns 15 through 20

   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover 20%)

  Columns 1 through 7
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   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

  Columns 8 through 14

   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

  Columns 15 through 20

   20.0000   20.0000   20.0000   20.0000   20.0000   20.0000

Tracking-Error Constraint

The Portfolio object can handle tracking-error constraints, where tracking-error is the
relative risk of a portfolio compared with a tracking portfolio. In this example, a sub-
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collection of nine assets forms an equally-weighted tracking portfolio. The goal is to find
efficient portfolios with tracking errors that are within 5% of this tracking portfolio.

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];  % indexes of assets to include in tracking portfolio

TrackingError = 0.05/sqrt(12);

TrackingPort = zeros(30, 1);

TrackingPort(ii) = 1;

TrackingPort = (1/sum(TrackingPort))*TrackingPort;

q = setTrackingError(p, TrackingError, TrackingPort);

qwgt = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

[trsk, tret] = estimatePortMoments(q, TrackingPort);

% Plot efficient frontier with tracking-error constraint

clf;

portfolioexamples_plot('Efficient Frontier with 5% Tracking-Error Constraint', ...

 {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...

 {'line', qrsk, qret, {'Tracking'}}, ...

 {'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...

 {'scatter', trsk, tret, {'Tracking'}, 'r'});
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Combined Turnover and Tracking-Error Constraints

This example illustrates the interactions that can occur with combined constraints. In
this case, both a turnover constraint relative to an initial equal-weight portfolio and a
tracking-error constraint relative to a tracking portfolio must be satisfied. The turnover
constraint has maximum 30% turnover and the tracking-error constraint has maximum
5% tracking error. Note that the turnover to get from the initial portfolio to the tracking
portfolio is 70% so that an upper bound of 30% turnover means that the efficient frontier
will lie somewhere between the initial portfolio and the tracking portfolio.

Turnover = 0.3;

InitPort = (1/q.NumAssets)*ones(q.NumAssets, 1);

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];  % indexes of assets to include in tracking portfolio
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TrackingError = 0.05/sqrt(12);

TrackingPort = zeros(30, 1);

TrackingPort(ii) = 1;

TrackingPort = (1/sum(TrackingPort))*TrackingPort;

q = setTurnover(q, Turnover, InitPort);

qwgt = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

[trsk, tret] = estimatePortMoments(q, TrackingPort);

[ersk, eret] = estimatePortMoments(q, InitPort);

% Plot efficient frontier with combined turnover and tracking-error constraint

clf;

portfolioexamples_plot('Efficient Frontier with Turnover and Tracking-Error Constraint', ...

 {'line', prsk, pret, {'Unconstrained'}, ':b'}, ...

 {'line', qrsk, qret, {'Turnover & Tracking'}}, ...

 {'scatter', [mrsk, crsk], [mret, cret], {'Market', 'Cash'}}, ...

 {'scatter', trsk, tret, {'Tracking'}, 'r'}, ...

 {'scatter', ersk, eret, {'Initial'}, 'b'});
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Maximize the Sharpe Ratio

The Sharpe ratio (Sharpe 1966) is a measure of return-to-risk that plays an important
role in portfolio analysis. Specifically, a portfolio that maximizes the Sharpe ratio is
also the tangency portfolio on the efficient frontier from the mutual fund theorem. The
maximum Sharpe ratio portfolio is located on the efficient frontier with the method
estimateMaxSharpeRatio and the dataset object is used to list the assets in this
portfolio.

p = setInitPort(p, 0);

swgt = estimateMaxSharpeRatio(p);

[srsk, sret] = estimatePortMoments(p, swgt);
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% Plot efficient frontier with portfolio that attains maximum Sharpe ratio

clf;

portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...

 {'line', prsk, pret}, ...

 {'scatter', srsk, sret, {'Sharpe'}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*swgt(swgt > 0),'Weight'}, 'obsnames', AssetList(swgt > 0));

fprintf('Portfolio with Maximum Sharpe Ratio\n');

disp(Blotter);

Portfolio with Maximum Sharpe Ratio

            Weight

    INTC    2.6638

    JNJ     9.0044

    MMM     15.502

    MO      13.996

    MSFT    4.4777

    PG      7.4588

    UTX     6.0056

    WMT     22.051

    XOM     18.841
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Confirm that Maximum Sharpe Ratio is a Maximum

The following plot demonstrates that this portfolio (which is located at the dot on the
plots) indeed maximizes the Sharpe ratio among all portfolios on the efficient frontier.

psratio = (pret - p.RiskFreeRate) ./ prsk;

ssratio = (sret - p.RiskFreeRate) / srsk;

clf;

subplot(2,1,1);

plot(prsk, pret, 'LineWidth', 2);

hold on

scatter(srsk, sret, 'g', 'filled');

title('\bfEfficient Frontier');
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xlabel('Portfolio Risk');

ylabel('Portfolio Return');

hold off

subplot(2,1,2);

plot(prsk, psratio, 'LineWidth', 2);

hold on

scatter(srsk, ssratio, 'g', 'filled');

title('\bfSharpe Ratio');

xlabel('Portfolio Risk');

ylabel('Sharpe Ratio');

hold off
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Illustrate that Sharpe is the Tangent Portfolio

The next plot demonstrates that the portfolio that maximizes the Sharpe ratio is also a
tangency portfolio (in this case, the budget constraint is opened up to permit between 0%
and 100% in cash).

q = setBudget(p, 0, 1);

qwgt = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

% Plot that shows Sharpe ratio portfolio is the tangency portfolio

clf;

portfolioexamples_plot('Efficient Frontier with Maximum Sharpe Ratio Portfolio', ...

 {'line', prsk, pret}, ...

 {'line', qrsk, qret, [], [], 1}, ...

 {'scatter', srsk, sret, {'Sharpe'}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});
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Dollar-Neutral Hedge-Fund Structure

To illustrate how to use the portfolio optimization tools in hedge fund management, two
popular strategies with dollar-neutral and 130-30 portfolios are examined. The dollar-
neutral strategy invests equally in long and short positions such that the net portfolio
position is 0. Such a portfolio is said to be dollar-neutral.

To set up a dollar-neutral portfolio, start with the "standard" portfolio problem and
set the maximum exposure in long and short positions in the variable Exposure.
The bounds for individual asset weights are plus or minus Exposure. Since the net
position must be dollar-neutral, the budget constraint is 0 and the initial portfolio must
be 0. Finally, the one-way turnover constraints provide the necessary long and short
restrictions to prevent "double-counting" of long and short positions. The blotter shows
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the portfolio weights for the dollar-neutral portfolio that maximizes the Sharpe ratio. The
long and short positions are obtained from the buy and sell trades relative to the initial
portfolio.

Exposure = 1;

q = setBounds(p, -Exposure, Exposure);

q = setBudget(q, 0, 0);

q = setOneWayTurnover(q, Exposure, Exposure, 0);

[qwgt, qlong, qshort] = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

[qswgt, qslong, qsshort] = estimateMaxSharpeRatio(q);

[qsrsk, qsret] = estimatePortMoments(q, qswgt);

% Plot efficient frontier for a dollar-neutral fund structure with tangency portfolio

clf;

portfolioexamples_plot('Efficient Frontier with Dollar-Neutral Portfolio', ...

 {'line', prsk, pret, {'Standard'}, 'b:'}, ...

 {'line', qrsk, qret, {'Dollar-Neutral'}, 'b'}, ...

 {'scatter', qsrsk, qsret, {'Sharpe'}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...

 {100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...

 {100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...

 'obsnames', AssetList(abs(qswgt) > 1.0e-4));

fprintf('Dollar-Neutral Portfolio with Maximum Sharpe Ratio\n');

disp(Blotter);

fprintf('Confirm Dollar-Neutral Portfolio\n');

fprintf('  (Net, Long, Short)\n');

disp([ sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short) ]);

Dollar-Neutral Portfolio with Maximum Sharpe Ratio

            Weight     Long       Short 

    AA      0.53991    0.53991         0

    AIG      3.2253     3.2253         0

    AXP     0.98473    0.98473         0
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    BA       -3.709          0     3.709

    C        14.859     14.859         0

    CAT      3.9539     3.9539         0

    DD      -19.168          0    19.168

    DIS     -5.1186          0    5.1186

    GE      -3.8391          0    3.8391

    GM      -3.9487          0    3.9487

    HD       1.1683     1.1683         0

    HON     -1.5227          0    1.5227

    HPQ     0.10515    0.10515         0

    IBM     -8.5514          0    8.5514

    INTC     1.8775     1.8775         0

    JNJ      1.4534     1.4534         0

    JPM     -2.6816          0    2.6816

    KO      -15.074          0    15.074

    MCD      4.1492     4.1492         0

    MMM      8.0643     8.0643         0

    MO       4.3354     4.3354         0

    MRK      3.9762     3.9762         0

    MSFT     4.3262     4.3262         0

    PFE     -9.6523          0    9.6523

    PG       1.7502     1.7502         0

    SBC     -5.5761          0    5.5761

    UTX      6.0968     6.0968         0

    VZ      -2.5871          0    2.5871

    WMT     0.90033    0.90033         0

    XOM      19.662     19.662         0

Confirm Dollar-Neutral Portfolio

  (Net, Long, Short)

    0.0000   81.4282   81.4282
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130/30 Fund Structure

Finally, the turnover constraints can be used to set up a 130-30 portfolio structure, which
is a structure with a net long position but permits leverage with long and short positions
up to a maximum amount of leverage. In the case of a 130-30 portfolio, the leverage is
30%.

To set up a 130-30 portfolio, start with the "standard" portfolio problem and set the
maximum value for leverage in the variable Leverage. The bounds for individual asset
weights range between -Leverage and 1 + Leverage. Since the net position must be
long, the budget constraint is 1 and, once again, the initial portfolio is 0. Finally, the one-
way turnover constraints provide the necessary long and short restrictions to prevent
"double-counting" of long and short positions. The blotter shows the portfolio weights for
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the 130-30 portfolio that maximizes the Sharpe ratio. The long and short positions are
obtained from the buy and sell trades relative to the initial portfolio.

Leverage = 0.3;

q = setBounds(p, -Leverage, 1 + Leverage);

q = setBudget(q, 1, 1);

q = setOneWayTurnover(q, 1 + Leverage, Leverage);

[qwgt, qbuy, qsell] = estimateFrontier(q, 20);

[qrsk, qret] = estimatePortMoments(q, qwgt);

[qswgt, qslong, qsshort] = estimateMaxSharpeRatio(q);

[qsrsk, qsret] = estimatePortMoments(q, qswgt);

% Plot efficient frontier for a 130-30 fund structure with tangency portfolio

clf;

portfolioexamples_plot(sprintf('Efficient Frontier with %g-%g Portfolio', ...

    100*(1 + Leverage),100*Leverage), ...

 {'line', prsk, pret, {'Standard'}, 'b:'}, ...

 {'line', qrsk, qret, {'130-30'}, 'b'}, ...

 {'scatter', qsrsk, qsret, {'Sharpe'}}, ...

 {'scatter', [mrsk, crsk, ersk], [mret, cret, eret], {'Market', 'Cash', 'Equal'}}, ...

 {'scatter', sqrt(diag(p.AssetCovar)), p.AssetMean, p.AssetList, '.r'});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*qswgt(abs(qswgt) > 1.0e-4), 'Weight'}, ...

 {100*qslong(abs(qswgt) > 1.0e-4), 'Long'}, ...

 {100*qsshort(abs(qswgt) > 1.0e-4), 'Short'}, ...

 'obsnames', AssetList(abs(qswgt) > 1.0e-4));

fprintf('%g-%g Portfolio with Maximum Sharpe Ratio\n',100*(1 + Leverage),100*Leverage);

disp(Blotter);

fprintf('Confirm %g-%g Portfolio\n',100*(1 + Leverage),100*Leverage);

fprintf('  (Net, Long, Short)\n');

disp([ sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short) ]);

130-30 Portfolio with Maximum Sharpe Ratio

            Weight      Long      Short  

    DD       -9.5565         0     9.5565

    HON      -6.0245         0     6.0245

    INTC      4.0335    4.0335          0
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    JNJ       7.1234    7.1234          0

    JPM     -0.44583         0    0.44583

    KO       -13.646         0     13.646

    MMM       20.908    20.908          0

    MO        14.433    14.433          0

    MSFT      4.5592    4.5592          0

    PG        17.243    17.243          0

    SBC     -0.32712         0    0.32712

    UTX       5.3584    5.3584          0

    WMT       21.018    21.018          0

    XOM       35.323    35.323          0

Confirm 130-30 Portfolio

  (Net, Long, Short)

  100.0000  130.0000   30.0000
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Asset Allocation Case Study

This example shows how to set up a basic asset allocation problem that uses mean-
variance portfolio optimization to estimate efficient portfolios.

Step 1. Defining the portfolio problem.

Suppose that you want to manage an asset allocation fund with four asset classes: bonds,
large-cap equities, small-cap equities, and emerging equities. The fund is long-only with
no borrowing or leverage, should have no more than 85% of the portfolio in equities, and
no more than 35% of the portfolio in emerging equities. The cost to trade the first three
assets is 10 basis points annualized and the cost to trade emerging equities is four times
higher. Finally, you want to ensure that average turnover is no more than 15%. To solve
this problem, you will set up a basic mean-variance portfolio optimization problem and
then slowly introduce the various constraints on the problem to get to a solution.

To set up the portfolio optimization problem, start with basic definitions of known
quantities associated with the structure of this problem. Each asset class is assumed to
have a tradeable asset with a real-time price. Such assets can be, for example, exchange-
traded funds (ETFs). The initial portfolio with holdings in each asset that has a total of
$7.5 million along with an additional cash position of $60,000. These basic quantities
and the costs to trade are set up in the following variables with asset names in the cell
array Asset, current prices in the vector Price , current portfolio holdings in the vector
Holding, and transaction costs in the vector UnitCost.

To analyze this portfolio, you can set up a blotter in a dataset object to help track
prices, holdings, weights, and so forth. In particular, you can compute the initial portfolio
weights and maintain them in a new blotter field called InitPort.

Asset = { 'Bonds', 'Large-Cap Equities', 'Small-Cap Equities', 'Emerging Equities' };

Price = [ 52.4; 122.7; 35.2; 46.9 ];

Holding = [ 42938; 24449; 42612; 15991 ];

UnitCost = [ 0.001; 0.001; 0.001; 0.004 ];

Blotter = dataset({Price, 'Price'}, {Holding, 'InitHolding'},'obsnames',Asset);

Wealth = sum(Blotter.Price .* Blotter.InitHolding);

Blotter.InitPort = (1/Wealth)*(Blotter.Price .* Blotter.InitHolding);

Blotter.UnitCost = UnitCost;

disp(Blotter);

                          Price    InitHolding    InitPort    UnitCost

    Bonds                  52.4    42938          0.3         0.001   
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    Large-Cap Equities    122.7    24449          0.4         0.001   

    Small-Cap Equities     35.2    42612          0.2         0.001   

    Emerging Equities      46.9    15991          0.1         0.004   

Step 2. Simulating asset prices.

Since this is a hypothetical example, to simulate asset prices from a given mean and
covariance of annual asset total returns for the asset classes, the portsim function is
used to create asset returns with the desired mean and covariance. Specifically, portsim
is used to simulate five years of monthly total returns and then plotted to show the log of
the simulated total return prices

The mean and covariance of annual asset total returns are maintained in the variables
AssetMean and AssetCovar. The simulated asset total return prices (which are
compounded total returns) are maintained in the variable Y. All initial asset total return
prices are normalized to 1 in this example.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];

AssetCovar = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

X = portsim(AssetMean'/12, AssetCovar/12, 60); % monthly total returns for 5 years (60 months)

[Y, T] = ret2tick(X, [], 1/12);                % form total return prices

plot(T, log(Y));

title('\bfSimulated Asset Class Total Return Prices');

xlabel('Year');

ylabel('Log Total Return Price');

legend(Asset,'Location','best');
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Step 3. Setting up the Portfolio object.

To explore portfolios on the efficient frontier, set up a Portfolio object using these
specifications:

• Portfolio weights are nonnegative and sum to 1.
• Equity allocation is no more than 85% of the portfolio.
• Emerging equity is no more than 35% of the portfolio.

These specifications are incorporated into the Portfolio object p in the following sequence
of using functions that starts with using the Portfolio function.
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1 The specification of the initial portfolio from Blotter gives the number of assets
in your universe so you do not need to specify the NumAssets property directly.
Next, set up default constraints (long-only with a budget constraint). In addition,
set up the group constraint that imposes an upper bound on equities in the portfolio
(equities are identified in the group matrix with 1's) and the upper bound constraint
on emerging equities. Although you could have set the upper bound on emerging
equities using the setBounds function, notice how the addGroups function is used
to set up this constraint.

2 To have a fully specified mean-variance portfolio optimization problem, you must
specify the mean and covariance of asset returns. Since starting with these moments
in the variables AssetMean and AssetCovar, you can use the setAssetMoments
function to enter these variables into your Portfolio object (remember that you are
assuming that your raw data are monthly returns which is why you divide your
annual input moments by 12 to get monthly returns).

3 Use the total return prices with the estimateAssetMoments function with a
specification that your data in Y are prices, and not returns, to estimate asset return
moments for your Portfolio object.

4 Although the returns in your Portfolio object are in units of monthly returns, and
since subsequent costs are annualized, it is convenient to specify them as annualized
total returns with this direct transformation of the AssetMean and AssetCovar
properties of your Portfolio object p.

5 Display the Portfolio object p.

p = Portfolio('Name', 'Asset Allocation Portfolio', ...

'AssetList', Asset, 'InitPort', Blotter.InitPort);

p = setDefaultConstraints(p);

p = setGroups(p, [ 0, 1, 1, 1 ], [], 0.85);

p = addGroups(p, [ 0, 0, 0, 1 ], [], 0.35);

p = setAssetMoments(p, AssetMean/12, AssetCovar/12);

p = estimateAssetMoments(p, Y, 'DataFormat', 'Prices');

p.AssetMean = 12*p.AssetMean;

p.AssetCovar = 12*p.AssetCovar;

display(p);

p = 
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  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: 'Asset Allocation Portfolio'

        NumAssets: 4

        AssetList: {1×4 cell}

         InitPort: [4×1 double]

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: [2×4 double]

       LowerGroup: []

       UpperGroup: [2×1 double]

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Step 4. Validate the portfolio problem.

An important step in portfolio optimization is to validate that the portfolio problem is
feasible and the main test is to ensure that the set of portfolios is nonempty and bounded.
Use the estimateBounds function to determine the bounds for the portfolio set. In this
case, since both lb and ub are finite, the set is bounded.

[lb, ub] = estimateBounds(p);

display([lb, ub]);

    0.1500    1.0000

    0.0000    0.8500
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    0.0000    0.8500

    0.0000    0.3500

Step 5. Plotting the efficient frontier.

Given the constructed Portfolio object, use the plotFrontier function to view the
efficient frontier. Instead of using the default of 10 portfolios along the frontier, you can
display the frontier with 40 portfolios. Notice gross efficient portfolio returns fall between
approximately 6% and 16% per years.

plotFrontier(p, 40);
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Step 6. Evaluating gross vs. net portfolio returns.

The Portfolio object p does not include transaction costs so that the portfolio optimization
problem specified in p uses gross portfolio return as the return proxy. To handle net
returns, create a second Portfolio object q that includes transaction costs.

q = setCosts(p, UnitCost, UnitCost);

display(q);

q = 

  Portfolio with properties:

          BuyCost: [4×1 double]

         SellCost: [4×1 double]

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: 'Asset Allocation Portfolio'

        NumAssets: 4

        AssetList: {1×4 cell}

         InitPort: [4×1 double]

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: [2×4 double]

       LowerGroup: []

       UpperGroup: [2×1 double]

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []
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Step 7. Analyzing descriptive properties of the Portfolio structures.

To be more concrete about the ranges of efficient portfolio returns and risks, use
the estimateFrontierLimits function to obtain portfolios at the endpoints of
the efficient frontier. Given these portfolios, compute their moments using the
estimatePortMoments function. The following code generates a table that lists the
risk and return of the initial portfolio as well as the gross and net moments of portfolio
returns for the portfolios at the endpoints of the efficient frontier:

[prsk0, pret0] = estimatePortMoments(p, p.InitPort);

pret = estimatePortReturn(p, p.estimateFrontierLimits);

qret = estimatePortReturn(q, q.estimateFrontierLimits);

fprintf('Annualized Portfolio Returns ...\n');

fprintf('                                   %6s    %6s\n','Gross','Net');

fprintf('Initial Portfolio Return           %6.2f %%  %6.2f %%\n',100*pret0,100*pret0);

fprintf('Minimum Efficient Portfolio Return %6.2f %%  %6.2f %%\n',100*pret(1),100*qret(1));

fprintf('Maximum Efficient Portfolio Return %6.2f %%  %6.2f %%\n',100*pret(2),100*qret(2));

%

% The results shows that the cost to trade ranges from 14 to 19 basis

% points to get from the current portfolio to the efficient portfolios at

% the endpoints of the efficient frontier (these costs are the difference

% between gross and net portfolio returns.) In addition, notice that the

% maximum efficient portfolio return (13%) is less than the maximum asset

% return (18%) due to the constraints on equity allocations.

Annualized Portfolio Returns ...

                                    Gross       Net

Initial Portfolio Return             9.70 %    9.70 %

Minimum Efficient Portfolio Return   5.90 %    5.77 %

Maximum Efficient Portfolio Return  13.05 %   12.86 %

Step 8. Obtaining a Portfolio at the specified return level on the efficient frontier.

A common approach to select efficient portfolios is to pick a portfolio that has a desired
fraction of the range of expected portfolio returns. To obtain the portfolio that is 30% of
the range from the minimum to maximum return on the efficient frontier, obtain the
range of net returns in qret using the Portfolio object q and interpolate to obtain a 30%
level with the interp1 function to obtain a portfolio qwgt.

Level = 0.3;

qret = estimatePortReturn(q, q.estimateFrontierLimits);
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qwgt = estimateFrontierByReturn(q, interp1([0, 1], qret, Level));

[qrsk, qret] = estimatePortMoments(q, qwgt);

fprintf('Portfolio at %g%% return level on efficient frontier ...\n',100*Level);

fprintf('%10s %10s\n','Return','Risk');

fprintf('%10.2f %10.2f\n',100*qret,100*qrsk);

display(qwgt);

% The target portfolio that is 30% of the range from minimum to maximum net

% returns has a return of 7.9% and a risk of 9.1%.

Portfolio at 30% return level on efficient frontier ...

    Return       Risk

      7.90       9.09

qwgt =

    0.6252

    0.1856

    0.0695

    0.1198

Step 9. Obtaining a Portfolio at the specified risk levels on the efficient frontier.

Although you could accept this result, suppose that you want to target values for portfolio
risk. Specifically, suppose that you have a conservative target risk of 10%, a moderate
target risk of 15%, and an aggressive target risk of 20% and you want to obtain portfolios
that satisfy each risk target. Use the estimateFrontierByRisk function to obtain
targeted risks specified in the variable TargetRisk. The resultant three efficient
portfolios are obtained in qwgt.

TargetRisk = [ 0.10; 0.15; 0.20 ];

qwgt = estimateFrontierByRisk(q, TargetRisk);

display(qwgt);

%

% Use the estimatePortRisk function to compute

% the portfolio risks for the three portfolios to confirm that the target

% risks have been attained:

display(estimatePortRisk(q, qwgt));

% Suppose that you want to shift from the current portfolio to the moderate

% portfolio. You can estimate the purchases and sales to get to this
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% portfolio:

[qwgt, qbuy, qsell] = estimateFrontierByRisk(q, 0.15);

% If you average the purchases and sales for this portfolio, you can see

% that the average turnover is 17%, which is greater than the target of

% 15%:

disp(sum(qbuy + qsell)/2)

% Since you also want to ensure that average turnover is no more than 15%,

% you can add the average turnover constraint to the Portfolio object:

q = setTurnover(q, 0.15);

[qwgt, qbuy, qsell] = estimateFrontierByRisk(q, 0.15);

% You can enter the estimated efficient portfolio with purchases and sales into the Blotter:

qbuy(abs(qbuy) < 1.0e-5) = 0;

qsell(abs(qsell) < 1.0e-5) = 0;  % zero out near 0 trade weights

Blotter.Port = qwgt;

Blotter.Buy = qbuy;

Blotter.Sell = qsell;

display(Blotter);

% The Buy and Sell elements of the Blotter are changes in portfolio weights that

% must be converted into changes in portfolio holdings to determine

% the trades. Since you are working with net portfolio returns, you

% must first compute the cost to trade from your initial portfolio to

% the new portfolio. This can be accomplished as follows:

TotalCost = Wealth * sum(Blotter.UnitCost .* (Blotter.Buy + Blotter.Sell))

% The cost to trade is $5,625, so that, in general, you would have to

% adjust your initial wealth accordingly before setting up your new

% portfolio weights. However, to keep the analysis simple, note that you

% have sufficient cash ($60,0000) set aside to pay the trading costs and

% that you will not touch the cash position to build up any positions in

% your portfolio. Thus, you can populate your blotter with the new

% portfolio holdings and the trades to get to the new portfolio without

% making any changes in your total invested wealth. First, compute portfolio holding:

Blotter.Holding = Wealth * (Blotter.Port ./ Blotter.Price);
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% Compute number of shares to Buy and Sell in your Blotter:

Blotter.BuyShare = Wealth * (Blotter.Buy ./ Blotter.Price);

Blotter.SellShare = Wealth * (Blotter.Sell ./ Blotter.Price);

% Notice how you used an add-hoc truncation rule to obtain unit numbers of

% shares to buy and sell. Clean up the blotter by removing the unit costs

% and the buy and sell portfolio weights:

Blotter.Buy = [];

Blotter.Sell = [];

Blotter.UnitCost = [];

qwgt =

    0.5407    0.2020    0.1500

    0.2332    0.4000    0.0318

    0.0788    0.1280    0.4682

    0.1474    0.2700    0.3500

    0.1000

    0.1500

    0.2000

    0.1700

Blotter = 

                          Price    InitHolding    InitPort    UnitCost

    Bonds                  52.4    42938          0.3         0.001   

    Large-Cap Equities    122.7    24449          0.4         0.001   

    Small-Cap Equities     35.2    42612          0.2         0.001   

    Emerging Equities      46.9    15991          0.1         0.004   

                          Port       Buy     Sell    

    Bonds                 0.18787       0     0.11213

    Large-Cap Equities        0.4       0           0

    Small-Cap Equities    0.16213       0    0.037871

    Emerging Equities        0.25    0.15           0
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TotalCost =

   5.6248e+03

Step 10. Displaying the final results.

The final result is a blotter that contains proposed trades to get from your current
portfolio to a moderate-risk portfolio. To make the trade, you would need to sell 16,049
shares of your bond asset and 8,069 shares of your small-cap equity asset and would need
to purchase 23,986 shares of your emerging equities asset.

display(Blotter);

% The final plot uses the plotFrontier function to

% display the efficient frontier and the initial portfolio for the fully

% specified portfolio optimization problem. It also adds the location

% of the moderate-risk or final portfolio on the efficient frontier.

plotFrontier(q, 40);

hold on

scatter(estimatePortRisk(q, qwgt), estimatePortReturn(q, qwgt), 'filled', 'r');

h = legend('Initial Portfolio', 'Efficient Frontier', 'Final Portfolio', 'location', 'best');

set(h, 'Fontsize', 8);

hold off

Blotter = 

                          Price    InitHolding    InitPort    Port       Holding

    Bonds                  52.4    42938          0.3         0.18787    26889  

    Large-Cap Equities    122.7    24449          0.4             0.4    24449  

    Small-Cap Equities     35.2    42612          0.2         0.16213    34543  

    Emerging Equities      46.9    15991          0.1            0.25    39977  

                          BuyShare    SellShare

    Bonds                     0        16049   

    Large-Cap Equities        0            0   

    Small-Cap Equities        0       8068.8   

    Emerging Equities     23986            0   
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See Also
addGroups | estimateAssetMoments | estimateBounds |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortRisk |
plotFrontier | Portfolio | setAssetMoments | setBounds

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
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• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130

More About
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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 Portfolio Optimization Against a Benchmark

Portfolio Optimization Against a Benchmark

Products Used: Financial Toolbox, Optimization Toolbox, and Statistics and Machine
Learning Toolbox

This example shows how to perform portfolio optimization using the Portfolio object
in Financial Toolbox. The example, in particular, demonstrates optimizing a portfolio to
maximize the information ratio relative to a market benchmark.

Step 1. Import historical data using MATLAB.

Import historical prices for the asset universe and the Dow Jones Industrial Average
(DJI) market benchmark. The data is imported into a dataset array from an Microsoft®

Excel spreadsheet using the MATLAB xlsread function.

data = dataset('xlsfile', 'dowPortfolio.xlsx');

data(1:10,:)

ans = 

    Dates              DJI      AA       AIG      AXP      BA       C        CAT      DD       DIS      GE   

    '1/3/2006'         10847    28.72    68.41    51.53    68.63    45.26    55.86    40.68    24.18     33.6

    '1/4/2006'         10880    28.89    68.51    51.03    69.34    44.42    57.29    40.46    23.77    33.56

    '1/5/2006'         10882    29.12     68.6    51.57    68.53    44.65    57.29    40.38    24.19    33.47

    '1/6/2006'         10959    29.02    68.89    51.75    67.57    44.65    58.43    40.55    24.52     33.7

    '1/9/2006'         11012    29.37    68.57    53.04    67.01    44.43    59.49    40.32    24.78    33.61

    '1/10/2006'        11012    28.44    69.18    52.88    67.33    44.57    59.25     40.2    25.09    33.43

    '1/11/2006'        11043    28.05     69.6    52.59     68.3    44.98    59.28    38.87    25.33    33.66

    '1/12/2006'        10962    27.68    69.04     52.6     67.9    45.02    60.13    38.02    25.41    33.25
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    '1/13/2006'        10960    27.81    68.84     52.5     67.7    44.92    60.24    37.86    25.47    33.35

    '1/17/2006'        10896    27.97    67.84    52.03    66.93    44.47    60.85    37.75    25.15     33.2

    GM       HD       HON      HPQ      IBM      INTC     JNJ      JPM      KO       MCD      MMM      MO   

    17.82    39.79    36.14    28.35    80.13    24.57    59.08    37.78    38.98    32.72    75.93    52.27

     18.3    39.05    35.99    29.18    80.03     24.9    59.99    37.56    38.91    33.01    75.54    52.65

    19.34    38.67    35.97    28.97    80.56    25.25    59.74    37.67     39.1    33.05    74.85    52.52

    19.61    38.96    36.53     29.8    82.96    25.28    60.01    37.94    39.47    33.25    75.47    52.95

    21.12    39.38    36.23    30.17    81.76    25.44    60.38    38.55    39.66    33.88    75.84    53.11

    20.79    40.33    36.17    30.33     82.1     25.1    60.49    38.61     39.7    33.91    75.37    53.04

    20.61    41.44    36.19    30.88    82.19    25.12    59.91    38.58    39.72     34.5    75.22    53.31

    19.76    41.05    35.77    30.57    81.61    24.96    59.63    37.87     39.5    33.96    74.57    53.23

     19.2    40.43    35.85    31.43    81.22    24.78    59.26    37.84    39.37    33.65    74.38    53.29

    18.68    40.11    35.56     31.2    81.05    24.52    58.74    37.64    39.11    33.77    73.99    52.85

    MRK      MSFT     PFE      PG       T        UTX      VZ       WMT      XOM  

    30.73    26.19    22.16    56.38     22.7    54.94    26.79     44.9    56.64

    31.08    26.32    22.88    56.48    22.87    54.61    27.58    44.99    56.74

    31.13    26.34     22.9     56.3    22.92    54.41     27.9    44.38    56.45

    31.08    26.26    23.16    56.24    23.21    54.58    28.01    44.56    57.57

    31.58    26.21    23.16    56.67     23.3     55.2    28.12     44.4    57.54

    31.27    26.35    22.77    56.45    23.16    55.24    28.24    44.54    57.99

    31.39    26.63    23.06    56.65    23.34    54.41    28.58    45.23    58.38

    31.41    26.48     22.9    56.02    23.24     53.9    28.69    44.43    57.77

     31.4    26.53    22.99    56.49    23.27     54.1    28.75     44.1    59.06

    31.16    26.34    22.63    56.25    23.13    54.41    28.12    43.66    59.61

Separate the asset names, asset prices, and DJI benchmark prices from the dataset
array. The visualization shows the evolution of all the asset prices normalized to start at
unity.
dates = datenum(data.Dates);

benchPrice = data.DJI;

assetNames = data.Properties.VarNames(3:2:end);

assetPrice = double( data(:,3:2:end) );

assetP = bsxfun( @rdivide, assetPrice, assetPrice(1,:) );

benchmarkP = benchPrice / benchPrice(1);

plot(dates, assetP);

hold on;

plot(dates, benchmarkP, 'LineWidth', 3, 'Color', 'k');

hold off;

xlabel('Date');

ylabel('Normalized Price');

title('Normalized Asset Prices and Benchmark');

datetick('x');

grid on;
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The bold line indicates the DJIA market benchmark.

Step 2. Compute returns and risk-adjusted returns.

Calculate the return series from the price series and compute asset moments (historical
returns and standard deviations). The visualization shows a scatter plot of the risk-
return characteristics of all the assets and the DJI market benchmark.

benchReturn = tick2ret(benchPrice);

assetReturn = tick2ret(assetPrice);

activReturn = assetReturn - repmat(benchReturn, 1, size(assetReturn,2));

Calculate historical statistics and plot the risk returns.
benchRetn = mean(benchReturn);

benchRisk =  std(benchReturn);

assetRetn = mean(assetReturn);

assetRisk =  std(assetReturn);

scale = 252;

assetRiskR = sqrt(scale) * assetRisk;

benchRiskR = sqrt(scale) * benchRisk;

assetReturnR = scale * assetRetn;

benchReturnR = scale * benchRetn;
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scatter(assetRiskR, assetReturnR, 6, 'm', 'Filled');

hold on

scatter(benchRiskR, benchReturnR, 6, 'g', 'Filled');

for k = 1:length(assetNames)

    text(assetRiskR(k) + 0.005, assetReturnR(k), assetNames{k}, 'FontSize', 8);

end

text(benchRiskR + 0.005, benchReturnR, 'Benchmark', 'Fontsize', 8);

hold off;

xlabel('Risk (Std Dev of Return)');

ylabel('Expected Return');

grid on;

Step 3. Set up a portfolio optimization.

Set up a portfolio optimization problem by populating the Portfolio object. In this
example, the expected returns and covariances of the assets in the portfolio are set to
their historical values.

p = Portfolio('AssetList', assetNames)

p = 
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  Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: []

      AssetCovar: []

        Turnover: []

   TrackingError: []

    TrackingPort: []

     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: 15

       AssetList: {1x15 cell}

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: []

      UpperBound: []

     LowerBudget: []

     UpperBudget: []

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Set up default portfolio constraints (all weights sum to 1, no shorting, and 100%
investment in risky assets).

p = setDefaultConstraints(p)

p = 

  Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: []
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      AssetCovar: []

   TrackingError: []

    TrackingPort: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

            Name: []

       NumAssets: 15

       AssetList: {1x15 cell}

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [15x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Add asset returns and covariance to the Portfolio object.

pAct = estimateAssetMoments(p, activReturn, 'missingdata', false)

pAct = 

  Portfolio with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

       AssetMean: [15x1 double]

      AssetCovar: [15x15 double]

   TrackingError: []

    TrackingPort: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

            Name: []
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       NumAssets: 15

       AssetList: {1x15 cell}

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [15x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Step 4. Compute the efficient frontier using the Portfolio object.

Compute the mean-variance efficient frontier of 20 optimal portfolios. Visualize the
frontier over the risk-return characteristics of the individual assets. Furthermore,
calculate and visualize the information ratio for each portfolio along the frontier.
wAct = estimateFrontier(pAct, 20); % Estimate weights

[portRiskAct, portRetnAct] = estimatePortMoments(pAct, wAct); % Get risk and return

if isa(p,'Portfolio')

    % Extract asset moments & names

    [assetReturnP, assetCovarP] = getAssetMoments(p);

    assetRiskP = sqrt(diag(assetCovarP));

    assetNames = p.AssetList;

else

    assetNames = p;

end

if isa(p,'Portfolio')

    % Extract asset moments & names

    [assetReturnP, assetCovarP] = getAssetMoments(p);

    assetRiskP = sqrt(diag(assetCovarP));

    assetNamesP = p.AssetList;

else

    assetNamesP = p;

end

% Rescale

assetRiskT = sqrt(scale) * assetRiskP;

portRiskT  = sqrt(scale) *  portRiskAct;

assetReturnT = scale * assetReturnP;

portReturnT = scale *  portRetnAct;
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 subplot(2,1,1);

 

scatter(assetRiskT, assetReturnT, 6, 'm', 'Filled');

hold on

for k = 1:length(assetNames)

    text(assetRisk(k) + 0.005, assetReturn(k), assetNames{k}, 'FontSize', 8);

end

plot(portRiskT, portReturnT, 'bo-', 'MarkerFaceColor', 'b');

hold off;

xlabel('Risk (Std Dev of Active Return)');

ylabel('Expected Active Return');

grid on;

subplot(2,1,2);

plot(portRiskT, portReturnT./portRiskT, 'bo-', 'MarkerFaceColor', 'b');

xlabel('Risk (Std Dev of Active Return)');

ylabel('Information Ratio');

grid on;

Step 5. Perform information ratio maximization using Optimization Toolbox.

Run a hybrid optimization to find the portfolio along the frontier with the maximum
information ratio. The information ratio is the ratio of relative return to relative risk
(known as “tracking error”). Whereas the Sharpe ratio looks at returns relative to a
riskless asset, the information ratio is based on returns relative to a risky benchmark,
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in this case the DJI benchmark. This is done by running an optimization that finds
the optimal return constraint for which the portfolio optimization problem returns the
maximum information ratio portfolio. The portfolio optimization functions are called from
an objective function infoRatioTargetReturn that is optimized by the Optimization
Toolbox function fminbnd. The function infoRatioTargetReturn calculates a
minimum (active) risk portfolio given a target active return.

type infoRatioTargetReturn

 function [infoRatio, wts] = infoRatioTargetReturn(targetReturn, portObj)

% Calculate information ratio for a target-return portfolio along the

% efficient frontier

wts = estimateFrontierByReturn(portObj, targetReturn);

portRiskAct = estimatePortRisk(portObj, wts);

infoRatio = targetReturn/portRiskAct;

The infoRatioTargetReturn function is called as an objective function in an
optimization routine (fminbnd) that seeks to find the target return that maximizes the
information ratio and minimizes a negative information ratio.
objFun = @(targetReturn) -infoRatioTargetReturn(targetReturn, pAct);

options = optimset('TolX', 1.0e-8);

[optPortRetn, ~, exitflag] = fminbnd(objFun, 0, max(portRetnAct), options);

Get weights, information ratio, and risk return for the optimal portfolio
[optInfoRatio, optWts] = infoRatioTargetReturn(optPortRetn, pAct);

optPortRisk = estimatePortRisk(pAct, optWts) 

optPortRisk =

    0.0040

Step 6. Plot the optimal portfolio.

Verify that the portfolio found is indeed the maximum information-ratio portfolio.
if isa(p,'Portfolio')

    % Extract asset moments & names

    [assetReturnQ, assetCovarQ] = getAssetMoments(p);

    assetRiskQ = sqrt(diag(assetCovarQ));

    assetNamesQ = p.AssetList;

else

    assetNamesQ = p;

end

% Rescale

  assetRiskS = sqrt(scale) * assetRiskQ;

   portRiskS = sqrt(scale) *  portRiskAct;

optPortRiskS = sqrt(scale) * optPortRisk;

  assetReturnS = scale * assetReturnQ;

   portReturnS = scale *  portRetnAct;

optPortReturnS = scale * optPortRetn;

 subplot(2,1,1);
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scatter(assetRiskS, assetReturnS, 6, 'm', 'Filled');

hold on

for k = 1:length(assetNames)

    text(assetRisk(k) + 0.005, assetReturn(k), assetNames{k}, 'FontSize', 8);

end

plot(portRiskS, portReturnS, 'bo-', 'MarkerSize', 4, 'MarkerFaceColor', 'b');

plot(optPortRiskS, optPortReturnS, 'ro-', 'MarkerFaceColor', 'r');

hold off;

xlabel('Risk (Std Dev of Active Return)');

ylabel('Expected Active Return');

grid on;

subplot(2,1,2);

plot(portRiskS, portReturnS./portRiskS, 'bo-', 'MarkerSize', 4, 'MarkerFaceColor', 'b');

hold on

plot(optPortRiskS, optPortReturnS./optPortRiskS, 'ro-', 'MarkerFaceColor', 'r');

hold off;

xlabel('Risk (Std Dev of Active Return)');

ylabel('Information Ratio');

title('Information Ratio with Optimal Portfolio');

grid on;

Step 7. Display the portfolio optimization solution.

Display the portfolio optimization solution.
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assetIndx = optWts > .001;

results = dataset({assetNames(assetIndx)', 'Asset'}, {optWts(assetIndx)*100, 'Weights'});

disp('Maximum Information Ratio Portfolio:');

disp(results);

fprintf('Max. Info Ratio portfolio has expected active return %0.2f%%\n', optPortRetn*25200);

fprintf('Max. Info Ratio portfolio has expected tracking error of %0.2f%%\n', optPortRisk*sqrt(252)*100);

Maximum Information Ratio Portfolio:

    Asset         Weights

    'AA'          1.539 

    'AXP'         0.3555 

    'C'           9.6533 

    'DD'          4.0684 

    'HPQ'         17.698 

    'JPM'         21.565 

    'MCD'         26.736 

    'MO'          13.648 

    'MSFT'        2.6858 

    'UTX'         2.0509 

Max. Info Ratio portfolio has expected active return 12.14%

Max. Info Ratio portfolio has expected tracking error of 6.32%

See Also
fminbnd | inforatio | Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Postprocessing Results to Set Up Tradable Portfolios” on page 4-130
• “Portfolio Optimization Examples” on page 4-139
• “Information Ratio” on page 7-8

More About
• “Performance Metrics Overview” on page 7-2
• “Portfolio Object” on page 4-20
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
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External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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CVaR Portfolio Optimization Tools

• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17
• “PortfolioCVaR Object” on page 5-19
• “Creating the PortfolioCVaR Object” on page 5-24
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Setting Up an Initial or Current Portfolio” on page 5-37
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Working with a Riskless Asset” on page 5-51
• “Working with Transaction Costs” on page 5-53
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Working with Bound Constraints Using PortfolioCVaR Object” on page 5-63
• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Ratio Constraints Using PortfolioCVaR Object” on page 5-72
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page

5-76
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page

5-79
• “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page

5-82
• “Working with One-way Turnover Constraints Using PortfolioCVaR Object” on page

5-86
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Obtaining Endpoints of the Efficient Frontier” on page 5-99



5 CVaR Portfolio Optimization Tools

• “Obtaining Efficient Portfolios for Target Returns” on page 5-102
• “Obtaining Efficient Portfolios for Target Risks” on page 5-105
• “Choosing and Controlling the Solver” on page 5-109
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-116
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123
• “Working with Other Portfolio Objects” on page 5-126
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130
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Portfolio Optimization Theory

In this section...

“Portfolio Optimization Problems” on page 5-3
“Portfolio Problem Specification” on page 5-3
“Return Proxy” on page 5-4
“Risk Proxy” on page 5-6
“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
“Default Portfolio Problem” on page 5-15

Portfolio Optimization Problems

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe.
A portfolio specifies either holdings or weights in each individual asset in the asset
universe. The convention is to specify portfolios in terms of weights, although the
portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The
proxy for risk is a function that characterizes either the variability or losses associated
with portfolio choices. The proxy for return is a function that characterizes either
the gross or net benefits associated with portfolio choices. The terms “risk” and “risk
proxy” and “return” and “return proxy” are interchangeable. The fundamental insight
of Markowitz (see “Portfolio Optimization” on page A-11) is that the goal of the
portfolio choice problem is to seek minimum risk for a given level of return and to seek
maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called
the efficient frontier.

Portfolio Problem Specification

To specify a portfolio optimization problem, you need the following:
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• Proxy for portfolio return (μ)
• Proxy for portfolio risk (Σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization
problems:

• The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see
Markowitz [46], [47] at “Portfolio Optimization” on page A-11). This object has
either gross or net portfolio returns as the return proxy, the variance of portfolio
returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set.

• The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional
value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at
“Portfolio Optimization” on page A-11), which is generally referred to as CVaR
portfolio optimization. CVaR portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses conditional
value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object (PortfolioMAD) implements what is known as mean-
absolute deviation portfolio optimization (see Konno and Yamazaki [50] at “Portfolio
Optimization” on page A-11), which is generally referred to as MAD portfolio
optimization. MAD portfolio optimization works with the same return proxies
and portfolio sets as mean-variance portfolio optimization but uses mean-absolute
deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function m : X RÆ  on a portfolio set X R
n

Ã  that
characterizes the rewards associated with portfolio choices. In most cases, the proxy for
portfolio return has two general forms, gross and net portfolio returns. Both portfolio
return forms separate the risk-free rate r0 so that the portfolio x XŒ  contains only risky
assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns
y1,...,yS has a mean of asset returns

m
S

ys
s

S

=

=

Â
1

1

,
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and (sample) covariance of asset returns

C
S

y m y ms s
T

s

S

=
-

- -

=

Â
1

1
1

( )( ) .

These moments (or alternative estimators that characterize these moments) are used
directly in mean-variance portfolio optimization to form proxies for portfolio risk and
return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x XŒ  is

m( ) ( ) ,x r m r x
T

= + -0 01

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the
Portfolio object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x XŒ  is

m( ) ( ) max{ , } max{ , },x r m r x b x x s x x
T T T

= + - - - - -0 0 0 01 0 0

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).
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b is the proportional cost to purchase assets (n vector).

s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is
necessary to incorporate prices into such costs. The properties in the Portfolio object to
specify net portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function Â Æ: X R  on a portfolio set X R
n

Ã  that
characterizes the risks associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x XŒ  is

Â ( ) =x x Cx
T

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is
AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of
portfolio returns, the square root, which is the standard deviation of portfolio returns,
is often reported and displayed. Moreover, this quantity is often called the “risk” of the
portfolio. For details, see Markowitz (“Portfolio Optimization” on page A-11).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x XŒ , which is also known as expected
shortfall, is defined as
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CVaR x f x y p y dy

f x y VaR x

a a
a

( ) =
-

≥
Ú

1

1
( , ) ( ) ,

( , ) ( )

where:

α is the probability level such that 0 < α < 1.

f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaR x f x Ya g g a( ) = £[ ] ≥{ }min : Pr ( , ) .

An alternative formulation for CVaR has the form:

CVaR x VaR x f x y VaR x p y dy

Rn

a a aa
( ) max ,( ( , ) ( )) ( )= ( ) +

-
-{ }Ú

1

1
0

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that
the value-at-risk VaRα(x) for portfolio x is the portfolio return such that the probability
of portfolio returns falling below this level is (1 –α). Given VaRα(x) for a portfolio x, the
conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the
value-at-risk return.

Note: Value-at-risk is a positive value for losses so that the probability level α indicates
the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is CVaRα(x) for a given portfolio x XŒ

and a Œ ( , )0 1 . The value-at-risk, or VaR, for a given probability level is estimated
whenever CVaR is estimated.
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In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR
based on the given scenarios. Better scenario samples yield more reliable estimates of
VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization”
on page A-11.

Mean Absolute-Deviation

The mean-absolute deviation (MAD) for a portfolio x XŒ  is defined as

( ) ( )x
S

y m xs
T

s

S

= -Â Â
=

1

1

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).

f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m
S

ys
s

S

=

=

Â
1

1

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page
A-11.

Portfolio Set for Optimization Using PortfolioCVaR Object

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.
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When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). The
most general portfolio set handled by the portfolio optimization tools can have any of
these constraints:

• Linear inequality constraints
• Linear equality constraints
• Bound constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints

Linear Inequality Constraints

Linear inequality constraints are general linear constraints that model relationships
among portfolio weights that satisfy a system of inequalities. Linear inequality
constraints take the form

A x bI I£

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI

• NumAssets for n
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The default is to ignore these constraints.

Linear Equality Constraints

Linear equality constraints are general linear constraints that model relationships among
portfolio weights that satisfy a system of equalities. Linear equality constraints take the
form

A x bE E=

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

Portfolio object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

Bound Constraints

Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is
often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem.
To obtain explicit bounds for a given portfolio set, use the estimateBounds function.
Bound constraints take the form

l x u
B B

£ £

where:

x is the portfolio (n vector).
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lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

• LowerBound for lB

• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
5-15) has lB = 0 with uB set implicitly through a budget constraint.

Budget Constraints

Budget constraints are specialized linear constraints that confine the sum of portfolio
weights to fall either above or below specific bounds. The constraints take the form

l x uS
T

S£ £1

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

• LowerBudget for lS

• UpperBudget for uS
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• NumAssets for n

The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
5-15) has lS = uS = 1, which means that the portfolio weights sum to 1. If the portfolio
optimization problem includes possible movements in and out of cash, the budget
constraint specifies how far portfolios can go into cash. For example, if lS = 0 and uS = 1,
then the portfolio can have 0–100% invested in cash. If cash is to be a portfolio choice,
set RiskFreeRate (r0) to a suitable value (see “Portfolio Problem Specification” on page
5-3 and “Working with a Riskless Asset” on page 5-51).

Group Constraints

Group constraints are specialized linear constraints that enforce “membership” among
groups of assets. The constraints take the form

l Gx uG G£ £

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each
row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

• GroupMatrix for G
• LowerGroup for lG

• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.
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Group Ratio Constraints

Group ratio constraints are specialized linear constraints that enforce relationships
among groups of assets. The constraints take the form

l G x G x u G xRi B i A i Ri B i( ) ( ) ( )£ £

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).

GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group
associated with that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR

• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints

Turnover constraint is a linear absolute value constraint that ensures estimated optimal
portfolios differ from an initial portfolio by no more than a specified amount. Although
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portfolio turnover is defined in many ways, the turnover constraints implemented in
Financial Toolbox computes portfolio turnover as the average of purchases and sales.
Average turnover constraints take the form

1

2
1 0

T
x x| |- £t

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.

One-way Turnover Constraints

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales. The constraints take the forms

1 0 0
T

B
x x¥ -{ } £max , t

1 0 0
T

Sx x¥ -{ } £max , t

where:

x is the portfolio (n vector)
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1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio or
PortfolioCVaR object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note: The average turnover constraint (see “Average Turnover Constraints” on page
5-13) with τ is not a combination of the one-way turnover constraints with τ = τB = τS.

Default Portfolio Problem

The default portfolio optimization problem has a risk and return proxy associated with
a given problem, and a portfolio set that specifies portfolio weights to be nonnegative
and to sum to 1. The lower bound combined with the budget constraint is sufficient to
ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio
optimization problem characterizes a long-only investor who is fully invested in a
collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem.
After setting up the problem, data in the form of a mean and covariance of asset
returns are then used to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the
additional specification of a probability level that must be set explicitly. Generally,
“typical” values for this level are 0.90 or 0.95. After setting up the problem, data in
the form of scenarios of asset returns are then used to solve portfolio optimization
problems.
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• For MAD portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of scenarios of asset returns are then used to
solve portfolio optimization problems.

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58

More About
• “PortfolioCVaR Object” on page 5-19
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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PortfolioCVaR Object Workflow

The PortfolioCVaR object workflow for creating and modeling a CVaR portfolio is:

1 Create a CVaR Portfolio.

Create a PortfolioCVaR object for conditional value-at-risk (CVaR) portfolio
optimization. For more information, see “Creating the PortfolioCVaR Object” on page
5-24.

2 Define asset returns and scenarios.

Evaluate scenarios for portfolio asset returns, including assets with missing data
and financial time series data. For more information, see “Asset Returns and
Scenarios Using PortfolioCVaR Object” on page 5-40.

3 Specify the CVaR Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality,
bound, budget, group, group ratio, and turnover constraints. For more information,
see “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58.

4 Validate the CVaR Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the
CVaR Portfolio Problem” on page 5-90.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a CVaR portfolio. For more
information, see “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR
Object” on page 5-95 and “Estimate Efficient Frontiers for PortfolioCVaR Object”
on page 5-112.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more
information, see “Postprocessing Results to Set Up Tradable Portfolios” on page
5-123.

More About
• “Portfolio Optimization Theory” on page 5-3
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External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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PortfolioCVaR Object

In this section...

“PortfolioCVaR Object Properties and Functions” on page 5-19
“Working with PortfolioCVaR Objects” on page 5-19
“Setting and Getting Properties” on page 5-20
“Displaying PortfolioCVaR Objects” on page 5-21
“Saving and Loading PortfolioCVaR Objects” on page 5-21
“Estimating Efficient Portfolios and Frontiers” on page 5-21
“Arrays of PortfolioCVaR Objects” on page 5-21
“Subclassing PortfolioCVaR Objects” on page 5-22
“Conventions for Representation of Data” on page 5-22

PortfolioCVaR Object Properties and Functions

The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio
optimization. Every property and function of the PortfolioCVaR object is public, although
some properties and functions are hidden. SeePortfolioCVaR for the properties and
functions of a PortfolioCVaR object. The PortfolioCVaR object is a value object where
every instance of the object is a distinct version of the object. Since the PortfolioCVaR
object is also a MATLAB object, it inherits the default functions associated with
MATLAB objects.

Working with PortfolioCVaR Objects

The PortfolioCVaR object and its functions are an interface for conditional value-at-risk
portfolio optimization. So, almost everything you do with the PortfolioCVaR object can be
done using the functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the PortfolioCVaR function to create the PortfolioCVaR object or use the

various set functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a PortfolioCVaR object, you can
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save and load objects from your workspace and create and manipulate arrays of objects.
After settling on a problem, which, in the case of CVaR portfolio optimization, means
that you have either scenarios, data, or moments for asset returns, a probability level,
and a collection of constraints on your portfolios, use the PortfolioCVaR function to set
the properties for the PortfolioCVaR object.

ThePortfolioCVaR function lets you create an object from scratch or update an existing
object. Since the PortfolioCVaR object is a value object, it is easy to create a basic object,
then use functions to build upon the basic object to create new versions of the basic
object. This is useful to compare a basic problem with alternatives derived from the basic
problem. For details, see “Creating the PortfolioCVaR Object” on page 5-24.

Setting and Getting Properties

You can set properties of a PortfolioCVaR object using either the PortfolioCVaR
function or various set functions.

Note: Although you can also set properties directly, it is not recommended since error-
checking is not performed when you set a property directly.

The PortfolioCVaR function supports setting properties with name-value pair
arguments such that each argument name is a property and each value is the
value to assign to that property. For example, to set the LowerBound, Budget, and
ProbabilityLevel properties in an existing PortfolioCVaR object p, use the syntax:
p = PortfolioCVaR(p,'LowerBound', 0, 'Budget', 'ProbabilityLevel', 0.95);

In addition to the PortfolioCVaR function, which lets you set individual properties
one at a time, groups of properties are set in a PortfolioCVaR object with various “set”
and “add” functions. For example, to set up an average turnover constraint, use the
setTurnover function to specify the bound on portfolio turnover and the initial portfolio.
To get individual properties from a PortfolioCVaR object, obtain properties directly or use
an assortment of “get” functions that obtain groups of properties from a PortfolioCVaR
object. The PortfolioCVaR function and set functions have several useful features:

• The PortfolioCVaR function and set functions try to determine the dimensions of
your problem with either explicit or implicit inputs.

• The PortfolioCVaR function and set functions try to resolve ambiguities with
default choices.
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• The PortfolioCVaR function and set functions perform scalar expansion on arrays
when possible.

• The CVaR functions try to diagnose and warn about problems.

Displaying PortfolioCVaR Objects

The PortfolioCVaR object uses the default display functions provided by MATLAB, where
display and disp display a PortfolioCVaR object and its properties with or without the
object variable name.

Saving and Loading PortfolioCVaR Objects

Save and load PortfolioCVaR objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers

Estimating efficient portfolios and efficient frontiers is the primary purpose of the CVaR
portfolio optimization tools. A collection of “estimate” and “plot” functions provide ways
to explore the efficient frontier. The “estimate” functions obtain either efficient portfolios
or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of
functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

• At the endpoints of the efficient frontier
• That attain targeted values for return proxies
• That attain targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or
current portfolio to each efficient portfolio. At the efficient frontier level, a collection of
functions plot the efficient frontier and estimate either risk or return proxies for efficient
portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk
and return proxies in subsequent analyses.

Arrays of PortfolioCVaR Objects

Although all functions associated with a PortfolioCVaR object are designed to work on a
scalar PortfolioCVaR object, the array capabilities of MATLAB enables you to set up and
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work with arrays of PortfolioCVaR objects. The easiest way to do this is with the repmat
function. For example, to create a 3-by-2 array of PortfolioCVaR objects:

p = repmat(PortfolioCVaR, 3, 2);

disp(p)

After setting up an array of PortfolioCVaR objects, you can work on individual
PortfolioCVaR objects in the array by indexing. For example:

p(i,j) = PortfolioCVaR(p(i,j), ... );

This example calls the PortfolioCVaR function for the (i,j) element of a matrix of
PortfolioCVaR objects in the variable p.

If you set up an array of PortfolioCVaR objects, you can access properties of a particular
PortfolioCVaR object in the array by indexing so that you can set the lower and upper
bounds lb and ub for the (i,j,k) element of a 3-D array of PortfolioCVaR objects with

p(i,j,k) = setBounds(p(i,j,k), lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

PortfolioCVaR object functions work on only one PortfolioCVaR object at a time.

Subclassing PortfolioCVaR Objects

You can subclass the PortfolioCVaR object to override existing functions or to add new
properties or functions. To do so, create a derived class from the PortfolioCVaR class.
This gives you all the properties and functions of thePortfolioCVaR class along with
any new features that you choose to add to your subclassed object. ThePortfolioCVaR
class is derived from an abstract class called AbstractPortfolio. Because of this,
you can also create a derived class from AbstractPortfolio that implements an
entirely different form of portfolio optimization using properties and functions of
theAbstractPortfolio class.

Conventions for Representation of Data

The CVaR portfolio optimization tools follow these conventions regarding the
representation of different quantities associated with portfolio optimization:

• Asset returns or prices for scenarios are in matrix form with samples for a given asset
going down the rows and assets going across the columns. In the case of prices, the
earliest dates must be at the top of the matrix, with increasing dates going down.
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• Portfolios are in vector or matrix form with weights for a given portfolio going down
the rows and distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio

risks and returns).

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58

More About
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Creating the PortfolioCVaR Object

In this section...

“Syntax” on page 5-24
“PortfolioCVaR Problem Sufficiency” on page 5-25
“PortfolioCVaR Function Examples” on page 5-25

To create a fully specified CVaR portfolio optimization problem, instantiate the
PortfolioCVaR object using the PortfolioCVaR function. For information on the
workflow when using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on
page 5-17.

Syntax

Use the PortfolioCVaR function to create an instance of an object of the
PortfolioCVaR class. You can use the PortfolioCVaR function in several ways. To set
up a portfolio optimization problem in a PortfolioCVaR object, the simplest syntax is:

p = PortfolioCVaR;

This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The PortfolioCVaR function also accepts collections of argument name-value pair
arguments for properties and their values. The PortfolioCVaR function accepts inputs
for public properties with the general syntax:

 p = PortfolioCVaR('property1', value1, 'property2', value2, ... );

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first
argument) of the PortfolioCVaR function to be an existing object with subsequent
argument name-value pair arguments for properties to be added or modified. For
example, given an existing PortfolioCVaR object in p, the general syntax is:

p = PortfolioCVaR(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 5-29). The PortfolioCVaR function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
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undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a PortfolioCVaR object is a value object so that,
given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioCVaR(p, ...)

PortfolioCVaR Problem Sufficiency

A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR
object if the following three conditions are met:

• You must specify a collection of asset returns or prices known as scenarios such
that all scenarios are finite asset returns or prices. These scenarios are meant to be
samples from the underlying probability distribution of asset returns. This condition
can be satisfied by the setScenarios function or with several canned scenario
simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set
is closed and bounded. You can satisfy this condition using an extensive collection of
properties that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can be
imposed and several tools, such as the estimateBounds function, provide ways to
ensure that your problem is properly formulated.

• You must specify a probability level to locate the level of tail loss above which the
conditional value-at-risk is to be minimized. This condition can be satisfied by the
setProbabilityLevel function.

Although the general sufficient conditions for CVaR portfolio optimization go beyond
the first three conditions, the PortfolioCVaR object handles all these additional
conditions.

PortfolioCVaR Function Examples

If you create a PortfolioCVaR object, p, with no input arguments, you can display it using
disp:

p = PortfolioCVaR;

disp(p);

PortfolioCVaR with properties:
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             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: []

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: []

          UpperBound: []

         LowerBudget: []

         UpperBudget: []

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

The approaches listed provide a way to set up a portfolio optimization problem with the
PortfolioCVaR function. The custom set functions offer additional ways to set and
modify collections of properties in the PortfolioCVaR object.

Using the PortfolioCVaR Function for a Single-Step Setup

You can use thePortfolioCVaR function to directly set up a “standard” portfolio
optimization problem. Given scenarios of asset returns in the variable AssetScenarios,
this problem is completely specified as follows:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
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p = PortfolioCVaR('Scenarios', AssetScenarios, ...

'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1, ...

'ProbabilityLevel', 0.95);

The LowerBound property value undergoes scalar expansion since AssetScenarios
provides the dimensions of the problem.

You can use dot notation with the function plotFrontier.

p.plotFrontier;

Using the PortfolioCVaR Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” CVaR portfolio
optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];
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m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = PortfolioCVaR(p, 'LowerBound', 0);

p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);

This way works because the calls to the are in this particular order. In this case, the call
to initialize AssetScenarios provides the dimensions for the problem. If you were to
do this step last, you would have to explicitly dimension the LowerBound property as
follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

5-28



 Creating the PortfolioCVaR Object

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = PortfolioCVaR(p, 'LowerBound', zeros(size(m)));

p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setProbabilityLevel(p, 0.95);

p = setScenarios(p, AssetScenarios);

Note: If you did not specify the size of LowerBound but, instead, input a scalar
argument, the PortfolioCVaR function assumes that you are defining a single-asset
problem and produces an error at the call to set asset scenarios with four assets.

Shortcuts for Property Names

The PortfolioCVaR function has shorter argument names that replace longer
argument names associated with specific properties of the PortfolioCVaR object. For
example, rather than enter 'ProbabilityLevel', the PortfolioCVaR function
accepts the case-insensitive name 'plevel' to set the ProbabilityLevel property in
a PortfolioCVaR object. Every shorter argument name corresponds with a single property
in the PortfolioCVaR function. The one exception is the alternative argument name
'budget', which signifies both the LowerBudget and UpperBudget properties. When
'budget' is used, then the LowerBudget and UpperBudget properties are set to the
same value to form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

assetnames or assets AssetList

be bEquality
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Shortcut Argument Name Equivalent Argument / Property Name

bi bInequality

budget UpperBudget and LowerBudget
group GroupMatrix

lb LowerBound

n or num NumAssets

level, problevel, or plevel ProbabilityLevel

rfr RiskFreeRate

scenario or
assetscenarios

Scenarios

ub UpperBound

For example, this call to the PortfolioCVaR function uses these shortcuts for
properties:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('scenario', AssetScenarios, 'lb', 0, 'budget', 1, 'plevel', 0.95);

plotFrontier(p);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly using dot notation, however
no error-checking is done on your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
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p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p.ProbabilityLevel = 0.95;

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

plotFrontier(p);

Note: Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must
always be set through either the PortfolioCVaR function, the setScenarios function,
or any of the scenario simulation functions.

See Also
estimateBounds | PortfolioCVaR

Related Examples
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Common Operations on the PortfolioCVaR Object

In this section...

“Naming a PortfolioCVaR Object” on page 5-32
“Configuring the Assets in the Asset Universe” on page 5-32
“Setting Up a List of Asset Identifiers” on page 5-33
“Truncating and Padding Asset Lists” on page 5-34

Naming a PortfolioCVaR Object

To name a PortfolioCVaR object, use the Name property. Name is informational and has
no effect on any portfolio calculations. If the Name property is nonempty, Name is the title
for the efficient frontier plot generated by plotFrontier. For example, if you set up an
asset allocation fund, you could name the PortfolioCVaR object Asset Allocation Fund:

p = PortfolioCVaR('Name','Asset Allocation Fund');

disp(p.Name);

Asset Allocation Fund

Configuring the Assets in the Asset Universe

The fundamental quantity in the PortfolioCVaR object is the number of assets in the
asset universe. This quantity is maintained in the NumAssets property. Although you
can set this property directly, it is usually derived from other properties such as the
number of assets in the scenarios or the initial portfolio. In some instances, the number
of assets may need to be set directly. This example shows how to set up a PortfolioCVaR
object that has four assets:

p = PortfolioCVaR('NumAssets', 4);

disp(p.NumAssets);

4

After setting the NumAssets property, you cannot modify it (unless no other properties
are set that depend on NumAssets). The only way to change the number of assets in
an existing PortfolioCVaR object with a known number of assets is to create a new
PortfolioCVaR object.
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Setting Up a List of Asset Identifiers

When working with portfolios, you must specify a universe of assets. Although you can
perform a complete analysis without naming the assets in your universe, it is helpful to
have an identifier associated with each asset as you create and work with portfolios. You
can create a list of asset identifiers as a cell vector of character vectors in the property
AssetList. You can set up the list using the next two methods.

Setting up Asset Lists Using the PortfolioCVaR Function

Suppose that you have a PortfolioCVaR object, p, with assets with symbols 'AA'', 'BA',
'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using
the PortfolioCVaR function:

p = PortfolioCVaR('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character
vectors, and that it is necessary to pass a cell array into the PortfolioCVaR function to
set AssetList. In addition, notice that the property NumAssets is set to 5 based on the
number of symbols used to create the asset list:

disp(p.NumAssets);

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of
asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = PortfolioCVaR;

p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list
without creating a cell array of character vectors. For example, given the list of assets
symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:

p = PortfolioCVaR;
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p = setAssetList(p, 'AA', 'BA', 'CAT', 'DD', 'ETR');

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a PortfolioCVaR object, it creates a default asset list according
to the name specified in the hidden public property defaultforAssetList (which is
'Asset' by default). The number of asset names created depends on the number of
assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed
to be 1.

For example, if a PortfolioCVaR object p is created with NumAssets = 5, then this code
fragment shows the default naming behavior:

p = PortfolioCVaR('numassets',5);

p = setAssetList(p);

disp(p.AssetList);

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = PortfolioCVaR('numassets',5);

p.defaultforAssetList = 'ETF'; 

p = setAssetList(p);

disp(p.AssetList);

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'

Truncating and Padding Asset Lists

If the NumAssets property is already set and you pass in too many or too few identifiers,
the PortfolioCVaR function, and the setAssetList function truncate or pad the list
with numbered default asset names that use the name specified in the hidden public
property defaultforAssetList. If the list is truncated or padded, a warning message
indicates the discrepancy. For example, assume that you have a PortfolioCVaR object
with five ETFs and you only know the first three CUSIPs '921937835', '922908769',
and '922042775'. Use this syntax to create an asset list that pads the remaining asset
identifiers with numbered 'UnknownCUSIP' placeholders:
p = PortfolioCVaR('numassets',5);

p.defaultforAssetList = 'UnknownCUSIP';

p = setAssetList(p, '921937835', '922908769', '922042775');

disp(p.AssetList);
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Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets. 

> In PortfolioCVaR.setAssetList at 118 

    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four
assets. This example illustrates truncation of the asset list using the PortfolioCVaR
function:
p = PortfolioCVaR('numassets',4);

p = PortfolioCVaR(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });

disp(p.AssetList);

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 

> In PortfolioCVaR.checkarguments at 399

  In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 195 

    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether
to convert asset names to uppercase letters. The default value for uppercaseAssetList
is false. This example shows how to use the uppercaseAssetList flag to force
identifiers to be uppercase letters:

p = PortfolioCVaR;

p.uppercaseAssetList = true;

p = setAssetList(p, { 'aa', 'ba', 'cat', 'dd', 'etr' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
checkFeasibility | estimateBounds | PortfolioCVaR | setAssetList |
setInitPort

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 5-37
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17
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External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Setting Up an Initial or Current Portfolio

In many applications, creating a new optimal portfolio requires comparing the new
portfolio with an initial or current portfolio to form lists of purchases and sales. The
PortfolioCVaR object property InitPort lets you identify an initial or current portfolio.
The initial portfolio also plays an essential role if you have either transaction costs or
turnover constraints. The initial portfolio need not be feasible within the constraints
of the problem. This can happen if the weights in a portfolio have shifted such that
some constraints become violated. To check if your initial portfolio is feasible, use the
checkFeasibility function described in “Validating CVaR Portfolios” on page 5-92.
Suppose that you have an initial portfolio in x0, then use the PortfolioCVaR function
to set up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = PortfolioCVaR('InitPort', x0);

disp(p.InitPort);

  0.3000

  0.2000

  0.2000

       0

As with all array properties, you can set InitPort with scalar expansion. This is helpful
to set up an equally weighted initial portfolio of, for example, 10 assets:

p = PortfolioCVaR('NumAssets', 10, 'InitPort', 1/10);

disp(p.InitPort);

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

To clear an initial portfolio from your PortfolioCVaR object, use either the
PortfolioCVaR function or the setInitPort function with an empty input for the
InitPort property. If transaction costs or turnover constraints are set, it is not possible
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to clear the InitPort property in this way. In this case, to clear InitPort, first clear
the dependent properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial
portfolio in x0, use setInitPort to set the InitPort property:

p = PortfolioCVaR;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

 0.3000

 0.2000

 0.2000

      0

To create an equally weighted portfolio of four assets, use setInitPort:

p = PortfolioCVaR;

p = setInitPort(p, 1/4, 4);

disp(p.InitPort); 

 0.2500

 0.2500

 0.2500

 0.2500

PortfolioCVaR object functions that work with either transaction costs or turnover
constraints also depend on the InitPort property. So, the set functions for transaction
costs or turnover constraints permit the assignment of a value for the InitPort
property as part of their implementation. For details, see “Working with Average
Turnover Constraints Using PortfolioCVaR Object” on page 5-82, “Working with
One-way Turnover Constraints Using PortfolioCVaR Object” on page 5-86, and
“Working with Transaction Costs” on page 5-53. If either transaction costs or
turnover constraints are used, then the InitPort property must have a nonempty
value. Absent a specific value assigned through the PortfolioCVaR function or various
set functions, the PortfolioCVaR object sets InitPort to 0 and warns if BuyCost,
SellCost, or Turnover properties are set. This example shows what happens if you
specify an average turnover constraint with an initial portfolio:

p = PortfolioCVaR('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);

disp(p.InitPort);
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 0.3000

 0.2000

 0.2000

      0

In contrast, this example shows what happens if an average turnover constraint is
specified without an initial portfolio:

p = PortfolioCVaR('Turnover', 0.3);

disp(p.InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.

Will set NumAssets = 1 and InitPort = 0. 

> In PortfolioCVaR.checkarguments at 322

  In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 195 

     0

See Also
checkFeasibility | estimateBounds | PortfolioCVaR | setAssetList |
setInitPort

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Asset Returns and Scenarios Using PortfolioCVaR Object

In this section...

“How Stochastic Optimization Works” on page 5-40
“What Are Scenarios?” on page 5-41
“Setting Scenarios Using the PortfolioCVaR Function” on page 5-41
“Setting Scenarios Using the setScenarios Function” on page 5-42
“Estimating the Mean and Covariance of Scenarios” on page 5-43
“Simulating Normal Scenarios” on page 5-44
“Simulating Normal Scenarios from Returns or Prices” on page 5-44
“Simulating Normal Scenarios with Missing Data” on page 5-46
“Simulating Normal Scenarios from Time Series Data” on page 5-47
“Simulating Normal Scenarios with Mean and Covariance” on page 5-49

How Stochastic Optimization Works

The CVaR of a portfolio is a conditional expectation. (For the definition of the CVaR
function, see “Risk Proxy” on page 5-6.) Therefore, the CVaR portfolio optimization
problem is a stochastic optimization problem. Given a sample of scenarios, the
conditional expectation that defines the sample CVaR of the portfolio can be expressed
as a finite sum, a weighted average of losses. The weights of the losses depend on their
relative magnitude; for a confidence level α, only the worst (1 − α) x 100% losses get a
positive weight. As a function of the portfolio weights, the CVaR of the portfolio is a
convex function (see [48], [49] Rockafellar & Uryasev at “Portfolio Optimization” on page
A-11). It is also a nonsmooth function, but its edges are less sharp as the sample size
increases.

There are reformulations of the CVaR portfolio optimization problem (see [48], [49] at
Rockafellar & Uryasev) that result in a linear programming problem, which can be solved
either with standard linear programming techniques or with stochastic programming
solvers. The PortfolioCVaR object, however, does not reformulate the problem in such
a manner. The PortfolioCVaR object computes the CVaR as a nonlinear function. The
convexity of the CVaR, as a function of the portfolio weights and the dull edges when the
number of scenarios is large, make the CVaR portfolio optimization problem tractable, in
practice, for certain nonlinear programming solvers, such as fmincon from Optimization
Toolbox. The problem can also be solved using a cutting-plane method (see Kelley [45] at
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“Portfolio Optimization” on page A-11). For more information, see Algorithms section
of setSolver. To learn more about the workflow when using PortfolioCVaR objects, see
“PortfolioCVaR Object Workflow” on page 5-17.

What Are Scenarios?

Since conditional value-at-risk portfolio optimization works with scenarios of asset
returns to perform the optimization, several ways exist to specify and simulate scenarios.
In many applications with CVaR portfolio optimization, asset returns may have
distinctly nonnormal probability distributions with either multiple modes, binning of
returns, truncation of distributions, and so forth. In other applications, asset returns
are modeled as the result of various simulation methods that might include Monte-
Carlo simulation, quasi-random simulation, and so forth. In many cases, the underlying
probability distribution for risk factors may be multivariate normal but the resultant
transformations are sufficiently nonlinear to result in distinctively nonnormal asset
returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero
probability of default, such scenarios would likely include asset returns that are −100%
to indicate default and some values slightly greater than −100% to indicate recovery
rates.

Although the PortfolioCVaR object has functions to simulate multivariate normal
scenarios from either data or moments (simulateNormalScenariosByData and
simulateNormalScenariosByMoments), the usual approach is to specify scenarios
directly from your own simulation functions. These scenarios are entered directly as
a matrix with a sample for all assets across each row of the matrix and with samples
for an asset down each column of the matrix. The architecture of the CVaR portfolio
optimization tools references the scenarios through a function handle so scenarios that
have been set cannot be accessed directly as a property of the PortfolioCVaR object.

Setting Scenarios Using the PortfolioCVaR Function

Suppose that you have a matrix of scenarios in the AssetScenarios variable. The
scenarios are set through the PortfolioCVaR function with:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];
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m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('Scenarios', AssetScenarios);

disp(p.NumAssets);

disp(p.NumScenarios);

4

20000

Notice that the PortfolioCVaR object determines and fixes the number of assets in
NumAssets and the number of scenarios in NumScenarios based on the scenario’s
matrix. You can change the number of scenarios by calling the PortfolioCVaR
function with a different scenario matrix. However, once the NumAssets property
has been set in the object, you cannot enter a scenario matrix with a different
number of assets. The getScenarios function lets you recover scenarios from a
PortfolioCVaR object. You can also obtain the mean and covariance of your scenarios
using estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover
scenarios by working with the function handle that points to scenarios in the
PortfolioCVaR object. To access some or all of the scenarios from a PortfolioCVaR object,
the hidden property localScenarioHandle is a function handle that points to a
function to obtain scenarios that have already been set. To get scenarios directly from a
PortfolioCVaR object p, use

scenarios = p.localScenarioHandle([], []);

and to obtain a subset of scenarios from rows startrow to endrow, use

scenarios = p.localScenarioHandle(startrow, endrow);

where 1 ≤ startrow ≤ endrow ≤ numScenarios.

Setting Scenarios Using the setScenarios Function

You can also set scenarios using setScenarios. For example, given the mean and
covariance of asset returns in the variables m and C, the asset moment properties can be
set:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

disp(p.NumAssets);

disp(p.NumScenarios);

4

20000

Estimating the Mean and Covariance of Scenarios

The estimateScenarioMoments function obtains estimates for the mean and
covariance of scenarios in a PortfolioCVaR object.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

[mean, covar] = estimateScenarioMoments(p)

mean =

    0.0043
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    0.0085

    0.0098

    0.0153

covar =

    0.0005    0.0003    0.0002    0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0049    0.0029

    0.0000    0.0010    0.0029    0.0102

Simulating Normal Scenarios

As a convenience, the two functions (simulateNormalScenariosByData and
simulateNormalScenariosByMoments) exist to simulate scenarios from data or
moments under an assumption that they are distributed as multivariate normal random
asset returns.

Simulating Normal Scenarios from Returns or Prices

Given either return or price data, use the function simulateNormalScenariosByData
to simulate multivariate normal scenarios. Either returns or prices are stored as
matrices with samples going down the rows and assets going across the columns.
In addition, returns or prices can be stored in a financial time series fints object
(see “Simulating Normal Scenarios from Time Series Data” on page 5-47). To
illustrate using simulateNormalScenariosByData, generate random samples of
120 observations of asset returns for four assets from the mean and covariance of asset
returns in the variables m and C with portsim. The default behavior of portsim creates
simulated data with estimated mean and covariance identical to the input moments m
and C. In addition to a return series created by portsim in the variable X, a price series
is created in the variable Y:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

Y = ret2tick(X);
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Note: Portfolio optimization requires that you use total returns and not just price
returns. So, “returns” should be total returns and “prices” should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of
examples demonstrates equivalent ways to simulate multivariate normal scenarios for
the PortfolioCVaR object. Assume a PortfolioCVaR object created in p that uses the asset
returns in X uses simulateNormalScenariosByData:

p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, X, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0043

    0.0083

    0.0102

    0.1507

passetcovar =

    0.0053    0.0003    0.0002    0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0049    0.0028

    0.0000    0.0010    0.0028    0.0101

The moments that you obtain from this simulation will likely differ from the moments
listed here because the scenarios are random samples from the estimated multivariate
normal probability distribution of the input returns X.

The default behavior of simulateNormalScenariosByData is to work
with asset returns. If, instead, you have asset prices as in the variable Y,
simulateNormalScenariosByData accepts a name-value pair argument name
'DataFormat' with a corresponding value set to 'prices' to indicate that the input
to the function is in the form of asset prices and not returns (the default value for the
'DataFormat' argument is 'returns'). This example simulates scenarios with the
asset price data in Y for the PortfolioCVaR object q:
p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

[passetmean, passetcovar] = estimateScenarioMoments(p)
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passetmean =

    0.0043

    0.0084

    0.0094

    0.1490

passetcovar =

    0.0054    0.0004    0.0001   -0.0000

    0.0004    0.0024    0.0016    0.0009

    0.0001    0.0016    0.0048    0.0028

   -0.0000    0.0009    0.0028    0.0100

Simulating Normal Scenarios with Missing Data

Often when working with multiple assets, you have missing data indicated
by NaN values in your return or price data. Although “Multivariate Normal
Regression” on page 9-2 goes into detail about regression with missing data, the
simulateNormalScenariosByData function has a name-value pair argument name
'MissingData' that indicates with a Boolean value whether to use the missing data
capabilities of Financial Toolbox. The default value for 'MissingData' is false
which removes all samples with NaN values. If, however, 'MissingData' is set to
true, simulateNormalScenariosByData uses the ECM algorithm to estimate asset
moments. This example shows how this works on price data with missing values:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

Y = ret2tick(X);

Y(1:20,1) = NaN;

Y(1:12,4) = NaN;

Notice that the prices above in Y have missing values in the first and fourth series.
p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

q = PortfolioCVaR;

q = simulateNormalScenariosByData(q, Y, 20000, 'dataformat', 'prices', 'missingdata', true);
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[passetmean, passetcovar] = estimateScenarioMoments(p)

[qassetmean, qassetcovar] = estimateScenarioMoments(q)

passetmean =

    0.0020

    0.0074

    0.0078

    0.1476

passetcovar =

    0.0055    0.0003   -0.0001   -0.0003

    0.0003    0.0024    0.0019    0.0012

   -0.0001    0.0019    0.0050    0.0028

   -0.0003    0.0012    0.0028    0.0101

qassetmean =

    0.0024

    0.0085

    0.0106

    0.1482

qassetcovar =

    0.0071    0.0004   -0.0001   -0.0004

    0.0004    0.0032    0.0022    0.0012

   -0.0001    0.0022    0.0063    0.0034

   -0.0004    0.0012    0.0034    0.0127

The first PortfolioCVaR object, p, contains scenarios obtained from price data in Y where
NaN values are discarded and the second PortfolioCVaR object, q, contains scenarios
obtained from price data in Y that accommodate missing values. Each time you run this
example, you get different estimates for the moments in p and q.

Simulating Normal Scenarios from Time Series Data

The simulateNormalScenariosByData function also accepts asset returns or prices
stored in financial time series (fints) objects. The function implicitly works with
matrices of data or data in a fints object using the same rules for whether the data are
returns or prices. To illustrate, use fints to create the fints object Xfts that contains
asset returns generated with fints (see “Estimating Asset Moments from Prices or
Returns” on page 4-47) and add series labels:
m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;
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0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';

Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});

Xfts = tomonthly(Xfts);

Xfts.Bonds = X(:,1);

Xfts.LargeCap = X(:,2);

Xfts.SmallCap = X(:,3);

Xfts.Emerging = X(:,4);

p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, Xfts, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0044

    0.0082

    0.0102

    0.1504

passetcovar =

    0.0054    0.0004    0.0002   -0.0000

    0.0004    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0047    0.0027

   -0.0000    0.0010    0.0027    0.0102

The name-value inputs 'DataFormat' to handle return or price data
and'MissingData' to ignore or use samples with missing values also work for fints
data. In addition, simulateNormalScenariosByData extracts asset names or
identifiers from a fints object if the argument name 'GetAssetList' is set to true
(the default value is false). If the 'GetAssetList' value is true, the identifiers
are used to set the AssetList property of the PortfolioCVaR object. Thus, repeating
the formation of the PortfolioCVaR object q from the previous example with the
'GetAssetList' flag set to true extracts the series labels from the fints object:
p = simulateNormalScenariosByData(p, Xfts, 20000, 'getassetlist', true);

disp(p.AssetList)

'Bonds' 'LargeCap' 'SmallCap' 'Emerging'

If you set the'GetAssetList' flag set to true and your input data is in a matrix,
simulateNormalScenariosByData uses the default labeling scheme from
setAssetList as described in “Setting Up a List of Asset Identifiers” on page 5-33.
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Simulating Normal Scenarios with Mean and Covariance

Given the mean and covariance of asset returns, use the
simulateNormalScenariosByMoments function to simulate multivariate normal
scenarios. The mean can be either a row or column vector and the covariance matrix
must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion
apply. To illustrate using simulateNormalScenariosByMoments, start with moments
in m and C and generate 20,000 scenarios:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

p = PortfolioCVaR;

p = simulateNormalScenariosByMoments(p, m, C, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0049

    0.0083

    0.0101

    0.1503

passetcovar =

    0.0053    0.0003    0.0002   -0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0047    0.0028

   -0.0000    0.0010    0.0028    0.0101

simulateNormalScenariosByMoments performs scalar expansion on
arguments for the moments of asset returns. If NumAssets has not already
been set, a scalar argument is interpreted as a scalar with NumAssets set to 1.
simulateNormalScenariosByMoments provides an additional optional argument to
specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns,
a diagonal matrix is formed such that a scalar expands along the diagonal and a vector
becomes the diagonal.
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See Also
estimatePortVaR | PortfolioCVaR | setCosts | setProbabilityLevel
| setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Working with a Riskless Asset” on page 5-51
• “Working with Transaction Costs” on page 5-53
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with a Riskless Asset

The PortfolioCVaR object has a separate RiskFreeRate property that stores the rate
of return of a riskless asset. Thus, you can separate your universe into a riskless asset
and a collection of risky assets. For example, assume that your riskless asset has a
return in the scalar variable r0, then the property for the RiskFreeRate is set using the
PortfolioCVaR function:

r0 = 0.01/12;

p = PortfolioCVaR;

p = PortfolioCVaR('RiskFreeRate', r0);

disp(p.RiskFreeRate);

8.3333e-04

Note: If your portfolio problem has a budget constraint such that your portfolio weights
must sum to 1, then the riskless asset is irrelevant.

See Also
estimatePortVaR | PortfolioCVaR | setCosts | setProbabilityLevel
| setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Working with Transaction Costs” on page 5-53
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112

More About
• “PortfolioCVaR Object” on page 5-19
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• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

5-52

http://www.mathworks.com/videos/cvar-portfolio-optimization-71631.html
http://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html
http://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html


 Working with Transaction Costs

Working with Transaction Costs

The difference between net and gross portfolio returns is transaction costs. The net
portfolio return proxy has distinct proportional costs to purchase and to sell assets
which are maintained in the PortfolioCVaR object properties BuyCost and SellCost.
Transaction costs are in units of total return and, as such, are proportional to the price
of an asset so that they enter the model for net portfolio returns in return form. For
example, suppose that you have a stock currently priced $40 and your usual transaction
costs are 5 cents per share. Then the transaction cost for the stock is 0.05/40 = 0.00125
(as defined in “Net Portfolio Returns” on page 5-5). Costs are entered as positive values
and credits are entered as negative values.

Setting Transaction Costs Using the PortfolioCVaR Function

To set up transaction costs, you must specify an initial or current portfolio in the
InitPort property. If the initial portfolio is not set when you set up the transaction
cost properties, InitPort is 0. The properties for transaction costs can be set using
the PortfolioCVaR function. For example, assume that purchase and sale transaction
costs are in the variables bc and sc and an initial portfolio is in the variable x0, then
transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

     5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013
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    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs Using the setCosts Function

You can also set the properties for transaction costs using setCosts. Assume that
you have the same costs and initial portfolio as in the previous example. Given a
PortfolioCVaR object p with an initial portfolio already set, use setCosts to set up
transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setCosts(p, bc, sc);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);    

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000
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    0.1000

    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to
setCosts so that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR;

p = setCosts(p, bc, sc, x0);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs with Scalar Expansion

Both the PortfolioCVaR function and setCosts function implement scalar expansion
on the arguments for transaction costs and the initial portfolio. If the NumAssets
property is already set in the PortfolioCVaR object, scalar arguments for these properties
are expanded to have the same value across all dimensions. In addition, setCosts lets
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you specify NumAssets as an optional final argument. For example, assume that you
have an initial portfolio x0 and you want to set common transaction costs on all assets in
your universe. You can set these costs in any of these equivalent ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR;

p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your PortfolioCVaR object, use either the PortfolioCVaR function or
setCosts with empty inputs for the properties to be cleared. For example, you can clear
sales costs from the PortfolioCVaR object p in the previous example:

p = PortfolioCVaR(p, 'SellCost', []);

See Also
estimatePortVaR | PortfolioCVaR | setCosts | setProbabilityLevel
| setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Working with a Riskless Asset” on page 5-51
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
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More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with CVaR Portfolio Constraints Using Defaults

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). For
information on the workflow when using PortfolioCVaR objects, see “PortfolioCVaR
Object Workflow” on page 5-17.

Setting Default Constraints for Portfolio Weights Using PortfolioCVaR
Object

The “default” CVaR portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although
this is a superfluous constraint to impose on the problem.

Setting Default Constraints Using the PortfolioCVaR Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the
PortfolioCVaR function to set up a default problem and explicitly set bounds and
budget constraints:

p = PortfolioCVaR('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);

disp(p);

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []
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         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: 20

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [20x1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number
of assets is already known in a PortfolioCVaR object, use setDefaultConstraints
with no arguments to set up the necessary bound and budget constraints. Suppose that
you have 20 assets to set up the portfolio set for a default problem:

p = PortfolioCVaR('NumAssets', 20);

p = setDefaultConstraints(p);

disp(p);

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []
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           NumAssets: 20

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [20x1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as
an optional argument to form a portfolio set for a default problem. Suppose that you have
20 assets:

p = PortfolioCVaR;

p = setDefaultConstraints(p, 20);

disp(p);

 PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: 20

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

5-60



 Working with CVaR Portfolio Constraints Using Defaults

          LowerBound: [20x1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Working with Bound Constraints Using PortfolioCVaR Object” on page 5-63
• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Ratio Constraints Using PortfolioCVaR Object” on page

5-72
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page

5-76
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page

5-79
• “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page

5-82
• “Working with One-way Turnover Constraints Using PortfolioCVaR Object” on page

5-86
• “Creating the PortfolioCVaR Object” on page 5-24
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
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• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Bound Constraints Using PortfolioCVaR Object

Bound constraints are optional linear constraints that maintain upper and lower
bounds on portfolio weights (see “Bound Constraints” on page 5-10). Although every
CVaR portfolio set must be bounded, it is not necessary to specify a CVaR portfolio
set with explicit bound constraints. For example, you can create a CVaR portfolio set
with an implicit upper bound constraint or a CVaR portfolio set with average turnover
constraints. The bound constraints have properties LowerBound for the lower-bound
constraint and UpperBound for the upper-bound constraint. Set default values for
these constraints using the setDefaultConstraints function (see “Setting Default
Constraints for Portfolio Weights Using PortfolioCVaR Object” on page 5-58).

Setting Bounds Using the PortfolioCVaR Function

The properties for bound constraints are set through the PortfolioCVaR function.
Suppose that you have a balanced fund with stocks that can range from 50% to 75% of
your portfolio and bonds that can range from 25% to 50% of your portfolio. The bound
constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioCVaR('LowerBound', lb, 'UpperBound', ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

2

 0.5000

 0.2500

 0.7500

 0.5000

To continue with this example, you must set up a budget constraint. For details, see
“Working with Budget Constraints Using PortfolioCVaR Object” on page 5-66.

Setting Bounds Using the setBounds Function

You can also set the properties for bound constraints using setBounds. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
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bonds that can range from 25% to 50% of your portfolio. Given a PortfolioCVaR object p,
use setBounds to set the bound constraints:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioCVaR;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

  2

  0.5000

  0.2500

  0.7500

  0.5000

Setting Bounds Using the PortfolioCVaR Function or setBounds Function

Both the PortfolioCVaR function and setBounds function implement scalar expansion
on either the LowerBound or UpperBound properties. If the NumAssets property is
already set in the PortfolioCVaR object, scalar arguments for either property expand
to have the same value across all dimensions. In addition, setBounds lets you specify
NumAssets as an optional argument. Suppose that you have a universe of 500 assets and
you want to set common bound constraints on all assets in your universe. Specifically,
you are a long-only investor and want to hold no more than 5% of your portfolio in any
single asset. You can set these bound constraints in any of these equivalent ways:
p = PortfolioCVaR('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);

or

p = PortfolioCVaR('NumAssets', 500);

p = setBounds(p, 0, 0.05);

or

p = PortfolioCVaR;

p = setBounds(p, 0, 0.05, 500);

To clear bound constraints from your PortfolioCVaR object, use either the
PortfolioCVaR function or setBounds with empty inputs for the properties to be
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cleared. For example, to clear the upper-bound constraint from the PortfolioCVaR object
p in the previous example:

p = PortfolioCVaR(p, 'UpperBound', []);

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Budget Constraints Using PortfolioCVaR Object

The budget constraint is an optional linear constraint that maintains upper and
lower bounds on the sum of portfolio weights (see “Budget Constraints” on page 5-11).
Budget constraints have properties LowerBudget for the lower budget constraint
and UpperBudget for the upper budget constraint. If you set up a CVaR portfolio
optimization problem that requires portfolios to be fully invested in your universe of
assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints
can be set with default values equal to 1 using setDefaultConstraints (see “Setting
Default Constraints Using the PortfolioCVaR Function” on page 5-58).

Setting Budget Constraints Using the PortfolioCVaR Function

The properties for the budget constraint can also be set using the PortfolioCVaR
function. Suppose that you have an asset universe with many risky assets and a riskless
asset and you want to ensure that your portfolio never holds more than 1% cash, that is,
you want to ensure that you are 99–100% invested in risky assets. The budget constraint
for this portfolio can be set with:

p = PortfolioCVaR('LowerBudget', 0.99, 'UpperBudget', 1);

disp(p.LowerBudget);

disp(p.UpperBudget);

 0.9900

1

Setting Budget Constraints Using the setBudget Function

You can also set the properties for a budget constraint using setBudget. Suppose that
you have a fund that permits up to 10% leverage which means that your portfolio can
be from 100% to 110% invested in risky assets. Given a PortfolioCVaR object p, use
setBudget to set the budget constraints:

p = PortfolioCVaR;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

 1
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 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the
borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate
property, see “Working with a Riskless Asset” on page 5-51. To clear either bound for
the budget constraint from your PortfolioCVaR object, use either the PortfolioCVaR
function or setBudget with empty inputs for the properties to be cleared. For example,
clear the upper-budget constraint from the PortfolioCVaR object p in the previous
example with:

p = PortfolioCVaR(p, 'UpperBudget', []);

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Group Constraints Using PortfolioCVaR Object

Group constraints are optional linear constraints that group assets together and enforce
bounds on the group weights (see “Group Constraints” on page 5-12). Although the
constraints are implemented as general constraints, the usual convention is to form
a group matrix that identifies membership of each asset within a specific group with
Boolean indicators (either true or false or with 1 or 0) for each element in the group
matrix. Group constraints have properties GroupMatrix for the group membership
matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the
upper-bound constraint on groups.

Setting Group Constraints Using the PortfolioCVaR Function

The properties for group constraints are set through the PortfolioCVaR function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets constitute no more than 30% of your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];

p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the
same result.

G = [ true true true false false ];

p = PortfolioCVaR('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0
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0.3000

Setting Group Constraints Using the setGroups and addGroups Functions

You can also set the properties for group constraints using setGroups. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute no
more than 30% of your portfolio. Given a PortfolioCVaR object p, use setGroups to set
the group constraints:

G = [ true true true false false ];

p = PortfolioCVaR;

p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose that you want to add another group constraint to make odd-numbered assets
constitute at least 20% of your portfolio. Set up an augmented group matrix and
introduce infinite bounds for unconstrained group bounds or use the addGroups function
to build up group constraints. For this example, create another group matrix for the
second group constraint:
p = PortfolioCVaR;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

 5

1     1     1     0     0

1     0     1     0     1

  -Inf

5-69



5 CVaR Portfolio Optimization Tools

0.2000

0.3000

  Inf

addGroups determines which bounds are unbounded so you only need to focus on the
constraints that you want to set.

The PortfolioCVaR function, setGroups, and addGroups implement scalar expansion
on either the LowerGroup or UpperGroup properties based on the dimension of the
group matrix in the property GroupMatrix. Suppose that you have a universe of 30
assets with 6 asset classes such that assets 1–5, assets 6–12, assets 13–18, assets 19–22,
assets 23–27, and assets 28–30 constitute each of your asset classes and you want each
asset class to fall from 0% to 25% of your portfolio. Let the following group matrix define
your groups and scalar expansion define the common bounds on each group:
p = PortfolioCVaR;

G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));

p = setGroups(p, G, 0, 0.25);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

30

  Columns 1 through 16

     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     1     1     1     1     1     1     1     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 17 through 30

     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     1     1     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     1     1     1     1     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     1     1     1     1     1     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     1     1     1

     0

     0

     0

     0

     0

     0

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500
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See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Group Ratio Constraints Using PortfolioCVaR Object
Group ratio constraints are optional linear constraints that maintain bounds on
proportional relationships among groups of assets (see “Group Ratio Constraints” on
page 5-13). Although the constraints are implemented as general constraints, the usual
convention is to specify a pair of group matrices that identify membership of each asset
within specific groups with Boolean indicators (either true or false or with 1 or 0)
for each element in each of the group matrices. The goal is to ensure that the ratio of a
base group compared to a comparison group fall within specified bounds. Group ratio
constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the PortfolioCVaR Function

The properties for group ratio constraints are set using PortfolioCVaR function. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1–3) and three nonfinanical companies (assets 4–6). To set group ratio
constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies

GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies

p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false
elements that yield the same result:
GA = [ true true true false false false ];    % financial companies
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GB = [ false false false true true true ];    % nonfinancial companies

p = PortfolioCVaR('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions

You can also set the properties for group ratio constraints using setGroupRatio.
For example, assume that you want the ratio of financial to nonfinancial companies
in your portfolios to never go above 50%. Suppose that you have six assets with three
financial companies (assets 1–3) and three nonfinanical companies (assets 4–6). Given a
PortfolioCVaR object p, use setGroupRatio to set the group constraints:
GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = PortfolioCVaR;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights
in odd-numbered assets constitute at least 20% of the weights in nonfinancial assets your
portfolio. You can set up augmented group ratio matrices and introduce infinite bounds
for unconstrained group ratio bounds, or you can use the addGroupRatio function to
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build up group ratio constraints. For this example, create another group matrix for the
second group constraint:
p = PortfolioCVaR;

GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies

GB = [ false false false true true true ];   % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

 6

1     1     1     0     0     0

1     0     1     0     1     0

0     0     0     1     1     1

0     0     0     1     1     1

  -Inf

0.2000

0.5000

  Inf

Notice that addGroupRatio determines which bounds are unbounded so you only need
to focus on the constraints you want to set.

The PortfolioCVaR function, setGroupRatio, and addGroupRatio implement scalar
expansion on either the LowerRatio or UpperRatio properties based on the dimension
of the group matrices in GroupA and GroupB properties.

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
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• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Linear Equality Constraints Using PortfolioCVaR
Object

Linear equality constraints are optional linear constraints that impose systems of
equalities on portfolio weights (see “Linear Equality Constraints” on page 5-10). Linear
equality constraints have properties AEquality, for the equality constraint matrix, and
bEquality, for the equality constraint vector.

Setting Linear Equality Constraints Using the PortfolioCVaR Function

The properties for linear equality constraints are set using the PortfolioCVaR function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. To set this constraint:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR('AEquality', A, 'bEquality', b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and addEquality
Functions

You can also set the properties for linear equality constraints using setEquality.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioCVaR object p, use setEquality to set
the linear equality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setEquality(p, A, b);

disp(p.NumAssets);
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disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last
three assets also constitute 50% of your portfolio. You can set up an augmented system
of linear equalities or use addEquality to build up linear equality constraints. For this
example, create another system of equalities:

p = PortfolioCVaR;

A = [ 1 1 1 0 0 ];    % first equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0     0     1     1     1

0.5000

0.5000

The PortfolioCVaR function, setEquality, and addEquality implement scalar
expansion on the bEquality property based on the dimension of the matrix in the
AEquality property.

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover
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Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Linear Inequality Constraints Using PortfolioCVaR
Object

Linear inequality constraints are optional linear constraints that impose systems of
inequalities on portfolio weights (see “Linear Inequality Constraints” on page 5-9).
Linear inequality constraints have properties AInequality for the inequality constraint
matrix, and bInequality for the inequality constraint vector.

Setting Linear Inequality Constraints Using the PortfolioCVaR Function

The properties for linear inequality constraints are set using the PortfolioCVaR
function. Suppose that you have a portfolio of five assets and you want to ensure that the
first three assets are no more than 50% of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR('AInequality', A, 'bInequality', b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions

You can also set the properties for linear inequality constraints using setInequality.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets constitute no more than 50% of your portfolio. Given a PortfolioCVaR object
p, use setInequality to set the linear inequality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setInequality(p, A, b);

disp(p.NumAssets);
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disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the
last three assets constitute at least 50% of your portfolio. You can set up an augmented
system of linear inequalities or use the addInequality function to build up linear
inequality constraints. For this example, create another system of inequalities:

p = PortfolioCVaR;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0     0    -1    -1    -1

0.5000

-0.5000

The PortfolioCVaR function, setInequality, and addInequality implement scalar
expansion on the bInequality property based on the dimension of the matrix in the
AInequality property.

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover
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Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Average Turnover Constraints Using PortfolioCVaR
Object

The turnover constraint is an optional linear absolute value constraint (see “Average
Turnover Constraints” on page 5-13) that enforces an upper bound on the average of
purchases and sales. The turnover constraint can be set using the PortfolioCVaR
function or the setTurnover function. The turnover constraint depends on an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraint is
set. The turnover constraint has properties Turnover, for the upper bound on average
turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the PortfolioCVaR Function

The properties for the turnover constraints are set using the PortfolioCVaR function.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and you want to
ensure that average turnover is no more than 30%. To set this turnover constraint:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = PortfolioCVaR('Turnover', 0.3, 'InitPort', x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10
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0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 5-37).
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Setting Average Turnover Constraints Using the setTurnover Function

You can also set properties for portfolio turnover using setTurnover to specify both
the upper bound for average turnover and an initial portfolio. Suppose that you have an
initial portfolio of 10 assets in a variable x0 and want to ensure that average turnover is
no more than 30%. Given a PortfolioCVaR object p, use setTurnover to set the turnover
constraint with and without the initial portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR;

p = setTurnover(p, 0.3, x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800
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0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

setTurnover implements scalar expansion on the argument for the initial portfolio. If
the NumAssets property is already set in the PortfolioCVaR object, a scalar argument
for InitPort expands to have the same value across all dimensions. In addition,
setTurnover lets you specify NumAssets as an optional argument. To clear turnover
from your PortfolioCVaR object, use the PortfolioCVaR function or setTurnover with
empty inputs for the properties to be cleared.

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
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• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)
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Working with One-way Turnover Constraints Using PortfolioCVaR
Object

One-way turnover constraints are optional constraints (see “One-way Turnover
Constraints” on page 5-14) that enforce upper bounds on net purchases or net sales.
One-way turnover constraints can be set using the PortfolioCVaR function or the
setOneWayTurnover function. One-way turnover constraints depend upon an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraints are
set. One-way turnover constraints have properties BuyTurnover, for the upper bound on
net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the
portfolio against which turnover is computed.

Setting One-way Turnover Constraints Using the PortfolioCVaR Function

The Properties for the one-way turnover constraints are set using the PortfolioCVaR
function. Suppose that you have an initial portfolio with 10 assets in a variable x0 and
you want to ensure that turnover on purchases is no more than 30% and turnover on
sales is no more than 20% of the initial portfolio. To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = PortfolioCVaR('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);  

    10
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If the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 5-37).

Setting Turnover Constraints Using the setOneWayTurnover Function

You can also set properties for portfolio turnover using setOneWayTurnover to
specify to the upper bounds for turnover on purchases (BuyTurnover) and sales
(SellTurnover) and an initial portfolio. Suppose that you have an initial portfolio of
10 assets in a variable x0 and want to ensure that turnover on purchases is no more
than 30% and that turnover on sales is no more than 20% of the initial portfolio. Given
a PortfolioCVaR object p, use setOneWayTurnover to set the turnover constraints with
and without the initial portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);

    10

    0.3000

    0.2000

    0.1200

    0.0900

    0.0800

    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR;

p = setOneWayTurnover(p, 0.3, 0.2, x0);

disp(p.NumAssets);

disp(p.BuyTurnover);
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disp(p.SellTurnover);

disp(p.InitPort);

    10
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    0.0900

    0.0800

    0.0700
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setOneWayTurnover implements scalar expansion on the argument for the initial
portfolio. If the NumAssets property is already set in the PortfolioCVaR object, a scalar
argument for InitPort expands to have the same value across all dimensions. In
addition, setOneWayTurnover lets you specify NumAssets as an optional argument.
To remove one-way turnover from your PortfolioCVaR object, use thePortfolioCVaR
function or setOneWayTurnover with empty inputs for the properties to be cleared.

See Also
PortfolioCVaR | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
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More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Validate the CVaR Portfolio Problem

In this section...

“Validating a CVaR Portfolio Set” on page 5-90
“Validating CVaR Portfolios” on page 5-92

In some cases, you may want to validate either your inputs to, or outputs from, a
portfolio optimization problem. Although most error checking that occurs during the
problem setup phase catches most difficulties with a portfolio optimization problem,
the processes to validate CVaR portfolio sets and portfolios are time consuming and
are best done offline. So, the portfolio optimization tools have specialized functions to
validate CVaR portfolio sets and portfolios. For information on the workflow when using
PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on page 5-17.

Validating a CVaR Portfolio Set

Since it is necessary and sufficient that your CVaR portfolio set must be a nonempty,
closed, and bounded set to have a valid portfolio optimization problem, the
estimateBounds function lets you examine your portfolio set to determine if it is
nonempty and, if nonempty, whether it is bounded. Suppose that you have the following
CVaR portfolio set which is an empty set because the initial portfolio at 0 is too far from
a portfolio that satisfies the budget and turnover constraint:

p = PortfolioCVaR('NumAssets', 3, 'Budget', 1);

p = setTurnover(p, 0.3, 0);

If a CVaR portfolio set is empty, estimateBounds returns NaN bounds and sets the
isbounded flag to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN

   NaN

   NaN

ub =

   NaN
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   NaN

   NaN

isbounded =

     []

Suppose that you create an unbounded CVaR portfolio set as follows:

p = PortfolioCVaR('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf

ub =

  1.0e-008 *

   -0.3712

       Inf

isbounded =

     0

In this case, estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Finally, suppose that you created a CVaR portfolio set that is both nonempty and
bounded. estimateBounds not only validates the set, but also obtains tighter bounds
which are useful if you are concerned with the actual range of portfolio choices for
individual assets in your portfolio set:
p = PortfolioCVaR;

p = setBudget(p, 1,1);

p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);

        

[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000

    0.2000
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    0.3000

    0.2000

ub =

    0.3000

    0.3000

    0.7000

    0.6000

isbounded =

     1

In this example, all but the second asset has tighter upper bounds than the input upper
bound implies.

Validating CVaR Portfolios

Given a CVaR portfolio set specified in a PortfolioCVaR object, you often want to check
if specific portfolios are feasible with respect to the portfolio set. This can occur with,
for example, initial portfolios and with portfolios obtained from other procedures. The
checkFeasibility function determines whether a collection of portfolios is feasible.
Suppose that you perform the following portfolio optimization and want to determine if
the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the PortfolioCVaR object p, estimate efficient portfolios in
pwgt, and then confirm that these portfolios are feasible relative to the initial problem:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);
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pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an
additional a turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);

checkFeasibility(q, pwgt)

ans =

     0     0     0     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible
relative to the new problem in PortfolioCVaR object q. Solving the second problem using
checkFeasibility demonstrates that the efficient portfolio for PortfolioCVaR object q
is feasible relative to the initial problem:

qwgt = estimateFrontier(q);

checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
checkFeasibility | estimateBounds | PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
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More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR
Object

There are two ways to look at a portfolio optimization problem that depends on what you
are trying to do. One goal is to estimate efficient portfolios and the other is to estimate
efficient frontiers. This section focuses on the former goal and “Estimate Efficient
Frontiers for PortfolioCVaR Object” on page 5-112 focuses on the latter goal. For
information on the workflow when using PortfolioCVaR objects, see “PortfolioCVaR
Object Workflow” on page 5-17.

Obtaining Portfolios Along the Entire Efficient Frontier

The most basic way to obtain optimal portfolios is to obtain points over the entire range
of the efficient frontier. Given a portfolio optimization problem in a PortfolioCVaR object,
the estimateFrontier function computes efficient portfolios spaced evenly according to
the return proxy from the minimum to maximum return efficient portfolios. The number
of portfolios estimated is controlled by the hidden property defaultNumPorts which is
set to 10. A different value for the number of portfolios estimated is specified as input to
estimateFrontier. This example shows the default number of efficient portfolios over
the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

disp(pwgt);

Columns 1 through 8

    0.8670    0.7046    0.5421    0.3825    0.2236    0.0570    0.0000    0.0000

    0.0413    0.1193    0.1963    0.2667    0.3392    0.4159    0.3392    0.1753

    0.0488    0.0640    0.0811    0.1012    0.1169    0.1427    0.1568    0.1754

    0.0429    0.1120    0.1806    0.2496    0.3203    0.3844    0.5040    0.6493

  Columns 9 through 10

    0.0000    0.0000

    0.0230    0.0000
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    0.1777    0.0000

    0.7993    1.0000 

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt);

0.8670    0.3825    0.0000    0.0000

0.0413    0.2667    0.3392    0.0000

0.0488    0.1012    0.1568    0.0000

0.0429    0.2496    0.5040    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales
to get from your initial portfolio to each efficient portfolio on the efficient frontier. For
example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

  Columns 1 through 8

    0.8670    0.7046    0.5421    0.3825    0.2236    0.0570    0.0000    0.0000

    0.0413    0.1193    0.1963    0.2667    0.3392    0.4159    0.3392    0.1753

    0.0488    0.0640    0.0811    0.1012    0.1169    0.1427    0.1568    0.1754

    0.0429    0.1120    0.1806    0.2496    0.3203    0.3844    0.5040    0.6493

  Columns 9 through 10

    0.0000    0.0000

    0.0230    0.0000

    0.1777    0.0000

    0.7993    1.0000

pbuy =

  Columns 1 through 8

    0.5670    0.4046    0.2421    0.0825         0         0         0         0

         0         0         0         0    0.0392    0.1159    0.0392         0

         0         0         0         0         0         0         0         0

         0    0.0120    0.0806    0.1496    0.2203    0.2844    0.4040    0.5493

  Columns 9 through 10

         0         0

         0         0

         0         0

    0.6993    0.9000
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psell =

  Columns 1 through 8

         0         0         0         0    0.0764    0.2430    0.3000    0.3000

    0.2587    0.1807    0.1037    0.0333         0         0         0    0.1247

    0.1512    0.1360    0.1189    0.0988    0.0831    0.0573    0.0432    0.0246

    0.0571         0         0         0         0         0         0         0

  Columns 9 through 10

    0.3000    0.3000

    0.2770    0.3000

    0.0223    0.2000

         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioCVaR | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 5-99
• “Obtaining Efficient Portfolios for Target Returns” on page 5-102
• “Obtaining Efficient Portfolios for Target Risks” on page 5-105
• “Obtaining CVaR Portfolio Risks and Returns” on page 5-112
• “Obtaining Portfolio Standard Deviation and VaR” on page 5-114
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-116
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130

More About
• “PortfolioCVaR Object” on page 5-19
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• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Obtaining Endpoints of the Efficient Frontier

In many cases, you might be interested in the endpoint portfolios for the efficient
frontier. Suppose that you want to determine the range of returns from minimum
to maximum to refine a search for a portfolio with a specific target return. Use the
estimateFrontierLimits function to obtain the endpoint portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

0.8646    0.0000

0.0470    0.0000

0.0414    0.0000

0.0470    1.0000

Note: The endpoints of the efficient frontier depend upon the Scenarios in the
PortfolioCVaR object. If you change the Scenarios, you are likely to obtain different
endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases
and sales to get from the initial portfolio to the endpoint portfolios on the efficient
frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and
sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 
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    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierLimits(p);

 

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.8624    0.0000

    0.0513    0.0000

    0.0452    0.0000

    0.0411    1.0000

pbuy =

    0.5624         0

         0         0

         0         0

         0    0.9000

psell =

         0    0.3000

    0.2487    0.3000

    0.1548    0.2000

    0.0589         0
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If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioCVaR | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Obtaining Efficient Portfolios for Target Returns

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolio returns
and obtains efficient portfolios with the specified returns. For example, assume that you
have a universe of four assets where you want to obtain efficient portfolios with target
portfolio returns of 7%, 10%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt);

pwgt =

    0.7526    0.3773    0.1306

    0.1047    0.3079    0.4348

    0.0662    0.1097    0.1426

    0.0765    0.2051    0.2920

In some cases, you can request a return for which no efficient portfolio exists. Based on
the previous example, suppose that you want a portfolio with a 4% return (which is the
return of the first asset). A portfolio that is fully invested in the first asset, however,
is inefficient. estimateFrontierByReturn warns if your target returns are outside
the range of efficient portfolio returns and replaces it with the endpoint portfolio of the
efficient frontier closest to your target return:

 pwgt = estimateFrontierByReturn(p, [0.04]);

Warning: One or more target return values are outside the feasible range [

0.066388, 0.178834 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In PortfolioCVaR.estimateFrontierByReturn at 93 
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The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of
the Efficient Frontier” on page 5-99 and “Obtaining CVaR Portfolio Risks and Returns”
on page 5-112).

pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret);

pret =

    0.0664

    0.1788

This result indicates that efficient portfolios have returns that range from 6.5% to 17.8%.
Note, your results for these examples may be different due to the random generation of
scenarios.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, to obtain purchases and sales with
target returns of 7%, 10%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.7526    0.3773    0.1306

    0.1047    0.3079    0.4348

    0.0662    0.1097    0.1426

    0.0765    0.2051    0.2920

pbuy =

    0.4526    0.0773         0

         0    0.0079    0.1348

         0         0         0

         0    0.1051    0.1920
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psell =

         0         0    0.1694

    0.1953         0         0

    0.1338    0.0903    0.0574

    0.0235         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioCVaR | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Obtaining Efficient Portfolios for Target Risks

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Suppose that you have a universe of
four assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt);

pwgt =

    0.3594    0.2524    0.1543

    0.3164    0.3721    0.4248

    0.1044    0.1193    0.1298

    0.2199    0.2563    0.2910

In some cases, you can request a risk for which no efficient portfolio exists. Based on the
previous example, suppose that you want a portfolio with 6% risk (individual assets in
this universe have risks ranging from 7% to 42.5%). It turns out that a portfolio with
6% risk cannot be formed with these four assets. estimateFrontierByRisk warns if
your target risks are outside the range of efficient portfolio risks and replaces it with the
endpoint of the efficient frontier closest to your target risk:

pwgt = estimateFrontierByRisk(p, 0.06)

Warning: One or more target risk values are outside the feasible range [

0.0735749, 0.436667 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In PortfolioCVaR.estimateFrontierByRisk at 80 
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pwgt =

    0.7899

    0.0856

    0.0545

    0.0700

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the
Efficient Frontier” on page 5-99 and “Obtaining CVaR Portfolio Risks and Returns” on
page 5-112).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk);

prsk =

    0.0736

    0.4367

This result indicates that efficient portfolios have risks that range from 7% to 42.5%.
Note, your results for these examples may be different due to the random generation of
scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from
the example with target risks of 12%, 14%, and 16%:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.3594    0.2524    0.1543

    0.3164    0.3721    0.4248

    0.1044    0.1193    0.1298

    0.2199    0.2563    0.2910

pbuy =
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    0.0594         0         0

    0.0164    0.0721    0.1248

         0         0         0

    0.1199    0.1563    0.1910

psell =

         0    0.0476    0.1457

         0         0         0

    0.0956    0.0807    0.0702

         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioCVaR | setSolver

Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
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• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)
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Choosing and Controlling the Solver

When solving portfolio optimizations for a PortfolioCVaR object, all variations
of fmincon from Optimization Toolbox are supported. Alternatively, you can
use'cuttingplane', a solver that implements Kelley’s cutting plane method (see Kelley
[45] at “Portfolio Optimization” on page A-11).

Unlike Optimization Toolbox which uses the interior-point algorithm as the default
algorithm for fmincon, the portfolio optimization for a PortfolioCVaR object uses the sqp
algorithm. For details about fmincon and constrained nonlinear optimization algorithms
and options, see “Constrained Nonlinear Optimization Algorithms”.

To modify fmincon options for CVaR portfolio optimizations, use setSolver to set the
hidden properties solverType and solverOptions to specify and control the solver.
(Note that you can see the default options by creating a dummyPortfolioCVaR object,
using p = PortfolioCVaR and then type p.solverOptions.) Since these solver
properties are hidden, you cannot set them using the PortfolioCVaR function. The
default solver is fmincon with the sqp algorithm objective function, gradients turned on,
and no displayed output, so you do not need to use setSolver to specify this.

If you want to specify additional options associated with the fmincon solver, setSolver
accepts these options as name-value pair arguments. For example, if you want to use
fmincon with the trust-region-reflective algorithm and with no displayed output,
use setSolver with:
p = PortfolioCVaR;

p = setSolver(p, 'fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'on');

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

on

Alternatively, setSolver accepts an optimoptions object as the second argument.
For example, you can change the algorithm to trust-region-reflective with no
displayed output as follows:
p = PortfolioCVaR;

options = optimoptions('fmincon','Algorithm', 'trust-region-reflective', 'Display', 'off');

p = setSolver(p, 'fmincon', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective
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off

The 'cuttingplane' solver has options to control the number iterations and stopping
tolerances. Moreover, this solver uses linprog as the master solver, and all linprog
options are supported using optimoptions structures. All these options are set using
setSolver.

For example, you can use setSolver to increase the number of iterations for
'cuttingplane':

p = PortfolioCVaR;

p = setSolver(p, 'cuttingplane', 'MaxIter', 2000);

display(p.solverType);

display(p.solverOptions);

cuttingplane

                MaxIter: 2000

                 AbsTol: 1.0000e-06

                 RelTol: 1.0000e-05

    MasterSolverOptions: [1x1 optim.options.Linprog]

To change the master solver algorithm to'interior-point', with no display, use
setSolver to modify 'MasterSolverOptions':
p = PortfolioCVaR;

options = optimoptions('linprog','Algorithm','interior-point','Display','off');

p = setSolver(p,'cuttingplane','MasterSolverOptions',options);

display(p.solverType)

display(p.solverOptions)

display(p.solverOptions.MasterSolverOptions.Algorithm)

display(p.solverOptions.MasterSolverOptions.Display)

cuttingplane

                MaxIter: 1000

                 AbsTol: 1.0000e-06

                 RelTol: 1.0000e-05

    MasterSolverOptions: [1x1 optim.options.Linprog]

interior-point

off

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioCVaR | setSolver
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Related Examples
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Estimate Efficient Frontiers for PortfolioCVaR Object

In this section...

“Obtaining CVaR Portfolio Risks and Returns” on page 5-112
“Obtaining Portfolio Standard Deviation and VaR” on page 5-114

Whereas “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object”
on page 5-95 focused on estimation of efficient portfolios, this section focuses on
the estimation of efficient frontiers. For information on the workflow when using
PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on page 5-17.

Obtaining CVaR Portfolio Risks and Returns

Given any portfolio and, in particular, efficient portfolios, the functions
estimatePortReturn and estimatePortRisk provide estimates for the return (or
return proxy), risk (or the risk proxy). Each function has the same input syntax but
with different combinations of outputs. Suppose that you have this following portfolio
optimization problem that gave you a collection of portfolios along the efficient frontier in
pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

pwgt = estimateFrontier(p);
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Note: Remember that the risk proxy for CVaR portfolio optimization is CVaR.

Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain
risks and returns for your initial portfolio and the portfolios on the efficient frontier:

prsk0 = estimatePortRisk(p, pwgt0);

pret0 = estimatePortReturn(p, pwgt0);

prsk = estimatePortRisk(p, pwgt);

pret = estimatePortReturn(p, pwgt);

You obtain these risks and returns:

display(prsk0);

display(pret0);

display(prsk);

display(pret);

prsk0 =

    0.0591

pret0 =

    0.0067

prsk =

    0.0414

    0.0453

    0.0553

    0.0689

    0.0843

    0.1006

    0.1193

    0.1426

    0.1689

    0.1969

pret =

    0.0050

    0.0060
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    0.0070

    0.0080

    0.0089

    0.0099

    0.0109

    0.0119

    0.0129

    0.0139

Obtaining Portfolio Standard Deviation and VaR

The PortfolioCVaR object has functions to compute standard deviations of portfolio
returns and the value-at-risk of portfolios with the functions estimatePortStd and
estimatePortVaR. These functions work with any portfolios, not necessarily efficient
portfolios. For example, the following example obtains five portfolios (pwgt) on the
efficient frontier and also has an initial portfolio in pwgt0. Various portfolio statistics are
computed that include the return, risk, standard deviation, and value-at-risk. The listed
estimates are for the initial portfolio in the first row followed by estimates for each of the
five efficient portfolios in subsequent rows.

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR('initport', pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontier(p, 5);

pret = estimatePortReturn(p, [pwgt0, pwgt]);

prsk = estimatePortRisk(p, [pwgt0, pwgt]);

pstd = estimatePortStd(p, [pwgt0, pwgt]);

pvar = estimatePortVaR(p, [pwgt0, pwgt]);

[pret, prsk, pstd, pvar]

ans =
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    0.0207    0.0464    0.0381    0.0283

    0.1009    0.0214    0.0699   -0.0109

    0.1133    0.0217    0.0772   -0.0137

    0.1256    0.0226    0.0849   -0.0164

    0.1380    0.0240    0.0928   -0.0182

    0.1503    0.0262    0.1011   -0.0197

See Also
estimatePortReturn | estimatePortStd | estimatePortVaR | plotFrontier |
PortfolioCVaR

Related Examples
• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-116
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Plotting the Efficient Frontier for a PortfolioCVaR Object

The plotFrontier function creates a plot of the efficient frontier for a given portfolio
optimization problem. This function accepts several types of inputs and generates a
plot with an optional possibility to output the estimates for portfolio risks and returns
along the efficient frontier. plotFrontier has four different ways that it can be used. In
addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort
property, plotFrontier also displays the return versus risk of the initial portfolio
on the same plot. If you have a well-posed portfolio optimization problem set up in a
PortfolioCVaR object and you use plotFrontier, you get a plot of the efficient frontier
with the default number of portfolios on the frontier (the default number is currently 10
and is maintained in the hidden property defaultNumPorts). This example illustrates a
typical use of plotFrontier to create a new plot:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);
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The Name property appears as the title of the efficient frontier plot if you set it in the
PortfolioCVaR object. Without an explicit name, the title on the plot would be “Efficient
Frontier.” If you want to obtain a specific number of portfolios along the efficient frontier,
use plotFrontier with the number of portfolios that you want. Suppose that you have
the PortfolioCVaR object from the previous example and you want to plot 20 portfolios
along the efficient frontier and to obtain 20 risk and return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);

display([pret, prsk]);

ans =

    0.0051    0.0406

    0.0056    0.0414

    0.0061    0.0437

    0.0066    0.0471

    0.0071    0.0515

    0.0076    0.0567

    0.0082    0.0624

    0.0087    0.0687
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    0.0092    0.0753

    0.0097    0.0821

    0.0102    0.0891

    0.0107    0.0962

    0.0112    0.1044

    0.0117    0.1142

    0.0122    0.1251

    0.0127    0.1369

    0.0133    0.1496

    0.0138    0.1628

    0.0143    0.1766

    0.0148    0.1907

Plotting Existing Efficient Portfolios

If you already have efficient portfolios from any of the "estimateFrontier" functions (see
“Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page 5-95),
pass them into plotFrontier directly to plot the efficient frontier:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p, 20);

plotFrontier(p, pwgt);
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Plotting Existing Efficient Portfolio Risks and Returns

If you already have efficient portfolio risks and returns, you can use the interface to
plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

pret= estimatePortReturn(p, pwgt);

prsk = estimatePortRisk(p, pwgt);

plotFrontier(p, prsk, pret);
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See Also
estimatePortReturn | estimatePortStd | estimatePortVaR | plotFrontier |
PortfolioCVaR

Related Examples
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123
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More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Postprocessing Results to Set Up Tradable Portfolios

After obtaining efficient portfolios or estimates for expected portfolio risks and returns,
use your results to set up trades to move toward an efficient portfolio. For information on
the workflow when using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on
page 5-17.

Setting Up Tradable Portfolios

Suppose that you set up a portfolio optimization problem and obtained portfolios on the
efficient frontier. Use the dataset object from Statistics and Machine Learning Toolbox
to form a blotter that lists your portfolios with the names for each asset. For example,
suppose that you want to obtain five portfolios along the efficient frontier. You can set up
a blotter with weights multiplied by 100 to view the allocations for each portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);

display(Blotter);

Blotter = 

                          Port1     Port2     Port3     Port4     Port5     

    Bonds                  78.84    43.688    8.3448         0    1.2501e-12

    Large-Cap Equities    9.3338    29.131    48.467    23.602    9.4219e-13

    Small-Cap Equities    4.8843    8.1284    12.419    16.357     8.281e-14

    Emerging Equities     6.9419    19.053    30.769    60.041           100

Note: Your results may differ from this result due to the simulation of scenarios.
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This result indicates that you would invest primarily in bonds at the minimum-risk/
minimum-return end of the efficient frontier (Port1), and that you would invest
completely in emerging equity at the maximum-risk/maximum-return end of the efficient
frontier (Port5). You can also select a particular efficient portfolio, for example, suppose
that you want a portfolio with 15% risk and you add purchase and sale weights outputs
obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...

{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);

display(Blotter);

Blotter = 

                          Initial    Weight    Purchases    Sales 

    Bonds                 30         15.036         0       14.964

    Large-Cap Equities    30         45.357    15.357            0

    Small-Cap Equities    20         12.102         0       7.8982

    Emerging Equities     10         27.505    17.505            0

If you have prices for each asset (in this example, they can be ETFs), add them to your
blotter and then use the tools of the dataset object to obtain shares and shares to be
traded.

See Also
checkFeasibility | estimateScenarioMoments | PortfolioCVaR

Related Examples
• “Troubleshooting CVaR Portfolio Optimization Results” on page 5-130
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
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• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page
5-95

• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Working with Other Portfolio Objects

The PortfolioCVaR object is for CVaR portfolio optimization. The Portfolio object is for
mean-variance portfolio optimization. In some cases, you might want to examine portfolio
optimization problems according to different combinations of return and risk proxies. A
common example is that you want to do a CVaR portfolio optimization and then want
to work primarily with moments of portfolio returns. Suppose that you set up a CVaR
portfolio optimization problem with:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

To work with the same problem in a mean-variance framework, you can use the scenarios
from the PortfolioCVaR object to set up a Portfolio object so that p contains a CVaR
optimization problem and q contains a mean-variance optimization problem based on the
same data.

q = Portfolio('AssetList', p.AssetList);

q = estimateAssetMoments(q, p.getScenarios);

q = setDefaultConstraints(q);

pwgt = estimateFrontier(p);

qwgt = estimateFrontier(q);

Since each object has a different risk proxy, it is not possible to compare results side
by side. To obtain means and standard deviations of portfolio returns, you can use the
functions associated with each object to obtain:

pret = estimatePortReturn(p, pwgt);

pstd = estimatePortStd(p, pwgt);

qret = estimatePortReturn(q, qwgt);

qstd = estimatePortStd(q, qwgt);

[pret, qret]

[pstd, qstd]
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ans =

    0.0665    0.0585

    0.0787    0.0716

    0.0910    0.0848

    0.1033    0.0979

    0.1155    0.1111

    0.1278    0.1243

    0.1401    0.1374

    0.1523    0.1506

    0.1646    0.1637

    0.1769    0.1769

ans =

    0.0797    0.0774

    0.0912    0.0835

    0.1095    0.0995

    0.1317    0.1217

    0.1563    0.1472

    0.1823    0.1746

    0.2135    0.2059

    0.2534    0.2472

    0.2985    0.2951

    0.3499    0.3499

To produce comparable results, you can use the returns or risks from one portfolio
optimization as target returns or risks for the other portfolio optimization.

qwgt = estimateFrontierByReturn(q, pret);

qret = estimatePortReturn(q, qwgt);

qstd = estimatePortStd(q, qwgt);

[pret, qret]

[pstd, qstd]

ans =

    0.0665    0.0665

    0.0787    0.0787

    0.0910    0.0910

    0.1033    0.1033

    0.1155    0.1155

    0.1278    0.1278
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    0.1401    0.1401

    0.1523    0.1523

    0.1646    0.1646

    0.1769    0.1769

ans =

    0.0797    0.0797

    0.0912    0.0912

    0.1095    0.1095

    0.1317    0.1317

    0.1563    0.1563

    0.1823    0.1823

    0.2135    0.2135

    0.2534    0.2534

    0.2985    0.2985

    0.3499    0.3499

Now it is possible to compare standard deviations of portfolio returns from either type of
portfolio optimization.

See Also
Portfolio | PortfolioCVaR

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17
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• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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Troubleshooting CVaR Portfolio Optimization Results

PortfolioCVaR Object Destroyed When Modifying

If a PortfolioCVaR object is destroyed when modifying, remember to pass an existing
object into the PortfolioCVaR function if you want to modify it, otherwise it creates a
new object. See “Creating the PortfolioCVaR Object” on page 5-24 for details.

Matrix Incompatibility and "Non-Conformable" Errors

If you get matrix incompatibility or "non-conformable" errors, the representation of
data in the tools follows a specific set of basic rules described in “Conventions for
Representation of Data” on page 5-22.

CVaR Portfolio Optimization Warns About “Max Iterations”

If the 'cuttingplane' solver displays the following warning:
Warning: Max iterations reached. Consider modifying the solver options, or using fmincon. 

> In @PortfolioCVaR\private\cvar_cuttingplane_solver at 255

  In @PortfolioCVaR\private\cvar_optim_min_risk at 85

  In PortfolioCVaR.estimateFrontier at 69

this warning indicates that some of the reported efficient portfolios may not be accurate
enough.

This warning is usually related to portfolios in the lower-left end of the efficient frontier.
The cutting plane solver may have gotten very close to the solution, but there may be too
many portfolios with very similar risks and returns in that neighborhood, and the solver
runs out of iterations before reaching the desired accuracy.

To correct this problem, you can use setSolver to make any of these changes:

• Increase the maximum number of iterations ('MaxIter').
• Relax the stopping tolerances ('AbsTol' and/or 'RelTol').
• Use a different master solver algorithm ('MasterSolverOptions').
• Alternatively, you can try the 'fmincon' solver.

When the default maximum number of iterations of the 'cuttingplane' solver is
reached, the solver usually needs many more iterations to reach the accuracy required
by the default stopping tolerances. You may want to combine increasing the number of

5-130



 Troubleshooting CVaR Portfolio Optimization Results

iterations (e.g., multiply by 5) with relaxing the stopping tolerances (e.g., multiply by 10
or 100). Since the CVaR is a stochastic optimization problem, the accuracy of the solution
is relative to the scenario sample, so a looser stopping tolerance may be acceptable. Keep
in mind that the solution time may increase significantly when you increase the number
of iterations. For example, doubling the number of iterations more than doubles the
solution time. Sometimes using a different master solver (e.g., switching to 'interior-
point' if you are using the default 'simplex') can get the 'cuttingplane' solver to
converge without changing the maximum number of iterations.

Alternatively, the 'fmincon' solver may be faster than the 'cuttingplane' solver for
problems where cutting plane reaches the maximum number of iterations.

CVaR Portfolio Optimization Errors with “Could Not Solve” Message

If the 'cuttingplane' solver generates the following error:
Error using cvar_cuttingplane_solver (line 251)

Could not solve the problem. Consider modifying the solver options, or using fmincon.

Error in cvar_optim_by_return (line 100)

  [x,~,~,exitflag] = cvar_cuttingplane_solver(...

Error in PortfolioCVaR/estimateFrontier (line 80)

 pwgt = cvar_optim_by_return(obj, r(2:end-1), obj.NumAssets, ...

this error means that the master solver failed to solve one of the master problems. The
error may be due to numerical instability or other problem-specific situation.

To correct this problem, you can use setSolver to make any of these changes:

• Modify the master solver options ('MasterSolverOptions'), for example, change
the algorithm ('Algorithm') or the termination tolerance ('TolFun').

• Alternatively, you can try the 'fmincon' solver.

Missing Data Estimation Fails

If asset return data has missing or NaN values, the simulateNormalScenariosByData
function with the 'missingdata' flag set to true may fail with either too many
iterations or a singular covariance. To correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a
covariance matrix that may be singular without difficulties. If you have missing
or NaN values in your data, the supported missing data feature requires that your
covariance matrix must be positive-definite, that is, nonsingular.
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• simulateNormalScenariosByData uses default settings for the missing data
estimation procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with
either the ECM estimation functions such as ecmnmle or with your own functions.

cvar_optim_transform Errors

If you obtain optimization errors such as:
Error using cvar_optim_transform (line 276)

Portfolio set appears to be either empty or unbounded. Check constraints.

Error in PortfolioCVaR/estimateFrontier (line 64)

 [AI, bI, AE, bE, lB, uB, f0, f, x0] = cvar_optim_transform(obj);

or

Error using cvar_optim_transform (line 281)

Cannot obtain finite lower bounds for specified portfolio set.

Error in PortfolioCVaR/estimateFrontier (line 64)

 [AI, bI, AE, bE, lB, uB, f0, f, x0] = cvar_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors
(and similar errors) can occur if your portfolio set is either empty and, if nonempty,
unbounded. Specifically, the portfolio optimization algorithm requires that your
portfolio set have at least a finite lower bound. The best way to deal with these
problems is to use the validation functions in “Validate the CVaR Portfolio Problem”
on page 5-90. Specifically, use estimateBounds to examine your portfolio set, and
use checkFeasibility to ensure that your initial portfolio is either feasible and, if
infeasible, that you have sufficient turnover to get from your initial portfolio to the
portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and
gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense

If you obtain efficient portfolios that, do not seem to make sense, this can happen if you
forget to set specific constraints or you set incorrect constraints. For example, if you
allow portfolio weights to fall between 0 and 1 and do not set a budget constraint, you
can get portfolios that are 100% invested in every asset. Although it may be hard to
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detect, the best thing to do is to review the constraints you have set with display of the
PortfolioCVaR object. If you get portfolios with 100% invested in each asset, you can
review the display of your object and quickly see that no budget constraint is set. Also,
you can use estimateBounds and checkFeasibility to determine if the bounds for
your portfolio set make sense and to determine if the portfolios you obtained are feasible
relative to an independent formulation of your portfolio set.

See Also
checkFeasibility | estimateScenarioMoments | PortfolioCVaR

Related Examples
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123
• “Creating the PortfolioCVaR Object” on page 5-24
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112

More About
• “PortfolioCVaR Object” on page 5-19
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)
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MAD Portfolio Optimization Tools

• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
• “PortfolioMAD Object” on page 6-18
• “Creating the PortfolioMAD Object” on page 6-23
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Setting Up an Initial or Current Portfolio” on page 6-36
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Working with a Riskless Asset” on page 6-50
• “Working with Transaction Costs” on page 6-52
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Working with Bound Constraints Using PortfolioMAD Object” on page 6-62
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-65
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Working with Group Ratio Constraints Using PortfolioMAD Object” on page 6-71
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page

6-75
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page

6-78
• “Working with Average Turnover Constraints Using PortfolioMAD Object” on page

6-81
• “Working with One-way Turnover Constraints Using PortfolioMAD Object” on page

6-84
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Obtaining Endpoints of the Efficient Frontier” on page 6-95
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• “Obtaining Efficient Portfolios for Target Returns” on page 6-98
• “Obtaining Efficient Portfolios for Target Risks” on page 6-101
• “Choosing and Controlling the Solver” on page 6-104
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-110
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117
• “Working with Other Portfolio Objects” on page 6-120
• “Troubleshooting MAD Portfolio Optimization Results” on page 6-123
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Portfolio Optimization Theory

In this section...

“Portfolio Optimization Problems” on page 6-3
“Portfolio Problem Specification” on page 6-3
“Return Proxy” on page 6-4
“Risk Proxy” on page 6-6
“Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
“Default Portfolio Problem” on page 6-15

Portfolio Optimization Problems

Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

• Minimize a proxy for risk.
• Match or exceed a proxy for return.
• Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe.
A portfolio specifies either holdings or weights in each individual asset in the asset
universe. The convention is to specify portfolios in terms of weights, although the
portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The
proxy for risk is a function that characterizes either the variability or losses associated
with portfolio choices. The proxy for return is a function that characterizes either
the gross or net benefits associated with portfolio choices. The terms “risk” and “risk
proxy” and “return” and “return proxy” are interchangeable. The fundamental insight
of Markowitz (see “Portfolio Optimization” on page A-11) is that the goal of the
portfolio choice problem is to seek minimum risk for a given level of return and to seek
maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called
the efficient frontier.

Portfolio Problem Specification

To specify a portfolio optimization problem, you need the following:
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• Proxy for portfolio return (μ)
• Proxy for portfolio risk (Σ)
• Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization
problems:

• The Portfolio object (Portfolio) supports mean-variance portfolio optimization (see
Markowitz [46], [47] at “Portfolio Optimization” on page A-11). This object has
either gross or net portfolio returns as the return proxy, the variance of portfolio
returns as the risk proxy, and a portfolio set that is any combination of the specified
constraints to form a portfolio set.

• The PortfolioCVaR object (PortfolioCVaR) implements what is known as conditional
value-at-risk portfolio optimization (see Rockafellar and Uryasev [48], [49] at
“Portfolio Optimization” on page A-11), which is generally referred to as CVaR
portfolio optimization. CVaR portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses conditional
value-at-risk of portfolio returns as the risk proxy.

• The PortfolioMAD object (PortfolioMAD) implements what is known as mean-
absolute deviation portfolio optimization (see Konno and Yamazaki [50] at “Portfolio
Optimization” on page A-11), which is generally referred to as MAD portfolio
optimization. MAD portfolio optimization works with the same return proxies
and portfolio sets as mean-variance portfolio optimization but uses mean-absolute
deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function m : X RÆ  on a portfolio set X R
n

Ã  that
characterizes the rewards associated with portfolio choices. In most cases, the proxy for
portfolio return has two general forms, gross and net portfolio returns. Both portfolio
return forms separate the risk-free rate r0 so that the portfolio x XŒ  contains only risky
assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns
y1,...,yS has a mean of asset returns

m
S

ys
s

S

=

=

Â
1

1

,
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and (sample) covariance of asset returns

C
S

y m y ms s
T

s

S

=
-

- -

=

Â
1

1
1

( )( ) .

These moments (or alternative estimators that characterize these moments) are used
directly in mean-variance portfolio optimization to form proxies for portfolio risk and
return.

Gross Portfolio Returns

The gross portfolio return for a portfolio x XŒ  is

m( ) ( ) ,x r m r x
T

= + -0 01

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the
Portfolio object to specify gross portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m

Net Portfolio Returns

The net portfolio return for a portfolio x XŒ  is

m( ) ( ) max{ , } max{ , },x r m r x b x x s x x
T T T

= + - - - - -0 0 0 01 0 0

where:

r0 is the risk-free rate (scalar).

m is the mean of asset returns (n vector).

b is the proportional cost to purchase assets (n vector).
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s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is
necessary to incorporate prices into such costs. The properties in the Portfolio object to
specify net portfolio returns are:

• RiskFreeRate for r0

• AssetMean for m
• InitPort for x0

• BuyCost for b
• SellCost for s

Risk Proxy

The proxy for portfolio risk is a function Â Æ: X R  on a portfolio set X R
n

Ã  that
characterizes the risks associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio x XŒ  is

Â ( ) =x x Cx
T

where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is
AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of
portfolio returns, the square root, which is the standard deviation of portfolio returns,
is often reported and displayed. Moreover, this quantity is often called the “risk” of
the portfolio. For details, see Markowitz [46], [47] at (“Portfolio Optimization” on page
A-11).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x XŒ , which is also known as expected
shortfall, is defined as
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CVaR x f x y p y dy

f x y VaR x

a a
a

( ) =
-

≥
Ú

1

1
( , ) ( ) ,

( , ) ( )

where:

α is the probability level such that 0 < α < 1.

f(x,y) is the loss function for a portfolio x and asset return y.

p(y) is the probability density function for asset return y.

VaRα is the value-at-risk of portfolio x at probability level α.

The value-at-risk is defined as

VaR x f x Ya g g a( ) = £[ ] ≥{ }min : Pr ( , ) .

An alternative formulation for CVaR has the form:

CVaR x VaR x f x y VaR x p y dy

Rn

a a aa
( ) max ,( ( , ) ( )) ( )= ( ) +

-
-{ }Ú

1

1
0

The choice for the probability level α is typically 0.9 or 0.95. Choosing α implies that
the value-at-risk VaRα(x) for portfolio x is the portfolio return such that the probability
of portfolio returns falling below this level is (1 –α). Given VaRα(x) for a portfolio x, the
conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the
value-at-risk return.

Note: Value-at-risk is a positive value for losses so that the probability level α indicates
the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is CVaRα(x) for a given portfolio x XŒ

and a Œ ( , )0 1 . The value-at-risk, or VaR, for a given probability level is estimated
whenever CVaR is estimated.

6-7



6 MAD Portfolio Optimization Tools

In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR
based on the given scenarios. Better scenario samples yield more reliable estimates of
VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization”
on page A-11.

Mean Absolute-Deviation

The mean-absolute deviation (MAD) for a portfolio x XŒ  is defined as

( ) ( )x
S

y m xs
T

s

S

= -Â Â
=

1

1

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).

f(x,y) is the loss function for a portfolio x and asset return y.

m is the mean of asset returns (n vector).

such that

m
S

ys
s

S

=

=

Â
1

1

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page
A-11.

Portfolio Set for Optimization Using PortfolioMAD Object

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.
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When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). The
most general portfolio set handled by the portfolio optimization tools can have any of
these constraints:

• Linear inequality constraints
• Linear equality constraints
• Bound constraints
• Budget constraints
• Group constraints
• Group ratio constraints
• Average turnover constraints
• One-way turnover constraints

Linear Inequality Constraints

Linear inequality constraints are general linear constraints that model relationships
among portfolio weights that satisfy a system of inequalities. Linear inequality
constraints take the form

A x bI I£

where:

x is the portfolio (n vector).

AI is the linear inequality constraint matrix (nI-by-n matrix).

bI is the linear inequality constraint vector (nI vector).

n is the number of assets in the universe and nI is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

• AInequality for AI

• bInequality for bI

• NumAssets for n
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The default is to ignore these constraints.

Linear Equality Constraints

Linear equality constraints are general linear constraints that model relationships among
portfolio weights that satisfy a system of equalities. Linear equality constraints take the
form

A x bE E=

where:

x is the portfolio (n vector).

AE is the linear equality constraint matrix (nE-by-n matrix).

bE is the linear equality constraint vector (nE vector).

n is the number of assets in the universe and nE is the number of constraints.

Portfolio object properties to specify linear equality constraints are:

• AEquality for AE

• bEquality for bE

• NumAssets for n

The default is to ignore these constraints.

Bound Constraints

Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is
often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem.
To obtain explicit bounds for a given portfolio set, use the estimateBounds function.
Bound constraints take the form

l x u
B B

£ £

where:

x is the portfolio (n vector).
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lB is the lower-bound constraint (n vector).

uB is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

• LowerBound for lB

• UpperBound for uB

• NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
6-15) has lB = 0 with uB set implicitly through a budget constraint.

Budget Constraints

Budget constraints are specialized linear constraints that confine the sum of portfolio
weights to fall either above or below specific bounds. The constraints take the form

l x uS
T

S£ £1

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

lS is the lower-bound budget constraint (scalar).

uS is the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

• LowerBudget for lS

• UpperBudget for uS
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• NumAssets for n

The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
6-15) has lS = uS = 1, which means that the portfolio weights sum to 1. If the portfolio
optimization problem includes possible movements in and out of cash, the budget
constraint specifies how far portfolios can go into cash. For example, if lS = 0 and uS = 1,
then the portfolio can have 0–100% invested in cash. If cash is to be a portfolio choice,
set RiskFreeRate (r0) to a suitable value (see “Return Proxy” on page 6-4 and
“Working with a Riskless Asset” on page 6-50).

Group Constraints

Group constraints are specialized linear constraints that enforce “membership” among
groups of assets. The constraints take the form

l Gx uG G£ £

where:

x is the portfolio (n vector).

lG is the lower-bound group constraint (nG vector).

uG is the upper-bound group constraint (nG vector).

G is the matrix of group membership indexes (nG-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each
row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

• GroupMatrix for G
• LowerGroup for lG

• UpperGroup for uG

• NumAssets for n

The default is to ignore these constraints.
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Group Ratio Constraints

Group ratio constraints are specialized linear constraints that enforce relationships
among groups of assets. The constraints take the form

l G x G x u G xRi B i A i Ri B i( ) ( ) ( )£ £

for i = 1,..., nR where:

x is the portfolio (n vector).

lR is the vector of lower-bound group ratio constraints (nR vector).

uR is the vector matrix of upper-bound group ratio constraints (nR vector).

GA is the matrix of base group membership indexes (nR-by-n matrix).

GB is the matrix of comparison group membership indexes (nR-by-n matrix).

n is the number of assets in the universe and nR is the number of constraints.

Each row of GA and GB identifies which assets belong to a base and comparison group
associated with that row.

Each row contains either 0s or 1s with 1 indicating that an asset is part of the group or 0
indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:

• GroupA for GA

• GroupB for GB

• LowerRatio for lR

• UpperRatio for uR

• NumAssets for n

The default is to ignore these constraints.

Average Turnover Constraints

Turnover constraint is a linear absolute value constraint that ensures estimated optimal
portfolios differ from an initial portfolio by no more than a specified amount. Although
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portfolio turnover is defined in many ways, the turnover constraints implemented in
Financial Toolbox computes portfolio turnover as the average of purchases and sales.
Average turnover constraints take the form

1

2
1 0

T
x x| |- £t

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

x0 is the initial portfolio (n vector).

τ is the upper bound for turnover (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

• Turnover for τ
• InitPort for x0

• NumAssets for n

The default is to ignore this constraint.

One-way Turnover Constraints

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales. The constraints take the forms

1 0 0
T

B
x x¥ -{ } £max , t

1 0 0
T

Sx x¥ -{ } £max , t

where:
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x is the portfolio (n vector)

1 is the vector of ones (n vector).

x0 is the Initial portfolio (n vector).

τB is the upper bound for turnover constraint on purchases (scalar).

τS is the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio,
PortfolioCVaR, or PotfolioMAD object:

• BuyTurnover for τB

• SellTurnover for τS

• InitPort for x0

The default is to ignore this constraint.

Note: The average turnover constraint (see “Working with Average Turnover Constraints
Using PortfolioMAD Object” on page 6-81) with τ is not a combination of the one-way
turnover constraints with τ = τB = τS.

Default Portfolio Problem

The default portfolio optimization problem has a risk and return proxy associated with
a given problem, and a portfolio set that specifies portfolio weights to be nonnegative
and to sum to 1. The lower bound combined with the budget constraint is sufficient to
ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio
optimization problem characterizes a long-only investor who is fully invested in a
collection of assets.

• For mean-variance portfolio optimization, it is sufficient to set up the default problem.
After setting up the problem, data in the form of a mean and covariance of asset
returns are then used to solve portfolio optimization problems.

• For conditional value-at-risk portfolio optimization, the default problem requires the
additional specification of a probability level that must be set explicitly. Generally,
“typical” values for this level are 0.90 or 0.95. After setting up the problem, data in
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the form of scenarios of asset returns are then used to solve portfolio optimization
problems.

• For MAD portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of scenarios of asset returns are then used to
solve portfolio optimization problems.

See Also
Portfolio | PortfolioCVaR | PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57

More About
• “PortfolioMAD Object” on page 6-18
• “PortfolioMAD Object Workflow” on page 6-17
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PortfolioMAD Object Workflow

The PortfolioMAD object workflow for creating and modeling a MAD portfolio is:

1 Create a MAD Portfolio.

Create a PortfolioMAD object for mean-absolute deviation (MAD) portfolio
optimization. “Creating the PortfolioMAD Object” on page 6-23.

2 Define asset returns and scenarios.

Evaluate scenarios for portfolio asset returns, including assets with missing data
and financial time series data. For more information, see “Asset Returns and
Scenarios Using PortfolioMAD Object” on page 6-39.

3 Specify the MAD Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality,
bound, budget, group, group ratio, and turnover constraints. For more information,
see “Working with MAD Portfolio Constraints Using Defaults” on page 6-57.

4 Validate the MAD Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the
MAD Portfolio Problem” on page 6-87.

5 Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a portfolio. For more
information, see “Estimate Efficient Portfolios Along the Entire Frontier for
PortfolioMAD Object” on page 6-92 and “Estimate Efficient Frontiers for
PortfolioMAD Object” on page 6-106.

6 Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more
information, see “Postprocessing Results to Set Up Tradable Portfolios” on page
6-117.

More About
• “Portfolio Optimization Theory” on page 6-3
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PortfolioMAD Object

In this section...

“PortfolioMAD Object Properties and Functions” on page 6-18
“Working with PortfolioMAD Objects” on page 6-18
“Setting and Getting Properties” on page 6-19
“Displaying PortfolioMAD Objects” on page 6-20
“Saving and Loading PortfolioMAD Objects” on page 6-20
“Estimating Efficient Portfolios and Frontiers” on page 6-20
“Arrays of PortfolioMAD Objects” on page 6-20
“Subclassing PortfolioMAD Objects” on page 6-21
“Conventions for Representation of Data” on page 6-21

PortfolioMAD Object Properties and Functions

The PortfolioMAD object implements mean absolute-deviation (MAD) portfolio
optimization and is derived from the abstract class AbstractPortfolio. Every
property and function of the PortfolioMAD object is public, although some properties and
functions are hidden. The PortfolioMAD object is a value object where every instance
of the object is a distinct version of the object. Since the PortfolioMAD object is also a
MATLAB object, it inherits the default functions associated with MATLAB objects.

Working with PortfolioMAD Objects

The PortfolioMAD object and its functions are an interface for mean absolute-deviation
portfolio optimization. So, almost everything you do with the PortfolioMAD object can be
done using the functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the PortfolioMAD function to create the PortfolioMAD object or use the various

set functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a PortfolioMAD object, you can
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save and load objects from your workspace and create and manipulate arrays of objects.
After settling on a problem, which, in the case of MAD portfolio optimization, means
that you have either scenarios, data, or moments for asset returns, and a collection of
constraints on your portfolios, use the PortfolioMAD function to set the properties for
the PortfolioMAD object.

The PortfolioMAD function lets you create an object from scratch or update an existing
object. Since the PortfolioMAD object is a value object, it is easy to create a basic object,
then use functions to build upon the basic object to create new versions of the basic
object. This is useful to compare a basic problem with alternatives derived from the basic
problem. For details, see “Creating the PortfolioMAD Object” on page 6-23.

Setting and Getting Properties

You can set properties of a PortfolioMAD object using either thePortfolioMAD function
or various set functions.

Note: Although you can also set properties directly, it is not recommended since error-
checking is not performed when you set a property directly.

The PortfolioMAD function supports setting properties with name-value pair
arguments such that each argument name is a property and each value is the value to
assign to that property. For example, to set the LowerBound and Budget properties in
an existing PortfolioMAD object p, use the syntax:

p = PortfolioMAD(p,'LowerBound', 0,'Budget',1);

In addition to the PortfolioMAD function, which lets you set individual properties
one at a time, groups of properties are set in a PortfolioMAD object with various “set”
and “add” functions. For example, to set up an average turnover constraint, use the
setTurnover function to specify the bound on portfolio turnover and the initial portfolio.
To get individual properties from a PortfolioMAD object, obtain properties directly or use
an assortment of “get” functions that obtain groups of properties from a PortfolioMAD
object. The PortfolioMAD function and set functions have several useful features:

• The PortfolioMAD function and set functions try to determine the dimensions of
your problem with either explicit or implicit inputs.

• The PortfolioMAD function and set functions try to resolve ambiguities with default
choices.
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• The PortfolioMAD function and set functions perform scalar expansion on arrays
when possible.

• The PortfolioMAD functions try to diagnose and warn about problems.

Displaying PortfolioMAD Objects

The PortfolioMAD object uses the default display function provided by MATLAB, where
display and disp display a PortfolioMAD object and its properties with or without the
object variable name.

Saving and Loading PortfolioMAD Objects

Save and load PortfolioMAD objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers

Estimating efficient portfolios and efficient frontiers is the primary purpose of the MAD
portfolio optimization tools. A collection of “estimate” and “plot” functions provide ways
to explore the efficient frontier. The “estimate” functions obtain either efficient portfolios
or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of
functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

• At the endpoints of the efficient frontier
• That attain targeted values for return proxies
• That attain targeted values for risk proxies
• Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or
current portfolio to each efficient portfolio. At the efficient frontier level, a collection of
functions plot the efficient frontier and estimate either risk or return proxies for efficient
portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk
and return proxies in subsequent analyses.

Arrays of PortfolioMAD Objects

Although all functions associated with a PortfolioMAD object are designed to work on a
scalar PortfolioMAD object, the array capabilities of MATLAB enables you to set up and
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work with arrays of PortfolioMAD objects. The easiest way to do this is with the repmat
function. For example, to create a 3-by-2 array of PortfolioMAD objects:

p = repmat(PortfolioMAD, 3, 2);

disp(p)

After setting up an array of PortfolioMAD objects, you can work on individual
PortfolioMAD objects in the array by indexing. For example:

p(i,j) = PortfolioMAD(p(i,j), ... );

This example calls the PortfolioMAD function for the (i,j) element of a matrix of
PortfolioMAD objects in the variable p.

If you set up an array of PortfolioMAD objects, you can access properties of a particular
PortfolioMAD object in the array by indexing so that you can set the lower and upper
bounds lb and ub for the (i,j,k) element of a 3-D array of PortfolioMAD objects with

p(i,j,k) = setBounds(p(i,j,k),lb, ub);

and, once set, you can access these bounds with

[lb, ub] = getBounds(p(i,j,k));

PortfolioMAD object functions work on only one PortfolioMAD object at a time.

Subclassing PortfolioMAD Objects

You can subclass the PortfolioMAD object to override existing functions or to add new
properties or functions. To do so, create a derived class from the PortfolioMAD class.
This gives you all the properties and functions of the PortfolioMAD class along with
any new features that you choose to add to your subclassed object. ThePortfolioMAD
class is derived from an abstract class called AbstractPortfolio. Because of this,
you can also create a derived class from AbstractPortfolio that implements an
entirely different form of portfolio optimization using properties and functions of
theAbstractPortfolio class.

Conventions for Representation of Data

The MAD portfolio optimization tools follow these conventions regarding the
representation of different quantities associated with portfolio optimization:

• Asset returns or prices for scenarios are in matrix form with samples for a given asset
going down the rows and assets going across the columns. In the case of prices, the
earliest dates must be at the top of the matrix, with increasing dates going down.
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• Portfolios are in vector or matrix form with weights for a given portfolio going down
the rows and distinct portfolios going across the columns.

• Constraints on portfolios are formed in such a way that a portfolio is a column vector.
• Portfolio risks and returns are either scalars or column vectors (for multiple portfolio

risks and returns).

See Also
PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57

More About
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Creating the PortfolioMAD Object

In this section...

“Syntax” on page 6-23
“PortfolioMAD Problem Sufficiency” on page 6-24
“PortfolioMAD Function Examples” on page 6-24

To create a fully specified MAD portfolio optimization problem, instantiate the
PortfolioMAD object using the PortfolioMAD function. For information on the workflow
when using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-17.

Syntax

Use the PortfolioMAD function to create an instance of an object of the PortfolioMAD
class. You can use the PortfolioMAD function in several ways. To set up a portfolio
optimization problem in a PortfolioMAD object, the simplest syntax is:

p = PortfolioMAD;

This syntax creates a PortfolioMAD object, p, such that all object properties are empty.

The PortfolioMAD function also accepts collections of argument name-value pair
arguments for properties and their values. The PortfolioMAD function accepts inputs
for public properties with the general syntax:

 p = PortfolioMAD('property1', value1, 'property2', value2, ... );

If a PortfolioMAD object already exists, the syntax permits the first (and only the first
argument) of the PortfolioMAD function to be an existing object with subsequent
argument name-value pair arguments for properties to be added or modified. For
example, given an existing PortfolioMAD object in p, the general syntax is:

p = PortfolioMAD(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 6-28). The PortfolioMAD function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
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to formulate a problem. In addition, a PortfolioMAD object is a value object so that, given
portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioMAD(p, ...)

PortfolioMAD Problem Sufficiency

A MAD portfolio optimization problem is completely specified with the PortfolioMAD
object if the following three conditions are met:

• You must specify a collection of asset returns or prices known as scenarios such
that all scenarios are finite asset returns or prices. These scenarios are meant to be
samples from the underlying probability distribution of asset returns. This condition
can be satisfied by the setScenarios function or with several canned scenario
simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set
is closed and bounded. You can satisfy this condition using an extensive collection of
properties that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can be
imposed and several tools, such as the estimateBounds function, provide ways to
ensure that your problem is properly formulated.

Although the general sufficient conditions for MAD portfolio optimization go beyond
these conditions, the PortfolioMAD object handles all these additional conditions.

PortfolioMAD Function Examples

If you create a PortfolioMAD object, p, with no input arguments, you can display it using
disp:

p = PortfolioMAD;

disp(p);

 PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []
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    NumScenarios: []

            Name: []

       NumAssets: []

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: []

      UpperBound: []

     LowerBudget: []

     UpperBudget: []

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

The approaches listed provide a way to set up a portfolio optimization problem with
the PortfolioMAD function. The custom set functions offer additional ways to set and
modify collections of properties in the PortfolioMAD object.

Using the PortfolioMAD Function for a Single-Step Setup

You can use the PortfolioMAD function to directly set up a “standard” portfolio
optimization problem. Given scenarios of asset returns in the variable AssetScenarios,
this problem is completely specified as follows:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios, ...

'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1);

The LowerBound property value undergoes scalar expansion since AssetScenarios
provides the dimensions of the problem.

You can use dot notation with the function plotFrontier.
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p.plotFrontier;

Using the PortfolioMAD Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” MAD portfolio
optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = PortfolioMAD(p, 'LowerBound', 0);
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p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

plotFrontier(p);

This way works because the calls to the PortfolioMAD function are in this particular
order. In this case, the call to initialize AssetScenarios provides the dimensions for
the problem. If you were to do this step last, you would have to explicitly dimension the
LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
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p = PortfolioMAD(p, 'LowerBound', zeros(size(m)));

p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setScenarios(p, AssetScenarios);

Note: If you did not specify the size of LowerBound but, instead, input a scalar
argument, the PortfolioMAD function assumes that you are defining a single-asset
problem and produces an error at the call to set asset scenarios with four assets.

Shortcuts for Property Names

The PortfolioMAD function has shorter argument names that replace longer argument
names associated with specific properties of the PortfolioMAD object. For example,
rather than enter 'AInequality', the PortfolioMAD function accepts the case-
insensitive name 'ai' to set the AInequality property in a PortfolioMAD object.
Every shorter argument name corresponds with a single property in the PortfolioMAD
function. The one exception is the alternative argument name 'budget', which signifies
both the LowerBudget and UpperBudget properties. When 'budget' is used, then
the LowerBudget and UpperBudget properties are set to the same value to form an
equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

assetnames or assets AssetList

be bEquality

bi bInequality

budget UpperBudget and LowerBudget
group GroupMatrix

lb LowerBound

n or num NumAssets

rfr RiskFreeRate

scenario or
assetscenarios

Scenarios
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Shortcut Argument Name Equivalent Argument / Property Name

ub UpperBound

For example, this call to the PortfolioMAD function uses these shortcuts for properties:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('scenario', AssetScenarios, 'lb', 0, 'budget', 1);

plotFrontier(p);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly using dot notation, however
no error-checking is done on your inputs:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

plotFrontier(p);

Note: Scenarios cannot be assigned directly to a PortfolioMAD object. Scenarios must
always be set through either the PortfolioMAD function, the setScenarios function,
or any of the scenario simulation functions.
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See Also
estimateBounds | PortfolioMAD

Related Examples
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Common Operations on the PortfolioMAD Object

In this section...

“Naming a PortfolioMAD Object” on page 6-31
“Configuring the Assets in the Asset Universe” on page 6-31
“Setting Up a List of Asset Identifiers” on page 6-32
“Truncating and Padding Asset Lists” on page 6-33

Naming a PortfolioMAD Object

To name a PortfolioMAD object, use the Name property. Name is informational and has
no effect on any portfolio calculations. If the Name property is nonempty, Name is the title
for the efficient frontier plot generated by plotFrontier. For example, if you set up an
asset allocation fund, you could name the PortfolioMAD object Asset Allocation Fund:

p = PortfolioMAD('Name','Asset Allocation Fund');

disp(p.Name);

Asset Allocation Fund

Configuring the Assets in the Asset Universe

The fundamental quantity in the PortfolioMAD object is the number of assets in the
asset universe. This quantity is maintained in the NumAssets property. Although you
can set this property directly, it is usually derived from other properties such as the
number of assets in the scenarios or the initial portfolio. In some instances, the number
of assets may need to be set directly. This example shows how to set up a PortfolioMAD
object that has four assets:

p = PortfolioMAD('NumAssets', 4);

disp(p.NumAssets);

4

After setting the NumAssets property, you cannot modify it (unless no other properties
are set that depend on NumAssets). The only way to change the number of assets in
an existing PortfolioMAD object with a known number of assets is to create a new
PortfolioMAD object.
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Setting Up a List of Asset Identifiers

When working with portfolios, you must specify a universe of assets. Although you can
perform a complete analysis without naming the assets in your universe, it is helpful to
have an identifier associated with each asset as you create and work with portfolios. You
can create a list of asset identifiers as a cell vector of character vectors in the property
AssetList. You can set up the list using the next two methods.

Setting Up Asset Lists Using the PortfolioMAD Function

Suppose that you have a PortfolioMAD object, p, with assets with symbols 'AA'', 'BA',
'CAT', 'DD', and 'ETR'. You can create a list of these asset symbols in the object using
the PortfolioMAD function:

p = PortfolioMAD('assetlist', { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

Notice that the property AssetList is maintained as a cell array that contains character
vectors, and that it is necessary to pass a cell array into the PortfolioMAD function to
set AssetList. In addition, notice that the property NumAssets is set to 5 based on the
number of symbols used to create the asset list:

disp(p.NumAssets);

5

Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of
asset symbols 'AA', 'BA', 'CAT', 'DD', and'ETR', you can use setAssetList with:

p = PortfolioMAD;

p = setAssetList(p, { 'AA', 'BA', 'CAT', 'DD', 'ETR' });

disp(p.AssetList);

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList also enables you to enter symbols directly as a comma-separated list
without creating a cell array of character vectors. For example, given the list of assets
symbols 'AA', 'BA', 'CAT', 'DD', and 'ETR', use setAssetList:

p = PortfolioMAD;
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p = setAssetList(p, 'AA', 'BA', 'CAT', 'DD', 'ETR');

disp(p.AssetList);

 'AA'    'BA'    'CAT'    'DD'    'ETR'

setAssetList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a PortfolioMAD object, it creates a default asset list according
to the name specified in the hidden public property defaultforAssetList (which is
'Asset' by default). The number of asset names created depends on the number of
assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed
to be 1.

For example, if a PortfolioMAD object p is created with NumAssets = 5, then this code
fragment shows the default naming behavior:

p = PortfolioMAD('numassets',5);

p = setAssetList(p);

disp(p.AssetList);

'Asset1'    'Asset2'    'Asset3'    'Asset4'    'Asset5'

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to 'ETF', you can then create a default list for ETFs:

p = PortfolioMAD('numassets',5);

p.defaultforAssetList = 'ETF'; 

p = setAssetList(p);

disp(p.AssetList);

'ETF1'    'ETF2'    'ETF3'    'ETF4'    'ETF5'

Truncating and Padding Asset Lists

If the NumAssets property is already set and you pass in too many or too few identifiers,
the PortfolioMAD function, and the setAssetList function truncate or pad the list
with numbered default asset names that use the name specified in the hidden public
property defaultforAssetList. If the list is truncated or padded, a warning message
indicates the discrepancy. For example, assume that you have a PortfolioMAD object
with five ETFs and you only know the first three CUSIPs '921937835', '922908769',
and '922042775'. Use this syntax to create an asset list that pads the remaining asset
identifiers with numbered 'UnknownCUSIP' placeholders:
p = PortfolioMAD('numassets',5);

p.defaultforAssetList = 'UnknownCUSIP';

p = setAssetList(p, '921937835', '922908769', '922042775');
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disp(p.AssetList);

Warning: Input list of assets has 2 too few identifiers. Padding with numbered

assets. 

> In PortfolioMAD.setAssetList at 121 

  Columns 1 through 4

    '921937835'    '922908769'    '922042775'    'UnknownCUSIP4'

  Column 5

    'UnknownCUSIP5'

Alternatively, suppose that you have too many identifiers and need only the first four
assets. This example illustrates truncation of the asset list using the PortfolioMAD
function:
p = PortfolioMAD('numassets',4);

p = PortfolioMAD(p, 'assetlist', { 'AGG', 'EEM', 'MDY', 'SPY', 'VEU' });

disp(p.AssetList);

Warning: AssetList has 1 too many identifiers. Using first 4 assets. 

> In PortfolioMAD.checkarguments at 410

  In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 187 

    'AGG'    'EEM'    'MDY'    'SPY'

The hidden public property uppercaseAssetList is a Boolean flag to specify whether
to convert asset names to uppercase letters. The default value for uppercaseAssetList
is false. This example shows how to use the uppercaseAssetList flag to force
identifiers to be uppercase letters:

p = PortfolioMAD;

p.uppercaseAssetList = true;

p = setAssetList(p, { 'aa', 'ba', 'cat', 'dd', 'etr' });

disp(p.AssetList);

'AA'    'BA'    'CAT'    'DD'    'ETR'

See Also
checkFeasibility | estimateBounds | PortfolioMAD | setAssetList |
setInitPort

Related Examples
• “Setting Up an Initial or Current Portfolio” on page 6-36
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
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More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Setting Up an Initial or Current Portfolio

In many applications, creating a new optimal portfolio requires comparing the new
portfolio with an initial or current portfolio to form lists of purchases and sales. The
PortfolioMAD object property InitPort lets you identify an initial or current portfolio.
The initial portfolio also plays an essential role if you have either transaction costs or
turnover constraints. The initial portfolio need not be feasible within the constraints
of the problem. This can happen if the weights in a portfolio have shifted such that
some constraints become violated. To check if your initial portfolio is feasible, use
thecheckFeasibility function described in “Validating MAD Portfolios” on page
6-89. Suppose that you have an initial portfolio in x0, then use the PortfolioMAD
function to set up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = PortfolioMAD('InitPort', x0);

disp(p.InitPort);

 0.3000

 0.2000

 0.2000

      0

As with all array properties, you can set InitPort with scalar expansion. This is helpful
to set up an equally weighted initial portfolio of, for example, 10 assets:

p = PortfolioMAD('NumAssets', 10, 'InitPort', 1/10);

disp(p.InitPort);

0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

 0.1000

To clear an initial portfolio from your PortfolioMAD object, use either the PortfolioMAD
function or the setInitPort function with an empty input for the InitPort property.
If transaction costs or turnover constraints are set, it is not possible to clear the
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InitPort property in this way. In this case, to clear InitPort, first clear the dependent
properties and then clear theInitPort property.

The InitPort property can also be set with setInitPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial
portfolio in x0, use setInitPort to set the InitPort property:

p = PortfolioMAD;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

 0.3000

 0.2000

 0.2000

      0

To create an equally weighted portfolio of four assets, use setInitPort:

p = PortfolioMAD;

p = setInitPort(p, 1/4, 4);

disp(p.InitPort);

 0.2500

 0.2500

 0.2500

 0.2500

PortfolioMAD object functions that work with either transaction costs or turnover
constraints also depend on the InitPort property. So, the set functions for transaction
costs or turnover constraints permit the assignment of a value for the InitPort
property as part of their implementation. For details, see “Working with Average
Turnover Constraints Using PortfolioMAD Object” on page 6-81, “Working with One-
way Turnover Constraints Using PortfolioMAD Object” on page 6-84, and “Working
with Transaction Costs” on page 6-52. If either transaction costs or turnover
constraints are used, then the InitPort property must have a nonempty value. Absent a
specific value assigned through the PortfolioMAD function or various set functions, the
PortfolioMAD object sets InitPort to 0 and warns if BuyCost, SellCost, or Turnover
properties are set. This example shows what happens if you specify an average turnover
constraint with an initial portfolio:

p = PortfolioMAD('Turnover', 0.3, 'InitPort', [ 0.3; 0.2; 0.2; 0.0 ]);

disp(p.InitPort);
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 0.3000

 0.2000

 0.2000

      0

In contrast, this example shows what happens if an average turnover constraint is
specified without an initial portfolio:
p = PortfolioMAD('Turnover', 0.3);

disp(p.InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or

turnover constraints specified. Will set NumAssets = 1 and InitPort = 0. 

> In PortfolioMAD.checkarguments at 446

  In PortfolioMAD.PortfolioMAD>PortfolioMAD.PortfolioMAD at 190 

     0

See Also
checkFeasibility | estimateBounds | PortfolioMAD | setAssetList |
setInitPort

Related Examples
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Asset Returns and Scenarios Using PortfolioMAD Object

In this section...

“How Stochastic Optimization Works” on page 6-39
“What Are Scenarios?” on page 6-40
“Setting Scenarios Using the PortfolioMAD Function” on page 6-40
“Setting Scenarios Using the setScenarios Function” on page 6-41
“Estimating the Mean and Covariance of Scenarios” on page 6-42
“Simulating Normal Scenarios” on page 6-43
“Simulating Normal Scenarios from Returns or Prices” on page 6-43
“Simulating Normal Scenarios with Missing Data” on page 6-45
“Simulating Normal Scenarios from Time Series Data” on page 6-46
“Simulating Normal Scenarios for Mean and Covariance” on page 6-48

How Stochastic Optimization Works

The MAD of a portfolio is mean-absolute deviation. For the definition of the MAD
function, see “Risk Proxy” on page 6-6. Although analytic solutions for MAD exist for
a few probability distributions, an alternative is to compute the expectation for MAD
with samples from the probability distribution of asset returns. These samples are called
scenarios and, given a collection of scenarios, the portfolio optimization problem becomes
a stochastic optimization problem.

As a function of the portfolio weights, the MAD of the portfolio is a convex non-smooth
function (see Konno and Yamazaki [50] at “Portfolio Optimization” on page A-11).
The PortfolioMAD object computes MAD as this nonlinear function which can be handled
by the solver fmincon Optimization Toolbox. The nonlinear programming solver
fmincon has several algorithms that can be selected with the setSolver function, the
two algorithms that work best in practice are 'sqp' and 'active-set'.

There are reformulations of the MAD portfolio optimization problem (see Konno and
Yamazaki [50] at “Portfolio Optimization” on page A-11) that result in a linear
programming problem, which can be solved either with standard linear programming
techniques or with stochastic programming solvers. The PortfolioMAD object, however,
does not reformulate the problem in such a manner. The PortfolioMAD object computes
the MAD as a nonlinear function. The convexity of the MAD, as a function of the portfolio

6-39



6 MAD Portfolio Optimization Tools

weights and the dull edges when the number of scenarios is large, make the MAD
portfolio optimization problem tractable, in practice, for certain nonlinear programming
solvers, such as fmincon from Optimization Toolbox. To learn more about the workflow
when using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-17.

What Are Scenarios?

Since mean absolute deviation portfolio optimization works with scenarios of asset
returns to perform the optimization, several ways exist to specify and simulate scenarios.
In many applications with MAD portfolio optimization, asset returns may have distinctly
nonnormal probability distributions with either multiple modes, binning of returns,
truncation of distributions, and so forth. In other applications, asset returns are
modeled as the result of various simulation methods that might include Monte-Carlo
simulation, quasi-random simulation, and so forth. In many cases, the underlying
probability distribution for risk factors may be multivariate normal but the resultant
transformations are sufficiently nonlinear to result in distinctively nonnormal asset
returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero
probability of default, such scenarios would likely include asset returns that are −100%
to indicate default and some values slightly greater than −100% to indicate recovery
rates.

Although the PortfolioMAD object has functions to simulate multivariate normal
scenarios from either data or moments (simulateNormalScenariosByData and
simulateNormalScenariosByMoments), the usual approach is to specify scenarios
directly from your own simulation functions. These scenarios are entered directly as
a matrix with a sample for all assets across each row of the matrix and with samples
for an asset down each column of the matrix. The architecture of the MAD portfolio
optimization tools references the scenarios through a function handle so scenarios that
have been set cannot be accessed directly as a property of the PortfolioMAD object.

Setting Scenarios Using the PortfolioMAD Function

Suppose that you have a matrix of scenarios in the AssetScenarios variable. The
scenarios are set through the PortfolioMAD function with:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;
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0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios);

disp(p.NumAssets);

disp(p.NumScenarios);

4

20000

Notice that the PortfolioMAD object determines and fixes the number of assets in
NumAssets and the number of scenarios in NumScenarios based on the scenario’s
matrix. You can change the number of scenarios by calling the PortfolioMAD
function with a different scenario matrix. However, once the NumAssets property
has been set in the object, you cannot enter a scenario matrix with a different
number of assets. The getScenarios function lets you recover scenarios from a
PortfolioMAD object. You can also obtain the mean and covariance of your scenarios
using estimateScenarioMoments.

Although not recommended for the casual user, an alternative way exists to recover
scenarios by working with the function handle that points to scenarios in the
PortfolioMAD object. To access some or all of the scenarios from a PortfolioMAD object,
the hidden property localScenarioHandle is a function handle that points to a
function to obtain scenarios that have already been set. To get scenarios directly from a
PortfolioMAD object p, use

scenarios = p.localScenarioHandle([], []);

and to obtain a subset of scenarios from rows startrow to endrow, use

scenarios = p.localScenarioHandle(startrow, endrow);

where 1 ≤ startrow ≤ endrow ≤ numScenarios.

Setting Scenarios Using the setScenarios Function

You can also set scenarios using setScenarios. For example, given the mean and
covariance of asset returns in the variables m and C, the asset moment properties can be
set:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

disp(p.NumAssets);

disp(p.NumScenarios);

4

20000

Estimating the Mean and Covariance of Scenarios

The estimateScenarioMoments function obtains estimates for the mean and
covariance of scenarios in a PortfolioMAD object.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

[mean, covar] = estimateScenarioMoments(p)

mean =

    0.0044
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    0.0084

    0.0108

    0.0155

covar =

    0.0005    0.0003    0.0002   -0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0047    0.0028

   -0.0000    0.0010    0.0028    0.0103

Simulating Normal Scenarios

As a convenience, the two functions (simulateNormalScenariosByData and
simulateNormalScenariosByMoments) exist to simulate scenarios from data or
moments under an assumption that they are distributed as multivariate normal random
asset returns.

Simulating Normal Scenarios from Returns or Prices

Given either return or price data, use the simulateNormalScenariosByData
function to simulate multivariate normal scenarios. Either returns or prices are stored
as matrices with samples going down the rows and assets going across the columns.
In addition, returns or prices can be stored in a financial time series fints object
(see “Simulating Normal Scenarios from Time Series Data” on page 6-46). To
illustrate using simulateNormalScenariosByData, generate random samples of
120 observations of asset returns for four assets from the mean and covariance of asset
returns in the variables m and C with portsim. The default behavior of portsim creates
simulated data with estimated mean and covariance identical to the input moments m
and C. In addition to a return series created by portsim in the variable X, a price series
is created in the variable Y:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

Y = ret2tick(X);
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Note: Portfolio optimization requires that you use total returns and not just price
returns. So, “returns” should be total returns and “prices” should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of
examples demonstrates equivalent ways to simulate multivariate normal scenarios for
the PortfolioMAD object. Assume a PortfolioMAD object created in p that uses the asset
returns in X uses simulateNormalScenariosByData:

p = PortfolioMAD;

p = simulateNormalScenariosByData(p, X, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0033

    0.0085

    0.0095

    0.1503

passetcovar =

    0.0055    0.0004    0.0002    0.0001

    0.0004    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0049    0.0028

    0.0001    0.0010    0.0028    0.0102

The moments that you obtain from this simulation will likely differ from the moments
listed here because the scenarios are random samples from the estimated multivariate
normal probability distribution of the input returns X.

The default behavior of simulateNormalScenariosByData is to work
with asset returns. If, instead, you have asset prices as in the variable Y,
simulateNormalScenariosByData accepts a name-value pair argument name
'DataFormat' with a corresponding value set to 'prices' to indicate that the input
to the function is in the form of asset prices and not returns (the default value for the
'DataFormat' argument is 'returns'). This example simulates scenarios with the
asset price data in Y for the PortfolioMAD object q:
p = PortfolioMAD;

p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

[passetmean, passetcovar] = estimateScenarioMoments(p)
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passetmean =

    0.0043

    0.0083

    0.0099

    0.1500

passetcovar =

    0.0053    0.0003    0.0001    0.0002

    0.0003    0.0024    0.0017    0.0010

    0.0001    0.0017    0.0047    0.0027

    0.0002    0.0010    0.0027    0.0100

Simulating Normal Scenarios with Missing Data

Often when working with multiple assets, you have missing data indicated
by NaN values in your return or price data. Although “Multivariate Normal
Regression” on page 9-2 goes into detail about regression with missing data, the
simulateNormalScenariosByData function has a name-value pair argument name
'MissingData' that indicates with a Boolean value whether to use the missing data
capabilities of Financial Toolbox. The default value for 'MissingData' is false
which removes all samples with NaN values. If, however, 'MissingData' is set to
true, simulateNormalScenariosByData uses the ECM algorithm to estimate asset
moments. This example shows how this works on price data with missing values:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

Y = ret2tick(X);

Y(1:20,1) = NaN;

Y(1:12,4) = NaN;

Notice that the prices above in Y have missing values in the first and fourth series.
p = PortfolioMAD;

p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices');

q = PortfolioMAD;

q = simulateNormalScenariosByData(q, Y, 20000, 'dataformat', 'prices', 'missingdata', true);
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[passetmean, passetcovar] = estimateScenarioMoments(p)

[qassetmean, qassetcovar] = estimateScenarioMoments(q)

passetmean =

    0.0095

    0.0103

    0.0124

    0.1505

passetcovar =

    0.0054    0.0000   -0.0005   -0.0006

    0.0000    0.0021    0.0015    0.0010

   -0.0005    0.0015    0.0046    0.0026

   -0.0006    0.0010    0.0026    0.0100

qassetmean =

    0.0092

    0.0082

    0.0094

    0.1463

qassetcovar =

    0.0071   -0.0000   -0.0006   -0.0006

   -0.0000    0.0032    0.0023    0.0015

   -0.0006    0.0023    0.0064    0.0036

   -0.0006    0.0015    0.0036    0.0133

The first PortfolioMAD object, p, contains scenarios obtained from price data in Y where
NaN values are discarded and the second PortfolioMAD object, q, contains scenarios
obtained from price data in Y that accommodate missing values. Each time you run this
example, you get different estimates for the moments in p and q.

Simulating Normal Scenarios from Time Series Data

The simulateNormalScenariosByData function also accepts asset returns or prices
stored in financial time series (fints) objects. The function implicitly works with
matrices of data or data in a fints object using the same rules for whether the data are
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returns or prices. To illustrate, use fints to create the fints object Xfts that contains
asset returns generated with fints (see “Simulating Normal Scenarios from Returns or
Prices” on page 6-43) and add series labels:
m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

X = portsim(m', C, 120);

d = (datenum('31-jan-2001'):datenum('31-dec-2010'))';

Xfts = fints(d, zeros(numel(d),4), {'Bonds', 'LargeCap', 'SmallCap', 'Emerging'});

Xfts = tomonthly(Xfts);

Xfts.Bonds = X(:,1);

Xfts.LargeCap = X(:,2);

Xfts.SmallCap = X(:,3);

Xfts.Emerging = X(:,4);

p = PortfolioMAD;

p = simulateNormalScenariosByData(p, Xfts, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0038

    0.0078

    0.0102

    0.1492

passetcovar =

    0.0053    0.0004    0.0001   -0.0000

    0.0004    0.0024    0.0017    0.0010

    0.0001    0.0017    0.0048    0.0028

   -0.0000    0.0010    0.0028    0.0103

The name-value inputs 'DataFormat' to handle return or price data
and'MissingData' to ignore or use samples with missing values also work for
fints data. In addition, simulateNormalScenariosByData extracts asset names
or identifiers from a fints object if the argument name 'GetAssetList' is set
to true (the default value is false). If the 'GetAssetList' value is true, the
identifiers are used to set the AssetList property of the PortfolioMAD object. Thus,
repeating the formation of the PortfolioMAD object q from the previous example with the
'GetAssetList' flag set to true extracts the series labels from the fints object:
p = simulateNormalScenariosByData(p, Xfts, 20000, 'getassetlist', true);

6-47



6 MAD Portfolio Optimization Tools

disp(p.AssetList)

 'Bonds'    'LargeCap'    'SmallCap'    'Emerging'

If you set the'GetAssetList' flag set to true and your input data is in a matrix,
simulateNormalScenariosByData uses the default labeling scheme from
setAssetList as described in “Setting Up a List of Asset Identifiers” on page 6-32.

Simulating Normal Scenarios for Mean and Covariance

Given the mean and covariance of asset returns, use the
simulateNormalScenariosByMoments function to simulate multivariate normal
scenarios. The mean can be either a row or column vector and the covariance matrix
must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion
apply. To illustrate using simulateNormalScenariosByMoments, start with moments
in m and C and generate 20,000 scenarios:

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

p = PortfolioMAD;

p = simulateNormalScenariosByMoments(p, m, C, 20000);

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

    0.0040

    0.0084

    0.0105

    0.1513

passetcovar =

    0.0053    0.0003    0.0002    0.0001

    0.0003    0.0024    0.0017    0.0009

    0.0002    0.0017    0.0048    0.0028

    0.0001    0.0009    0.0028    0.0102

simulateNormalScenariosByMoments performs scalar expansion on
arguments for the moments of asset returns. If NumAssets has not already
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been set, a scalar argument is interpreted as a scalar with NumAssets set to 1.
simulateNormalScenariosByMoments provides an additional optional argument to
specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns,
a diagonal matrix is formed such that a scalar expands along the diagonal and a vector
becomes the diagonal.

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Working with a Riskless Asset” on page 6-50
• “Working with Transaction Costs” on page 6-52
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with a Riskless Asset
The PortfolioMAD object has a separate RiskFreeRate property that stores the rate
of return of a riskless asset. Thus, you can separate your universe into a riskless asset
and a collection of risky assets. For example, assume that your riskless asset has a
return in the scalar variable r0, then the property for the RiskFreeRate is set using the
PortfolioMAD function:

r0 = 0.01/12;

p = PortfolioMAD;

p = PortfolioMAD('RiskFreeRate', r0);

disp(p.RiskFreeRate);

 8.3333e-04

Note: If your portfolio problem has a budget constraint such that your portfolio weights
must sum to 1, then the riskless asset is irrelevant.

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Working with Transaction Costs” on page 6-52
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
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• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Transaction Costs

The difference between net and gross portfolio returns is transaction costs. The net
portfolio return proxy has distinct proportional costs to purchase and to sell assets
which are maintained in the PortfolioMAD object properties BuyCost and SellCost.
Transaction costs are in units of total return and, as such, are proportional to the price
of an asset so that they enter the model for net portfolio returns in return form. For
example, suppose that you have a stock currently priced $40 and your usual transaction
costs are 5 cents per share. Then the transaction cost for the stock is 0.05/40 = 0.00125
(as defined in “Net Portfolio Returns” on page 6-5). Costs are entered as positive values
and credits are entered as negative values.

Setting Transaction Costs Using the PortfolioMAD Function

To set up transaction costs, you must specify an initial or current portfolio in the
InitPort property. If the initial portfolio is not set when you set up the transaction
cost properties, InitPort is 0. The properties for transaction costs can be set using
the PortfolioMAD function. For example, assume that purchase and sale transaction
costs are in the variables bc and sc and an initial portfolio is in the variable x0, then
transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('BuyCost', bc, 'SellCost', sc, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013
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    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs Using the setCosts Function

You can also set the properties for transaction costs using setCosts. Assume that
you have the same costs and initial portfolio as in the previous example. Given a
PortfolioMAD object p with an initial portfolio already set, use setCosts to set up
transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setCosts(p, bc, sc);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort); 

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000
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    0.1000

    0.1000

You can also set up the initial portfolio's InitPort value as an optional argument to
setCosts so that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD;

p = setCosts(p, bc, sc, x0);

        

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

    5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Setting Transaction Costs with Scalar Expansion

Both the PortfolioMAD function and setCosts function implement scalar expansion
on the arguments for transaction costs and the initial portfolio. If the NumAssets
property is already set in the PortfolioMAD object, scalar arguments for these properties
are expanded to have the same value across all dimensions. In addition, setCosts lets
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you specify NumAssets as an optional final argument. For example, assume that you
have an initial portfolio x0 and you want to set common transaction costs on all assets in
your universe. You can set these costs in any of these equivalent ways:
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0, 'BuyCost', 0.002, 'SellCost', 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setCosts(p, 0.002, 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD;

p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your PortfolioMAD object, use either thePortfolioMAD function or
setCosts with empty inputs for the properties to be cleared. For example, you can clear
sales costs from the PortfolioMAD object p in the previous example:

p = PortfolioMAD(p, 'SellCost', []);

See Also
PortfolioMAD | setCosts | setScenarios | simulateNormalScenariosByData |
simulateNormalScenariosByMoments

Related Examples
• “Working with a Riskless Asset” on page 6-50
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
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More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with MAD Portfolio Constraints Using Defaults

The final element for a complete specification of a portfolio optimization problem is
the set of feasible portfolios, which is called a portfolio set. A portfolio set X R

n
Ã  is

specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). For
information on the workflow when using PortfolioMAD objects, see “PortfolioMAD Object
Workflow” on page 6-17.

Setting Default Constraints for Portfolio Weights Using PortfolioMAD
Object

The “default” MAD portfolio problem has two constraints on portfolio weights:

• Portfolio weights must be nonnegative.
• Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although
this is a superfluous constraint to impose on the problem.

Setting Default Constraints Using the PortfolioMAD Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the
PortfolioMAD function to set up a default problem and explicitly set bounds and budget
constraints:

p = PortfolioMAD('NumAssets', 20, 'LowerBound', 0, 'Budget', 1);

disp(p);

 PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []
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     BuyTurnover: []

    SellTurnover: []

    NumScenarios: []

            Name: []

       NumAssets: 20

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Setting Default Constraints Using the setDefaultConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number
of assets is already known in a PortfolioMAD object, use setDefaultConstraints with
no arguments to set up the necessary bound and budget constraints. Suppose that you
have 20 assets to set up the portfolio set for a default problem:

p = PortfolioMAD('NumAssets', 20);

p = setDefaultConstraints(p);

disp(p);

PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: []

            Name: []

       NumAssets: 20
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       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as
an optional argument to form a portfolio set for a default problem. Suppose that you have
20 assets:

p = PortfolioMAD;

p = setDefaultConstraints(p, 20);

disp(p);

PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: []

            Name: []

       NumAssets: 20

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20x1 double]

      UpperBound: []
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     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Working with Bound Constraints Using PortfolioMAD Object” on page 6-62
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-65
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Working with Group Ratio Constraints Using PortfolioMAD Object” on page

6-71
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page

6-75
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page

6-78
• “Working with Average Turnover Constraints Using PortfolioMAD Object” on page

6-81
• “Working with One-way Turnover Constraints Using PortfolioMAD Object” on page

6-84
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
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More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Bound Constraints Using PortfolioMAD Object

Bound constraints are optional linear constraints that maintain upper and lower
bounds on portfolio weights (see “Bound Constraints” on page 6-10). Although every
MAD portfolio set must be bounded, it is not necessary to specify a MAD portfolio
set with explicit bound constraints. For example, you can create a MAD portfolio set
with an implicit upper bound constraint or a MAD portfolio set with average turnover
constraints. The bound constraints have properties LowerBound for the lower-bound
constraint and UpperBound for the upper-bound constraint. Set default values for
these constraints using the setDefaultConstraints function (see “Setting Default
Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-57).

Setting Bounds Using the PortfolioMAD Function

The properties for bound constraints are set through the PortfolioMAD function.
Suppose that you have a balanced fund with stocks that can range from 50% to 75% of
your portfolio and bonds that can range from 25% to 50% of your portfolio. The bound
constraints for a balanced fund are set with:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioMAD('LowerBound', lb, 'UpperBound', ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

    2

    0.5000

    0.2500

    0.7500

    0.5000

To continue with this example, you must set up a budget constraint. For details, see
“Budget Constraints” on page 6-11.

Setting Bounds Using the setBounds Function

You can also set the properties for bound constraints using setBounds. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
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bonds that can range from 25% to 50% of your portfolio. Given a PortfolioMAD object p,
use setBounds to set the bound constraints:

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioMAD;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

    2

    0.5000

    0.2500

    0.7500

    0.5000

Setting Bounds Using the PortfolioMAD Function or setBounds Function

Both the PortfolioMAD function and setBounds function implement scalar expansion
on either the LowerBound or UpperBound properties. If the NumAssets property is
already set in the PortfolioMAD object, scalar arguments for either property expand
to have the same value across all dimensions. In addition, setBounds lets you specify
NumAssets as an optional argument. Suppose that you have a universe of 500 assets and
you want to set common bound constraints on all assets in your universe. Specifically,
you are a long-only investor and want to hold no more than 5% of your portfolio in any
single asset. You can set these bound constraints in any of these equivalent ways:
p = PortfolioMAD('NumAssets', 500, 'LowerBound', 0, 'UpperBound', 0.05);

or

p = PortfolioMAD('NumAssets', 500);

p = setBounds(p, 0, 0.05);

or

p = PortfolioMAD;

p = setBounds(p, 0, 0.05, 500);

To clear bound constraints from your PortfolioMAD object, use either the PortfolioMAD
function or setBounds with empty inputs for the properties to be cleared. For example,

6-63



6 MAD Portfolio Optimization Tools

to clear the upper-bound constraint from the PortfolioMAD object p in the previous
example:

p = PortfolioMAD(p, 'UpperBound', []);

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Budget Constraints Using PortfolioMAD Object

The budget constraint is an optional linear constraint that maintains upper and
lower bounds on the sum of portfolio weights (see “Budget Constraints” on page 5-11).
Budget constraints have properties LowerBudget for the lower budget constraint
and UpperBudget for the upper budget constraint. If you set up a MAD portfolio
optimization problem that requires portfolios to be fully invested in your universe of
assets, you can set LowerBudget to be equal to UpperBudget. These budget constraints
can be set with default values equal to 1 using setDefaultConstraints (see “Setting
Default Constraints for Portfolio Weights Using PortfolioMAD Object” on page 6-57).

Setting Budget Constraints Using the PortfolioMAD Function

The properties for the budget constraint can also be set using the PortfolioMAD
function. Suppose that you have an asset universe with many risky assets and a riskless
asset and you want to ensure that your portfolio never holds more than 1% cash, that is,
you want to ensure that you are 99–100% invested in risky assets. The budget constraint
for this portfolio can be set with:

p = PortfolioMAD('LowerBudget', 0.99, 'UpperBudget', 1);

disp(p.LowerBudget);

disp(p.UpperBudget);

 0.9900

1

Setting Budget Constraints Using the setBudget Function

You can also set the properties for a budget constraint using setBudget. Suppose that
you have a fund that permits up to 10% leverage which means that your portfolio can
be from 100% to 110% invested in risky assets. Given a PortfolioMAD object p, use
setBudget to set the budget constraints:

p = PortfolioMAD;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

 1
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 1.1000

If you were to continue with this example, then set the RiskFreeRate property to the
borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate
property, see “Working with a Riskless Asset” on page 6-50. To clear either bound for the
budget constraint from your PortfolioMAD object, use either the PortfolioMAD function
or setBudget with empty inputs for the properties to be cleared. For example, clear the
upper-budget constraint from the PortfolioMAD object p in the previous example with:

p = PortfolioMAD(p, 'UpperBudget', []);

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Group Constraints Using PortfolioMAD Object

Group constraints are optional linear constraints that group assets together and enforce
bounds on the group weights (see “Group Constraints” on page 6-12). Although the
constraints are implemented as general constraints, the usual convention is to form
a group matrix that identifies membership of each asset within a specific group with
Boolean indicators (either true or false or with 1 or 0) for each element in the group
matrix. Group constraints have properties GroupMatrix for the group membership
matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the
upper-bound constraint on groups.

Setting Group Constraints Using the PortfolioMAD Function

The properties for group constraints are set through the PortfolioMAD function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets constitute no more than 30% of your portfolio, then you can set group constraints:

G = [ 1 1 1 0 0 ];

p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

The group matrix G can also be a logical matrix so that the following code achieves the
same result.

G = [ true true true false false ];

p = PortfolioMAD('GroupMatrix', G, 'UpperGroup', 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0
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0.3000

Setting Group Constraints Using the setGroups and addGroups Functions

You can also set the properties for group constraints using setGroups. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute no
more than 30% of your portfolio. Given a PortfolioMAD object p, use setGroups to set
the group constraints:

G = [ true true true false false ];

p = PortfolioMAD;

p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

5

1     1     1     0     0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose that you want to add another group constraint to make odd-numbered assets
constitute at least 20% of your portfolio. Set up an augmented group matrix and
introduce infinite bounds for unconstrained group bounds or use the addGroups function
to build up group constraints. For this example, create another group matrix for the
second group constraint:
p = PortfolioMAD;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

 5

1     1     1     0     0

1     0     1     0     1

  -Inf
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0.2000

0.3000

  Inf

addGroups determines which bounds are unbounded so you only need to focus on the
constraints that you want to set.

The PortfolioMAD function, setGroups, and addGroups implement scalar expansion
on either the LowerGroup or UpperGroup properties based on the dimension of the
group matrix in the property GroupMatrix. Suppose that you have a universe of 30
assets with 6 asset classes such that assets 1–5, assets 6–12, assets 13–18, assets 19–22,
assets 23–27, and assets 28–30 constitute each of your asset classes and you want each
asset class to fall from 0% to 25% of your portfolio. Let the following group matrix define
your groups and scalar expansion define the common bounds on each group:
p = PortfolioMAD;

G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(1,5), true(1,3));

p = setGroups(p, G, 0, 0.25);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

30

  Columns 1 through 13

     1     1     1     1     1     0     0     0     0     0     0     0     0

     0     0     0     0     0     1     1     1     1     1     1     1     0

     0     0     0     0     0     0     0     0     0     0     0     0     1

     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 14 through 26

     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0

     1     1     1     1     1     0     0     0     0     0     0     0     0

     0     0     0     0     0     1     1     1     1     0     0     0     0

     0     0     0     0     0     0     0     0     0     1     1     1     1

     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 27 through 30

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0

     1     0     0     0

     0     1     1     1

     0

     0

     0

     0
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     0

     0

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500

    0.2500

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Group Ratio Constraints Using PortfolioMAD Object

Group ratio constraints are optional linear constraints that maintain bounds on
proportional relationships among groups of assets (see “Group Ratio Constraints” on
page 6-13). Although the constraints are implemented as general constraints, the usual
convention is to specify a pair of group matrices that identify membership of each asset
within specific groups with Boolean indicators (either true or false or with 1 or 0)
for each element in each of the group matrices. The goal is to ensure that the ratio of a
base group compared to a comparison group fall within specified bounds. Group ratio
constraints have properties:

• GroupA for the base membership matrix
• GroupB for the comparison membership matrix
• LowerRatio for the lower-bound constraint on the ratio of groups
• UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the PortfolioMAD Function

The properties for group ratio constraints are set using PortfolioMAD function. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1–3) and three nonfinanical companies (assets 4–6). To set group ratio
constraints:
GA = [ 1 1 1 0 0 0 ];    % financial companies

GB = [ 0 0 0 1 1 1 ];    % nonfinancial companies

p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Group matrices GA and GB in this example can be logical matrices with true and false
elements that yield the same result:
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GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = PortfolioMAD('GroupA', GA, 'GroupB', GB, 'UpperRatio', 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

Setting Group Ratio Constraints Using the setGroupRatio and
addGroupRatio Functions

You can also set the properties for group ratio constraints using setGroupRatio.
For example, assume that you want the ratio of financial to nonfinancial companies
in your portfolios to never go above 50%. Suppose that you have six assets with three
financial companies (assets 1–3) and three nonfinanical companies (assets 4–6). Given a
PortfolioMAD object p, use setGroupRatio to set the group constraints:
GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = PortfolioMAD;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

6

1     1     1     0     0     0

0     0     0     1     1     1

0.5000

In this example, you would set the LowerRatio property to be empty ([]).

Suppose that you want to add another group ratio constraint to ensure that the weights
in odd-numbered assets constitute at least 20% of the weights in nonfinancial assets your
portfolio. You can set up augmented group ratio matrices and introduce infinite bounds
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for unconstrained group ratio bounds, or you can use the addGroupRatio function to
build up group ratio constraints. For this example, create another group matrix for the
second group constraint:

p = PortfolioMAD;

GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];   % odd-numbered companies

GB = [ false false false true true true ];   % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

6

1     1     1     0     0     0

1     0     1     0     1     0

0     0     0     1     1     1

0     0     0     1     1     1

  -Inf

0.2000

0.5000

  Inf

Notice that addGroupRatio determines which bounds are unbounded so you only need
to focus on the constraints you want to set.

ThePortfolioMAD function, setGroupRatio, and addGroupRatio implement scalar
expansion on either the LowerRatio or UpperRatio properties based on the dimension
of the group matrices in GroupA and GroupB properties.

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover
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Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Linear Equality Constraints Using PortfolioMAD
Object

Linear equality constraints are optional linear constraints that impose systems of
equalities on portfolio weights (see “Linear Equality Constraints” on page 6-10). Linear
equality constraints have properties AEquality, for the equality constraint matrix, and
bEquality, for the equality constraint vector.

Setting Linear Equality Constraints Using the PortfolioMAD Function

The properties for linear equality constraints are set using the PortfolioMAD function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. To set this constraint:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD('AEquality', A, 'bEquality', b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0.5000

Setting Linear Equality Constraints Using the setEquality and addEquality
Functions

You can also set the properties for linear equality constraints using setEquality.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioMAD object p, use setEquality to set
the linear equality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setEquality(p, A, b);

disp(p.NumAssets);
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disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear equality constraint to ensure that the last
three assets also constitute 50% of your portfolio. You can set up an augmented system
of linear equalities or use addEquality to build up linear equality constraints. For this
example, create another system of equalities:

p = PortfolioMAD;

A = [ 1 1 1 0 0 ];    % first equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

5

1     1     1     0     0

0     0     1     1     1

0.5000

0.5000

The PortfolioMAD function, setEquality, and addEquality implement scalar
expansion on the bEquality property based on the dimension of the matrix in the
AEquality property.

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover
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Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Linear Inequality Constraints Using PortfolioMAD
Object

Linear inequality constraints are optional linear constraints that impose systems of
inequalities on portfolio weights (see “Linear Inequality Constraints” on page 6-9).
Linear inequality constraints have properties AInequality for the inequality constraint
matrix, and bInequality for the inequality constraint vector.

Setting Linear Inequality Constraints Using the PortfolioMAD Function

The properties for linear inequality constraints are set using the PortfolioMAD
function. Suppose that you have a portfolio of five assets and you want to ensure that the
first three assets are no more than 50% of your portfolio. To set up these constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD('AInequality', A, 'bInequality', b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0.5000

Setting Linear Inequality Constraints Using the setInequality and
addInequality Functions

You can also set the properties for linear inequality constraints using setInequality.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets constitute no more than 50% of your portfolio. Given a PortfolioMAD object
p, use setInequality to set the linear inequality constraints:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setInequality(p, A, b);

disp(p.NumAssets);
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disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0.5000

Suppose that you want to add another linear inequality constraint to ensure that the
last three assets constitute at least 50% of your portfolio. You can set up an augmented
system of linear inequalities or use the addInequality function to build up linear
inequality constraints. For this example, create another system of inequalities:

p = PortfolioMAD;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

5

1     1     1     0     0

0     0    -1    -1    -1

0.5000

-0.5000

The PortfolioMAD function, setInequality, and addInequality implement scalar
expansion on the bInequality property based on the dimension of the matrix in the
AInequality property.

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover
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Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Average Turnover Constraints Using PortfolioMAD
Object

The turnover constraint is an optional linear absolute value constraint (see “Average
Turnover Constraints” on page 6-13) that enforces an upper bound on the average of
purchases and sales. The turnover constraint can be set using the PortfolioMAD
function or the setTurnover function. The turnover constraint depends on an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraint is
set. The turnover constraint has properties Turnover, for the upper bound on average
turnover, and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the PortfolioMAD Function

The properties for the turnover constraints are set using the PortfolioMAD function.
Suppose that you have an initial portfolio of 10 assets in a variable x0 and you want to
ensure that average turnover is no more than 30%. To set this turnover constraint:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = PortfolioMAD('Turnover', 0.3, 'InitPort', x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 6-36).
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Setting Average Turnover Constraints Using the setTurnover Function

You can also set properties for portfolio turnover using setTurnover to specify both
the upper bound for average turnover and an initial portfolio. Suppose that you have an
initial portfolio of 10 assets in a variable x0 and want to ensure that average turnover is
no more than 30%. Given a PortfolioMAD object p, use setTurnover to set the turnover
constraint with and without the initial portfolio being set previously:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD;

p = setTurnover(p, 0.3, x0);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

10

0.3000

0.1200

0.0900

0.0800
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0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000

setTurnover implements scalar expansion on the argument for the initial portfolio. If
the NumAssets property is already set in the PortfolioMAD object, a scalar argument
for InitPort expands to have the same value across all dimensions. In addition,
setTurnover lets you specify NumAssets as an optional argument. To clear turnover
from your PortfolioMAD object, use the PortfolioMAD function or setTurnover with
empty inputs for the properties to be cleared.

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with One-way Turnover Constraints Using PortfolioMAD
Object

One-way turnover constraints are optional constraints (see “One-way Turnover
Constraints” on page 6-14) that enforce upper bounds on net purchases or net sales.
One-way turnover constraints can be set using the PortfolioMAD function or the
setOneWayTurnover function. One-way turnover constraints depend upon an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraints are
set. One-way turnover constraints have properties BuyTurnover, for the upper bound on
net purchases, SellTurnover, for the upper bound on net sales, and InitPort, for the
portfolio against which turnover is computed.

Setting One-way Turnover Constraints Using the PortfolioMAD Function

The Properties for the one-way turnover constraints are set using the PortfolioMAD
function. Suppose that you have an initial portfolio with 10 assets in a variable x0 and
you want to ensure that turnover on purchases is no more than 30% and turnover on
sales is no more than 20% of the initial portfolio. To set these turnover constraints:
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ]; 

p = PortfolioMAD('BuyTurnover', 0.3, 'SellTurnover', 0.2, 'InitPort', x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);  

10

0.3000

0.2000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100

0.0800

0.1000 
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If the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 6-36).

Setting Turnover Constraints Using the setOneWayTurnover Function

You can also set properties for portfolio turnover using setOneWayTurnover to
specify to the upper bounds for turnover on purchases (BuyTurnover) and sales
(SellTurnover) and an initial portfolio. Suppose that you have an initial portfolio of
10 assets in a variable x0 and want to ensure that turnover on purchases is no more
than 30% and that turnover on sales is no more than 20% of the initial portfolio. Given
a PortfolioMAD object p, use setOneWayTurnover to set the turnover constraints with
and without the initial portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);   

or
x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD;

p = setOneWayTurnover(p, 0.3, 0.2, x0);

disp(p.NumAssets);

disp(p.BuyTurnover);

disp(p.SellTurnover);

disp(p.InitPort);

10

0.3000

0.2000

0.1200

0.0900

0.0800

0.0700

0.1000

0.1000

0.1500

0.1100
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0.0800

0.1000

setOneWayTurnover implements scalar expansion on the argument for the initial
portfolio. If the NumAssets property is already set in the PortfolioMAD object, a scalar
argument for InitPort expands to have the same value across all dimensions. In
addition, setOneWayTurnover lets you specify NumAssets as an optional argument.
To remove one-way turnover from your PortfolioMAD object, use the PortfolioMAD
function or setOneWayTurnover with empty inputs for the properties to be cleared.

See Also
PortfolioMAD | setBounds | setBudget | setDefaultConstraints
| setEquality | setGroupRatio | setGroups | setInequality |
setOneWayTurnover | setTurnover

Related Examples
• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on

page 6-57
• “Creating the PortfolioMAD Object” on page 6-23
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Validate the MAD Portfolio Problem

In this section...

“Validating a MAD Portfolio Set” on page 6-87
“Validating MAD Portfolios” on page 6-89

In some cases, you may want to validate either your inputs to, or outputs from, a
portfolio optimization problem. Although most error checking that occurs during the
problem setup phase catches most difficulties with a portfolio optimization problem,
the processes to validate MAD portfolio sets and portfolios are time consuming and
are best done offline. So, the portfolio optimization tools have specialized functions to
validate MAD portfolio sets and portfolios. For information on the workflow when using
PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-17.

Validating a MAD Portfolio Set

Since it is necessary and sufficient that your MAD portfolio set must be a nonempty,
closed, and bounded set to have a valid portfolio optimization problem, the
estimateBounds function lets you examine your portfolio set to determine if it is
nonempty and, if nonempty, whether it is bounded. Suppose that you have the following
MAD portfolio set which is an empty set because the initial portfolio at 0 is too far from a
portfolio that satisfies the budget and turnover constraint:

p = PortfolioMAD('NumAssets', 3, 'Budget', 1);

p = setTurnover(p, 0.3, 0);

If a MAD portfolio set is empty, estimateBounds returns NaN bounds and sets the
isbounded flag to []:

[lb, ub, isbounded] = estimateBounds(p)

lb =

   NaN

   NaN

   NaN

ub =

   NaN
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   NaN

   NaN

isbounded =

     []

Suppose that you create an unbounded MAD portfolio set as follows:

p = PortfolioMAD('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf

ub =

  1.0e-008 *

   -0.3712

       Inf

isbounded =

     0

In this case, estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Finally, suppose that you created a MAD object that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are
useful if you are concerned with the actual range of portfolio choices for individual assets
in your portfolio:
p = PortfolioMAD;

p = setBudget(p, 1,1);

p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);

        

[lb, ub, isbounded] = estimateBounds(p)

lb =

   -0.1000

    0.2000
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    0.3000

    0.2000

ub =

    0.3000

    0.3000

    0.7000

    0.6000

isbounded =

     1

In this example, all but the second asset has tighter upper bounds than the input upper
bound implies.

Validating MAD Portfolios

Given a MAD portfolio set specified in a PortfolioMAD object, you often want to check
if specific portfolios are feasible with respect to the portfolio set. This can occur with,
for example, initial portfolios and with portfolios obtained from other procedures. The
checkFeasibility function determines whether a collection of portfolios is feasible.
Suppose that you perform the following portfolio optimization and want to determine if
the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the PortfolioMAD object p, estimate efficient portfolios in pwgt,
and then confirm that these portfolios are feasible relative to the initial problem:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);
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pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

Next, set up a different portfolio problem that starts with the initial problem with an
additional a turnover constraint and an equally weighted initial portfolio:

q = setTurnover(p, 0.3, 0.25);

checkFeasibility(q, pwgt)

ans =

     0     0     1     1     1     0     0     0     0     0

In this case, only two of the 10 efficient portfolios from the initial problem are feasible
relative to the new problem in PortfolioMAD object q. Solving the second problem using
checkFeasibility demonstrates that the efficient portfolio for PortfolioMAD object q
is feasible relative to the initial problem:

qwgt = estimateFrontier(q);

checkFeasibility(p, qwgt)

ans =

     1     1     1     1     1     1     1     1     1     1

See Also
checkFeasibility | estimateBounds | PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
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More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Estimate Efficient Portfolios Along the Entire Frontier for
PortfolioMAD Object

There are two ways to look at a portfolio optimization problem that depends on what you
are trying to do. One goal is to estimate efficient portfolios and the other is to estimate
efficient frontiers. This section focuses on the former goal and “Estimate Efficient
Frontiers for PortfolioMAD Object” on page 6-106 focuses on the latter goal. For
information on the workflow when using PortfolioMAD objects, see “PortfolioMAD Object
Workflow” on page 6-17.

Obtaining Portfolios Along the Entire Efficient Frontier

The most basic way to obtain optimal portfolios is to obtain points over the entire range
of the efficient frontier. Given a portfolio optimization problem in a PortfolioMAD object,
the estimateFrontier function computes efficient portfolios spaced evenly according to
the return proxy from the minimum to maximum return efficient portfolios. The number
of portfolios estimated is controlled by the hidden property defaultNumPorts which is
set to 10. A different value for the number of portfolios estimated is specified as input to
estimateFrontier. This example shows the default number of efficient portfolios over
the entire range of the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

disp(pwgt);

 Columns 1 through 8

    0.8907    0.7289    0.5614    0.3946    0.2257    0.0612         0    0.0000

    0.0330    0.1163    0.2119    0.3042    0.3998    0.4876    0.4400    0.3125

    0.0420    0.0469    0.0472    0.0505    0.0534    0.0580    0.0374    0.0018

    0.0343    0.1079    0.1794    0.2507    0.3211    0.3933    0.5226    0.6857

  Columns 9 through 10

    0.0000    0.0000

    0.1570    0.0000

    0.0000    0.0000

    0.8430    1.0000

6-92



 Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt);

  0.8907    0.3946         0    0.0000

  0.0330    0.3042    0.4401    0.0000

  0.0420    0.0505    0.0373    0.0000

  0.0343    0.2507    0.5227    1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales
to get from your initial portfolio to each efficient portfolio on the efficient frontier. For
example, given an initial portfolio in pwgt0, you can obtain purchases and sales:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

  Columns 1 through 8

    0.8907    0.7289    0.5614    0.3946    0.2257    0.0612         0    0.0000

    0.0330    0.1163    0.2119    0.3042    0.3998    0.4876    0.4400    0.3125

    0.0420    0.0469    0.0472    0.0505    0.0534    0.0580    0.0374    0.0018

    0.0343    0.1079    0.1794    0.2507    0.3211    0.3933    0.5226    0.6857

  Columns 9 through 10

    0.0000    0.0000

    0.1570    0.0000

    0.0000    0.0000

    0.8430    1.0000

pbuy =

  Columns 1 through 8

    0.5907    0.4289    0.2614    0.0946         0         0         0         0

         0         0         0    0.0042    0.0998    0.1876    0.1400    0.0125

         0         0         0         0         0         0         0         0

         0    0.0079    0.0794    0.1507    0.2211    0.2933    0.4226    0.5857

  Columns 9 through 10

         0         0

         0         0

         0         0

    0.7430    0.9000
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psell =

  Columns 1 through 8

         0         0         0         0    0.0743    0.2388    0.3000    0.3000

    0.2670    0.1837    0.0881         0         0         0         0         0

    0.1580    0.1531    0.1528    0.1495    0.1466    0.1420    0.1626    0.1982

    0.0657         0         0         0         0         0         0         0

  Columns 9 through 10

    0.3000    0.3000

    0.1430    0.3000

    0.2000    0.2000

         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioMAD | setSolver

Related Examples
• “Obtaining Endpoints of the Efficient Frontier” on page 6-95
• “Obtaining Efficient Portfolios for Target Returns” on page 6-98
• “Obtaining Efficient Portfolios for Target Risks” on page 6-101
• “Obtaining MAD Portfolio Risks and Returns” on page 6-106
• “Obtaining the PortfolioMAD Standard Deviation” on page 6-108
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-110
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Obtaining Endpoints of the Efficient Frontier

In many cases, you might be interested in the endpoint portfolios for the efficient
frontier. Suppose that you want to determine the range of returns from minimum
to maximum to refine a search for a portfolio with a specific target return. Use the
estimateFrontierLimits function to obtain the endpoint portfolios:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

  0.8875    0.0000

  0.0373    0.0000

  0.0386    0.0000

  0.0366    1.0000

Note: The endpoints of the efficient frontier depend upon the Scenarios in the
PortfolioMAD object. If you change the Scenarios, you are likely to obtain different
endpoints.

Starting from an initial portfolio, estimateFrontierLimits also returns purchases
and sales to get from the initial portfolio to the endpoint portfolios on the efficient
frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and
sales:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;
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    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierLimits(p);

 

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.8927    0.0000

    0.0334    0.0000

    0.0422    0.0000

    0.0317    1.0000

pbuy =

    0.5927         0

         0         0

         0         0

         0    0.9000

psell =

         0    0.3000

    0.2666    0.3000

    0.1578    0.2000

    0.0683         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

6-96



 Obtaining Endpoints of the Efficient Frontier

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioMAD | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Obtaining Efficient Portfolios for Target Returns

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolio returns
and obtains efficient portfolios with the specified returns. For example, assume that you
have a universe of four assets where you want to obtain efficient portfolios with target
portfolio returns of 7%, 10%, and 12%:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt);

pwgt =

    0.7537    0.3899    0.1478

    0.1113    0.2934    0.4136

    0.0545    0.1006    0.1319

    0.0805    0.2161    0.3066

In some cases, you can request a return for which no efficient portfolio exists. Based on
the previous example, suppose that you want a portfolio with a 4% return (which is the
return of the first asset). A portfolio that is fully invested in the first asset, however,
is inefficient. estimateFrontierByReturn warns if your target returns are outside
the range of efficient portfolio returns and replaces it with the endpoint portfolio of the
efficient frontier closest to your target return:
 pwgt = estimateFrontierByReturn(p, [0.04]);

Warning: One or more target return values are outside the feasible range [

0.0591121, 0.182542 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In PortfolioMAD.estimateFrontierByReturn at 90 

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of
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the Efficient Frontier” on page 6-95 and “Obtaining MAD Portfolio Risks and Returns” on
page 6-106).

pret = estimatePortReturn(p, p.estimateFrontierLimits);

display(pret);

pret =

    0.0591

    0.1825

This result indicates that efficient portfolios have returns that range from 6.5% to 17.8%.
Note, your results for these examples may be different due to the random generation of
scenarios.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, to obtain purchases and sales with
target returns of 7%, 10%, and 12%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.07,  0.10, .12]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.7537    0.3899    0.1478

    0.1113    0.2934    0.4136

    0.0545    0.1006    0.1319

    0.0805    0.2161    0.3066

pbuy =

    0.4537    0.0899         0

         0         0    0.1136

         0         0         0

         0    0.1161    0.2066

psell =
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         0         0    0.1522

    0.1887    0.0066         0

    0.1455    0.0994    0.0681

    0.0195         0         0

If you do not have an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioMAD | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Obtaining Efficient Portfolios for Target Risks

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Suppose that you have a universe of
four assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt);

pwgt =

    0.2102    0.0621         0

    0.3957    0.4723    0.4305

    0.1051    0.1204    0.1291

    0.2889    0.3452    0.4404

In some cases, you can request a risk for which no efficient portfolio exists. Based on the
previous example, suppose that you want a portfolio with 6% risk (individual assets in
this universe have risks ranging from 7% to 42.5%). It turns out that a portfolio with
6% risk cannot be formed with these four assets. estimateFrontierByRisk warns if
your target risks are outside the range of efficient portfolio risks and replaces it with the
endpoint of the efficient frontier closest to your target risk:
pwgt = estimateFrontierByRisk(p, 0.06)

Warning: One or more target risk values are outside the feasible range [

0.0610574, 0.278711 ].

 Will return portfolios associated with endpoints of the range for these values. 

> In PortfolioMAD.estimateFrontierByRisk at 82 

pwgt =
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    0.8867

    0.0396

    0.0404

    0.0332

The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of
the Efficient Frontier” on page 6-95 and “Estimate Efficient Frontiers for PortfolioMAD
Object” on page 6-106).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);

display(prsk);

prsk =

    0.0611

    0.2787

This result indicates that efficient portfolios have risks that range from 7% to 42.5%.
Note, your results for these examples may be different due to the random generation of
scenarios.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgt0, you can obtain purchases and sales from
the example with target risks of 12%, 14%, and 16%:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

    0.2102    0.0621         0

    0.3957    0.4723    0.4305

    0.1051    0.1204    0.1291

    0.2889    0.3452    0.4404

pbuy =

         0         0         0
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    0.0957    0.1723    0.1305

         0         0         0

    0.1889    0.2452    0.3404

psell =

    0.0898    0.2379    0.3000

         0         0         0

    0.0949    0.0796    0.0709

         0         0         0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is 0.

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioMAD | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Choosing and Controlling the Solver

When solving portfolio optimizations for a PortfolioMAD object, while all variations of
fmincon from Optimization Toolbox are supported, using 'sqp' and 'active-set'
algorithms for fmincon is recommended and the use of 'interior-point' algorithm is
not recommended for MAD portfolio optimization.

Unlike Optimization Toolbox which uses the 'trust-region-reflective' algorithm
as the default algorithm for fmincon, the portfolio optimization for a PortfolioMAD
object uses the 'active-set' algorithm. For details about fmincon and constrained
nonlinear optimization algorithms and options, see “Constrained Nonlinear Optimization
Algorithms”.

To modify fmincon options for MAD portfolio optimizations, use setSolver to set the
hidden properties solverType and solverOptions to specify and control the solver.
Since these solver properties are hidden, you cannot set them using the PortfolioMAD
function. The default solver is fmincon with the 'sqb' algorithm and no displayed
output, so you do not need to use setSolver to specify this.

If you want to specify additional options associated with the fmincon solver, setSolver
accepts these options as name-value pair arguments. For example, if you want to use
fmincon with the sqp algorithm and with displayed output, use setSolver with:
p = PortfolioMAD;

p = setSolver(p, 'fmincon', 'Algorithm', 'sqp', 'Display', 'final');

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

sqp

final

Alternatively, the setSolver function accepts an optimoptions object as the second
argument. For example, you can change the algorithm to trust-region-reflective
with no displayed output as follows:
p = PortfolioMAD;

options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');

p = setSolver(p, 'fmincon', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off
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See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortReturn |
estimatePortRisk | PortfolioMAD | setSolver

Related Examples
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Estimate Efficient Frontiers for PortfolioMAD Object

In this section...

“Obtaining MAD Portfolio Risks and Returns” on page 6-106
“Obtaining the PortfolioMAD Standard Deviation” on page 6-108

Whereas “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD
Object” on page 6-92 focused on estimation of efficient portfolios, this section focuses
on the estimation of efficient frontiers. For information on the workflow when using
PortfolioMAD objects, see “PortfolioMAD Object Workflow” on page 6-17.

Obtaining MAD Portfolio Risks and Returns

Given any portfolio and, in particular, efficient portfolios, the functions
estimatePortReturn and estimatePortRisk provide estimates for the return (or
return proxy), risk (or the risk proxy). Each function has the same input syntax but
with different combinations of outputs. Suppose that you have this following portfolio
optimization problem that gave you a collection of portfolios along the efficient frontier in
pwgt:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

pwgt = estimateFrontier(p)

pwgt =
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  Columns 1 through 8

    0.8954    0.7264    0.5573    0.3877    0.2176    0.0495    0.0000         0

    0.0310    0.1239    0.2154    0.3081    0.4028    0.4924    0.4069    0.2386

    0.0409    0.0524    0.0660    0.0792    0.0907    0.1047    0.1054    0.1132

    0.0328    0.0973    0.1613    0.2250    0.2890    0.3534    0.4877    0.6482

  Columns 9 through 10

         0    0.0000

    0.0694    0.0000

    0.1221    0.0000

    0.8084    1.0000

Note: Remember that the risk proxy for MAD portfolio optimization is mean-absolute
deviation.

Given pwgt0 and pwgt, use the portfolio risk and return estimation functions to obtain
risks and returns for your initial portfolio and the portfolios on the efficient frontier:

prsk0 = estimatePortRisk(p, pwgt0);

pret0 = estimatePortReturn(p, pwgt0);

prsk = estimatePortRisk(p, pwgt);

pret = estimatePortReturn(p, pwgt);

display(prsk0);

display(pret0);

display(prsk);

display(pret);

You obtain these risks and returns:

prsk0 =

    0.0256

pret0 =

    0.0072

prsk =

    0.0178

    0.0193

    0.0233

    0.0286
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    0.0348

    0.0414

    0.0489

    0.0584

    0.0692

    0.0809

pret =

    0.0047

    0.0059

    0.0072

    0.0084

    0.0096

    0.0108

    0.0120

    0.0133

    0.0145

    0.0157

Obtaining the PortfolioMAD Standard Deviation

The PortfolioMAD object has a function to compute standard deviations of portfolio
returns, estimatePortStd. This function works with any portfolios, not necessarily
efficient portfolios. For example, the following example obtains five portfolios (pwgt) on
the efficient frontier and also has an initial portfolio in pwgt0. Various portfolio statistics
are computed that include the return, risk, and standard deviation. The listed estimates
are for the initial portfolio in the first row followed by estimates for each of the five
efficient portfolios in subsequent rows.

m = [ 0.0042; 0.0083; 0.01; 0.15 ];

C = [ 0.005333 0.00034 0.00016 0;

0.00034 0.002408 0.0017 0.000992;

0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('initport', pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);
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pwgt = estimateFrontier(p, 5);

pret = estimatePortReturn(p, [pwgt0, pwgt]);

prsk = estimatePortRisk(p, [pwgt0, pwgt]);

pstd = estimatePortStd(p, [pwgt0, pwgt]);

[pret, prsk, pstd]

ans =

    0.0212    0.0305    0.0381

    0.0187    0.0326    0.0407

    0.0514    0.0369    0.0462

    0.0841    0.0484    0.0607

    0.1168    0.0637    0.0796

    0.1495    0.0807    0.1009

See Also
estimatePortReturn | estimatePortStd | plotFrontier | PortfolioMAD

Related Examples
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-110
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Plotting the Efficient Frontier for a PortfolioMAD Object

The plotFrontier function creates a plot of the efficient frontier for a given portfolio
optimization problem. This function accepts several types of inputs and generates a
plot with an optional possibility to output the estimates for portfolio risks and returns
along the efficient frontier. plotFrontier has four different ways that it can be used. In
addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort
property, plotFrontier also displays the return versus risk of the initial portfolio
on the same plot. If you have a well-posed portfolio optimization problem set up in a
PortfolioMAD object and you use plotFrontier, you get a plot of the efficient frontier
with the default number of portfolios on the frontier (the default number is currently 10
and is maintained in the hidden property defaultNumPorts). This example illustrates a
typical use of plotFrontier to create a new plot:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

plotFrontier(p);
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The Name property appears as the title of the efficient frontier plot if you set it in the
PortfolioMAD object. Without an explicit name, the title on the plot would be “Efficient
Frontier.” If you want to obtain a specific number of portfolios along the efficient frontier,
use plotFrontier with the number of portfolios that you want. Suppose that you have
the PortfolioMAD object from the previous example and you want to plot 20 portfolios
along the efficient frontier and to obtain 20 risk and return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);

display([pret, prsk]);

ans =

    0.0049    0.0176

    0.0054    0.0179

    0.0058    0.0189

    0.0063    0.0205

    0.0068    0.0225

    0.0073    0.0248

    0.0078    0.0274

    0.0083    0.0302
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    0.0088    0.0331

    0.0093    0.0361

    0.0098    0.0392

    0.0103    0.0423

    0.0108    0.0457

    0.0112    0.0496

    0.0117    0.0539

    0.0122    0.0586

    0.0127    0.0635

    0.0132    0.0687

    0.0137    0.0744

    0.0142    0.0806

Plotting Existing Efficient Portfolios

If you already have efficient portfolios from any of the "estimateFrontier" functions (see
“Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106), pass them into
plotFrontier directly to plot the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ];
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C = [ 0.0064 0.00408 0.00192 0; 

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);

plotFrontier(p, pwgt)

Plotting Existing Efficient Portfolio Risks and Returns

If you already have efficient portfolio risks and returns, you can use the interface to
plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0; 

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

AssetScenarios = mvnrnd(m, C, 20000);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0);

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

pret= estimatePortReturn(p, pwgt)

prsk = estimatePortRisk(p, pwgt)

plotFrontier(p, prsk, pret)

pret =

    0.0590

    0.0723

    0.0857

    0.0991

    0.1124

    0.1258

    0.1391

    0.1525

    0.1658

    0.1792

prsk =

    0.0615

    0.0664

    0.0795

    0.0976

    0.1184

    0.1408

    0.1663

    0.1992

    0.2368

    0.2787
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See Also
estimatePortReturn | estimatePortStd | plotFrontier | PortfolioMAD

Related Examples
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117

More About
• “PortfolioMAD Object” on page 6-18
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• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Postprocessing Results to Set Up Tradable Portfolios

After obtaining efficient portfolios or estimates for expected portfolio risks and returns,
use your results to set up trades to move toward an efficient portfolio. For information on
the workflow when using PortfolioMAD objects, see “PortfolioMAD Object Workflow” on
page 6-17.

Setting Up Tradable Portfolios

Suppose that you set up a portfolio optimization problem and obtained portfolios on the
efficient frontier. Use the dataset object from Statistics and Machine Learning Toolbox
to form a blotter that lists your portfolios with the names for each asset. For example,
suppose that you want to obtain five portfolios along the efficient frontier. You can set up
a blotter with weights multiplied by 100 to view the allocations for each portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);

display(Blotter);

Blotter = 

                          Port1     Port2     Port3     Port4     Port5     

    Bonds                 88.154    50.867    13.611         0    1.0609e-12

    Large-Cap Equities    4.0454    22.571    41.276     23.38    7.9362e-13

    Small-Cap Equities    4.2804    9.3108    14.028    17.878    6.4823e-14

    Emerging Equities     3.5202    17.252    31.084    58.743           100

Note: Your results may differ from this result due to the simulation of scenarios.
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This result indicates that you would invest primarily in bonds at the minimum-risk/
minimum-return end of the efficient frontier (Port1), and that you would invest
completely in emerging equity at the maximum-risk/maximum-return end of the efficient
frontier (Port5). You can also select a particular efficient portfolio, for example, suppose
that you want a portfolio with 15% risk and you add purchase and sale weights outputs
obtained from the “estimateFrontier” functions to set up a trade blotter:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = p.setDefaultConstraints;

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...

{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);

display(Blotter);

Blotter = 

                          Initial    Weight        Purchases    Sales 

    Bonds                 30         6.0364e-18         0           30

    Large-Cap Equities    30             50.179    20.179            0

    Small-Cap Equities    20              13.43         0       6.5696

    Emerging Equities     10             36.391    26.391            0

If you have prices for each asset (in this example, they can be ETFs), add them to your
blotter and then use the tools of the dataset object to obtain shares and shares to be
traded.

See Also
checkFeasibility | estimateScenarioMoments | PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
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• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Working with Other Portfolio Objects

The PortfolioMAD object is for MAD portfolio optimization. The PortfolioCVaR object
is for CVaR portfolio optimization. The Portfolio object is for mean-variance portfolio
optimization. In some cases, you might want to examine portfolio optimization problems
according to different combinations of return and risk proxies. A common example is
that you want to do a MAD portfolio optimization and then want to work primarily with
moments of portfolio returns. Suppose that you set up a MAD portfolio optimization
problem with:
m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioMAD;

p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);

p = simulateNormalScenariosByMoments(p, m, C, 20000);

p = setDefaultConstraints(p);

To work with the same problem in a mean-variance framework, you can use the scenarios
from the PortfolioMAD object to set up a Portfolio object so that p contains a MAD
optimization problem and q contains a mean-variance optimization problem based on the
same data.

q = Portfolio('AssetList', p.AssetList);

q = estimateAssetMoments(q, p.getScenarios);

q = setDefaultConstraints(q);

pwgt = estimateFrontier(p);

qwgt = estimateFrontier(q);

Since each object has a different risk proxy, it is not possible to compare results side
by side. To obtain means and standard deviations of portfolio returns, you can use the
functions associated with each object to obtain:

pret = estimatePortReturn(p, pwgt);

pstd = estimatePortStd(p, pwgt);

qret = estimatePortReturn(q, qwgt);

qstd = estimatePortStd(q, qwgt);

[pret, qret]

[pstd, qstd]
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ans =

    0.0592    0.0590

    0.0730    0.0728

    0.0868    0.0867

    0.1006    0.1005

    0.1145    0.1143

    0.1283    0.1282

    0.1421    0.1420

    0.1559    0.1558

    0.1697    0.1697

    0.1835    0.1835

ans =

    0.0767    0.0767

    0.0829    0.0828

    0.0989    0.0987

    0.1208    0.1206

    0.1461    0.1459

    0.1732    0.1730

    0.2042    0.2040

    0.2453    0.2452

    0.2929    0.2928

    0.3458    0.3458

To produce comparable results, you can use the returns or risks from one portfolio
optimization as target returns or risks for the other portfolio optimization.

qwgt = estimateFrontierByReturn(q, pret);

qret = estimatePortReturn(q, qwgt);

qstd = estimatePortStd(q, qwgt);

[pret, qret]

[pstd, qstd]

ans =

    0.0592    0.0592

    0.0730    0.0730

    0.0868    0.0868

    0.1006    0.1006

    0.1145    0.1145

    0.1283    0.1283
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    0.1421    0.1421

    0.1559    0.1559

    0.1697    0.1697

    0.1835    0.1835

ans =

    0.0767    0.0767

    0.0829    0.0829

    0.0989    0.0989

    0.1208    0.1208

    0.1461    0.1461

    0.1732    0.1732

    0.2042    0.2042

    0.2453    0.2453

    0.2929    0.2929

    0.3458    0.3458

Now it is possible to compare standard deviations of portfolio returns from either type of
portfolio optimization.

See Also
Portfolio | PortfolioMAD

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Troubleshooting MAD Portfolio Optimization Results

PortfolioMAD Object Destroyed When Modifying

If a PortfolioMAD object is destroyed when modifying, remember to pass an existing
object into the PortfolioMAD function if you want to modify it, otherwise it creates a
new object. See “Creating the PortfolioMAD Object” on page 6-23 for details.

Matrix Incompatibility and "Non-Conformable" Errors

If you get matrix incompatibility or "non-conformable" errors, the representation of
data in the tools follows a specific set of basic rules described in “Conventions for
Representation of Data” on page 6-21.

Missing Data Estimation Fails

If asset return data has missing or NaN values, the simulateNormalScenariosByData
function with the 'missingdata' flag set to true may fail with either too many
iterations or a singular covariance. To correct this problem, consider this:

• If you have asset return data with no missing or NaN values, you can compute a
covariance matrix that may be singular without difficulties. If you have missing
or NaN values in your data, the supported missing data feature requires that your
covariance matrix must be positive-definite, that is, nonsingular.

• simulateNormalScenariosByData uses default settings for the missing data
estimation procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with
either the ECM estimation functions such as ecmnmle or with your own functions.

mad_optim_transform Errors

If you obtain optimization errors such as:
Error using mad_optim_transform (line 276)

Portfolio set appears to be either empty or unbounded. Check constraints.

Error in PortfolioMAD/estimateFrontier (line 64)

 [AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);

or
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Error using mad_optim_transform (line 281)

Cannot obtain finite lower bounds for specified portfolio set.

Error in PortfolioMAD/estimateFrontier (line 64)

 [AI, bI, AE, bE, lB, uB, f0, f, x0] = mad_optim_transform(obj);

Since the portfolio optimization tools require a bounded portfolio set, these errors
(and similar errors) can occur if your portfolio set is either empty and, if nonempty,
unbounded. Specifically, the portfolio optimization algorithm requires that your
portfolio set have at least a finite lower bound. The best way to deal with these
problems is to use the validation methods in “Validate the MAD Portfolio Problem”
on page 6-87. Specifically, use estimateBounds to examine your portfolio set, and
use checkFeasibility to ensure that your initial portfolio is either feasible and, if
infeasible, that you have sufficient turnover to get from your initial portfolio to the
portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover and
gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense

If you obtain efficient portfolios that, do not seem to make sense, this can happen if
you forget to set specific constraints or you set incorrect constraints. For example, if
you allow portfolio weights to fall between 0 and 1 and do not set a budget constraint,
you can get portfolios that are 100% invested in every asset. Although it may be hard
to detect, the best thing to do is to review the constraints you have set with display of
the PortfolioMAD object. If you get portfolios with 100% invested in each asset, you can
review the display of your object and quickly see that no budget constraint is set. Also,
you can use estimateBounds and checkFeasibility to determine if the bounds for
your portfolio set make sense and to determine if the portfolios you obtained are feasible
relative to an independent formulation of your portfolio set.

See Also
checkFeasibility | estimateScenarioMoments | PortfolioMAD

Related Examples
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117
• “Creating the PortfolioMAD Object” on page 6-23
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
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 Troubleshooting MAD Portfolio Optimization Results

• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on
page 6-92

• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

More About
• “PortfolioMAD Object” on page 6-18
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17
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Performance Metrics Overview

Performance Metrics Types

Sharpe first proposed a ratio of excess return to total risk as an investment performance
metric. Subsequent work by Sharpe, Lintner, and Mossin extended these ideas to entire
asset markets in what is called the Capital Asset Pricing Model (CAPM). Since the
development of the CAPM, a variety of investment performance metrics has evolved.

This section presents four types of investment performance metrics:

• The first type of metrics is absolute investment performance metrics that are called
“classic” metrics since they are based on the CAPM. They include the Sharpe ratio,
the information ratio, and tracking error. To compute the Sharpe ratio from data,
use sharpe to calculate the ratio for one or more asset return series. To compute the
information ratio and associated tracking error, use inforatio to calculate these
quantities for one or more asset return series.

• The second type of metrics is relative investment performance metrics to compute
risk-adjusted returns. These metrics are also based on the CAPM and include Beta,
Jensen's Alpha, the Security Market Line (SML), Modigliani and Modigliani Risk-
Adjusted Return, and the Graham-Harvey measures. To calculate risk-adjusted alpha
and return, use portalpha.

• The third type of metrics is alternative investment performance metrics based on
lower partial moments. To calculate lower partial moments, use lpm for sample lower
partial moments and elpm for expected lower partial moments.

• The fourth type of metrics is performance metrics based on maximum drawdown
and expected maximum drawdown. To calculate maximum or expected maximum
drawdowns, use maxdrawdown and emaxdrawdown.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
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• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Performance Metrics Illustration
To illustrate the functions for investment performance metrics, you work with three
financial time series objects using performance data for:

• An actively managed, large-cap value mutual fund
• A large-cap market index
• 90-day Treasury bills

The data is monthly total return prices that cover a span of five years.

The following plot illustrates the performance of each series in terms of total returns to
an initial $1 invested at the start of this 5-year period:

load FundMarketCash

plot(TestData)

hold on

title('\bfFive-Year Total Return Performance');

legend('Fund','Market','Cash','Location','SouthEast');

hold off
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The mean (Mean) and standard deviation (Sigma) of returns for each series are

Returns = tick2ret(TestData);

Assets

Mean = mean(Returns)

Sigma = std(Returns, 1)

which gives the following result:

Assets = 

    'Fund'    'Market'    'Cash'

Mean =

    0.0038    0.0030    0.0017

Sigma =

    0.0229    0.0389    0.0009

Note: Functions for investment performance metrics use total return price and total
returns. To convert between total return price and total returns, use ret2tick and
tick2ret.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using the Sharpe Ratio

In this section...

“Introduction” on page 7-6
“Sharpe Ratio” on page 7-6

Introduction

The Sharpe ratio is the ratio of the excess return of an asset divided by the asset's
standard deviation of returns. The Sharpe ratio has the form:

(Mean - Riskless) / Sigma

Here Mean is the mean of asset returns, Riskless is the return of a riskless asset, and
Sigma is the standard deviation of asset returns. A higher Sharpe ratio is better than a
lower Sharpe ratio. A negative Sharpe ratio indicates “anti-skill” since the performance
of the riskless asset is superior. For more information, see sharpe.

Sharpe Ratio

To compute the Sharpe ratio, the mean return of the cash asset is used as the return for
the riskless asset. Thus, given asset return data and the riskless asset return, the Sharpe
ratio is calculated with

load FundMarketCash 

Returns = tick2ret(TestData);

Riskless = mean(Returns(:,3))

Sharpe = sharpe(Returns, Riskless)

which gives the following result:

Riskless =

    0.0017

Sharpe =

    0.0886    0.0315         0

The Sharpe ratio of the example fund is significantly higher than the Sharpe ratio of the
market. As is demonstrated with portalpha, this translates into a strong risk-adjusted
return. Since the Cash asset is the same as Riskless, it makes sense that its Sharpe
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ratio is 0. The Sharpe ratio was calculated with the mean of cash returns. It can also be
calculated with the cash return series as input for the riskless asset

Sharpe = sharpe(Returns, Returns(:,3))

which gives the following result:

Sharpe =

    0.0886    0.0315         0

When using the Portfolio object, you can use the estimateMaxSharpeRatio function
to estimate an efficient portfolio that maximizes the Sharpe ratio. For more information,
see “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-116.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Information Ratio” on page 7-8
• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using the Information Ratio

In this section...

“Introduction” on page 7-8
“Information Ratio” on page 7-8

Introduction

Although originally called the “appraisal ratio” by Treynor and Black, the information
ratio is the ratio of relative return to relative risk (known as “tracking error”). Whereas
the Sharpe ratio looks at returns relative to a riskless asset, the information ratio is
based on returns relative to a risky benchmark which is known colloquially as a “bogey.”
Given an asset or portfolio of assets with random returns designated by Asset and a
benchmark with random returns designated by Benchmark, the information ratio has
the form:

Mean(Asset - Benchmark) / Sigma (Asset - Benchmark)

Here Mean(Asset - Benchmark) is the mean of Asset minus Benchmark returns, and
Sigma(Asset - Benchmark) is the standard deviation of Asset minus Benchmark
returns. A higher information ratio is considered better than a lower information ratio.
For more information, see inforatio.

Information Ratio

To calculate the information ratio using the example data, the mean return of the market
series is used as the return of the benchmark. Thus, given asset return data and the
riskless asset return, compute the information ratio with

load FundMarketCash 

Returns = tick2ret(TestData);

Benchmark = Returns(:,2);

InfoRatio = inforatio(Returns, Benchmark)

which gives the following result:

InfoRatio =

    0.0432       NaN   -0.0315
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Since the market series has no risk relative to itself, the information ratio for the second
series is undefined (which is represented as NaN in MATLAB software). Its standard
deviation of relative returns in the denominator is 0.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-6
• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using Tracking Error

In this section...

“Introduction” on page 7-10
“Tracking Error” on page 7-10

Introduction

Given an asset or portfolio of assets and a benchmark, the relative standard deviation
of returns between the asset or portfolio of assets and the benchmark is called tracking
error.

Tracking Error

The function inforatio computes tracking error and returns it as a second argument

load FundMarketCash 

Returns = tick2ret(TestData);

Benchmark = Returns(:,2);

[InfoRatio, TrackingError] = inforatio(Returns, Benchmark)

which gives the following results:

InfoRatio =

    0.0432       NaN   -0.0315

TrackingError =

    0.0187         0    0.0390

Tracking error is a useful measure of performance relative to a benchmark since it is in
units of asset returns. For example, the tracking error of 1.87% for the fund relative to
the market in this example is reasonable for an actively managed, large-cap value fund.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
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• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using Risk-Adjusted Return

In this section...

“Introduction” on page 7-12
“Risk-Adjusted Return” on page 7-12

Introduction

Risk-adjusted return either shifts the risk (which is the standard deviation of returns) of
a portfolio to match the risk of a market portfolio or shifts the risk of a market portfolio
to match the risk of a fund. According to the Capital Asset Pricing Model (CAPM), the
market portfolio and a riskless asset are points on a Security Market Line (SML). The
return of the resultant shifted portfolio, levered or unlevered, to match the risk of the
market portfolio, is the risk-adjusted return. The SML provides another measure of risk-
adjusted return, since the difference in return between the fund and the SML, return at
the same level of risk.

Risk-Adjusted Return

Given our example data with a fund, a market, and a cash series, you can calculate the
risk-adjusted return and compare it with the fund and market's mean returns

load FundMarketCash 

Returns = tick2ret(TestData);

Fund = Returns(:,1);

Market = Returns(:,2);

Cash = Returns(:,3);

MeanFund = mean(Fund)

MeanMarket = mean(Market)

[MM, aMM] = portalpha(Fund, Market, Cash, 'MM')

[GH1, aGH1] = portalpha(Fund, Market, Cash, 'gh1')

[GH2, aGH2] = portalpha(Fund, Market, Cash, 'gh2')

[SML, aSML] = portalpha(Fund, Market, Cash, 'sml')

which gives the following results:

MeanFund =

    0.0038
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MeanMarket =

    0.0030

MM =

    0.0022

aMM =

    0.0052

GH1 =

    0.0013

aGH1 =

    0.0025

GH2 =

    0.0022

aGH2 =

    0.0052

SML =

    0.0013

aSML =

    0.0025

Since the fund's risk is much less than the market's risk, the risk-adjusted return of the
fund is much higher than both the nominal fund and market returns.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret
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Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
• “Using Tracking Error” on page 7-10
• “Using Sample and Expected Lower Partial Moments” on page 7-15
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using Sample and Expected Lower Partial Moments

In this section...

“Introduction” on page 7-15
“Sample Lower Partial Moments” on page 7-15
“Expected Lower Partial Moments” on page 7-16

Introduction

Use lower partial moments to examine what is colloquially known as “downside risk.”
The main idea of the lower partial moment framework is to model moments of asset
returns that fall below a minimum acceptable level of return. To compute lower partial
moments from data, use lpm to calculate lower partial moments for multiple asset return
series and for multiple moment orders. To compute expected values for lower partial
moments under several assumptions about the distribution of asset returns, use elpm to
calculate lower partial moments for multiple assets and for multiple orders.

Sample Lower Partial Moments

The following example demonstrates lpm to compute the zero-order, first-order, and
second-order lower partial moments for the three time series, where the mean of the
third time series is used to compute MAR (minimum acceptable return) with the so-called
risk-free rate.

load FundMarketCash 

Returns = tick2ret(TestData);

Assets

MAR = mean(Returns(:,3))

LPM = lpm(Returns, MAR, [0 1 2])

which gives the following results:

Assets = 

    'Fund'    'Market'    'Cash'

MAR =

    0.0017

LPM =

    0.4333    0.4167    0.6167

    0.0075    0.0140    0.0004
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    0.0003    0.0008    0.0000

The first row of LPM contains zero-order lower partial moments of the three series. The
fund and market index fall below MAR about 40% of the time and cash returns fall below
its own mean about 60% of the time.

The second row contains first-order lower partial moments of the three series. The fund
and market have large average shortfall returns relative to MAR by 75 and 140 basis
points per month. On the other hand, cash underperforms MAR by about only four basis
points per month on the downside.

The third row contains second-order lower partial moments of the three series. The
square root of these quantities provides an idea of the dispersion of returns that fall
below the MAR. The market index has a much larger variation on the downside when
compared to the fund.

Expected Lower Partial Moments

To compare realized values with expected values, use elpm to compute expected lower
partial moments based on the mean and standard deviations of normally distributed
asset returns. The elpm function works with the mean and standard deviations for
multiple assets and multiple orders.

load FundMarketCash

Returns = tick2ret(TestData);

MAR = mean(Returns(:,3))

Mean = mean(Returns)

Sigma = std(Returns, 1)

Assets

ELPM = elpm(Mean, Sigma, MAR, [0 1 2])

which gives the following results:

Assets = 

    'Fund'    'Market'    'Cash'

ELPM =

    0.4647    0.4874    0.5000

    0.0082    0.0149    0.0004

    0.0002    0.0007    0.0000

Based on the moments of each asset, the expected values for lower partial moments
imply better than expected performance for the fund and market and worse than
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expected performance for cash. This function works with either degenerate or
nondegenerate normal random variables. For example, if cash were truly riskless, its
standard deviation would be 0. You can examine the difference in average shortfall.

RisklessCash = elpm(Mean(3), 0, MAR, 1)

which gives the following result:

RisklessCash =

     0

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Maximum and Expected Maximum Drawdown” on page 7-18
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Using Maximum and Expected Maximum Drawdown

In this section...

“Introduction” on page 7-18
“Maximum Drawdown” on page 7-18
“Expected Maximum Drawdown” on page 7-21

Introduction

Maximum drawdown is the maximum decline of a series, measured as return, from a
peak to a nadir over a period of time. Although additional metrics exist that are used in
the hedge fund and commodity trading communities (see Pederson and Rudholm-Alfvin
[20] in Appendix A), the original definition and subsequent implementation of these
metrics is not yet standardized.

It is possible to compute analytically the expected maximum drawdown for a Brownian
motion with drift (see Magdon-Ismail, Atiya, Pratap, and Abu-Mostafa [16] Appendix A).
These results are used to estimate the expected maximum drawdown for a series that
approximately follows a geometric Brownian motion.

Use maxdrawdown and emaxdrawdown to calculate the maximum and expected
maximum drawdowns.

Maximum Drawdown

This example demonstrates how to compute the maximum drawdown (MaxDD) using our
example data with a fund, a market, and a cash series:

load FundMarketCash

MaxDD = maxdrawdown(TestData)

which gives the following results:

MaxDD =

    0.1658    0.3381         0

The maximum drop in the given time period was of 16.58% for the fund series, and
33.81% for the market. There was no decline in the cash series, as expected, because the
cash account never loses value.
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maxdrawdown can also return the indices (MaxDDIndex) of the maximum drawdown
intervals for each series in an optional output argument:

[MaxDD, MaxDDIndex] = maxdrawdown(TestData)

which gives the following results:

MaxDD =

    0.1658    0.3381         0

MaxDDIndex =

     2     2   NaN

    18    18   NaN

The first two series experience their maximum drawdowns from the second to the 18th
month in the data. The indices for the third series are NaNs because it never has a
drawdown.

The 16.58% value loss from month 2 to month 18 for the fund series is verified using the
reported indices:

Start = MaxDDIndex(1,:);

End = MaxDDIndex(2,:);

(TestData(Start(1),1) - TestData(End(1),1))/TestData(Start(1),1)

ans =

    0.1658

Although the maximum drawdown is measured in terms of returns, maxdrawdown can
measure the drawdown in terms of absolute drop in value, or in terms of log-returns.
To contrast these alternatives more clearly, we work with the fund series assuming, an
initial investment of 50 dollars:

Fund50 = 50*TestData(:,1);

plot(Fund50);

title('\bfFive-Year Fund Performance, Initial Investment 50 usd');

xlabel('Months');

ylabel('Value of Investment');
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First, we compute the standard maximum drawdown, which coincides with the results
above because returns are independent of the initial amounts invested:

MaxDD50Ret = maxdrawdown(Fund50)

MaxDD50Ret =

    0.1658

Next, we compute the maximum drop in value, using the arithmetic argument:

[MaxDD50Arith, Ind50Arith] = maxdrawdown(Fund50,'arithmetic')

MaxDD50Arith =

    8.4285

Ind50Arith =

     2
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    18

The value of this investment was $50.84 in month 2, but by month 18 the value was
down to $42.41, a drop of $8.43. This is the largest loss in dollar value from a previous
high in the given time period. In this case, the maximum drawdown period, 2nd to 18th
month, is the same independently of whether drawdown is measured as return or as
dollar value loss.

Last, we compute the maximum decline based on log-returns using the geometric
argument. In this example, the log-returns result in a maximum drop of 18.13%, again
from the second to the 18th month, not far from the 16.58% obtained using standard
returns.

[MaxDD50LogRet, Ind50LogRet] = maxdrawdown(Fund50,'geometric')

MaxDD50LogRet =

    0.1813

Ind50LogRet =

     2

    18

Note, the last measure is equivalent to finding the arithmetic maximum drawdown for
the log of the series:

MaxDD50LogRet2 = maxdrawdown(log(Fund50),'arithmetic')

MaxDD50LogRet2 =

    0.1813

Expected Maximum Drawdown

This example demonstrates using the log-return moments of the fund to compute the
expected maximum drawdown (EMaxDD) and then compare it with the realized maximum
drawdown (MaxDD).

load FundMarketCash

logReturns = log(TestData(2:end,:) ./ TestData(1:end - 1,:));

Mu = mean(logReturns(:,1));

7-21



7 Investment Performance Metrics

Sigma = std(logReturns(:,1),1);

T = size(logReturns,1);

MaxDD = maxdrawdown(TestData(:,1),'geometric')

EMaxDD = emaxdrawdown(Mu-0.5*Sigma^2, Sigma, T)

which gives the following results:

MaxDD =

    0.1813

EMaxDD =

    0.1588

The drawdown observed in this time period is above the expected maximum drawdown.
There is no contradiction here. The expected maximum drawdown is not an upper
bound on the maximum losses from a peak, but an estimate of their average, based on a
geometric Brownian motion assumption.

See Also
elpm | emaxdrawdown | inforatio | lpm | maxdrawdown | portalpha | ret2tick
| sharpe | tick2ret

Related Examples
• “Performance Metrics Overview” on page 7-2
• “Using the Sharpe Ratio” on page 7-6
• “Using the Information Ratio” on page 7-8
• “Using Tracking Error” on page 7-10
• “Using Risk-Adjusted Return” on page 7-12
• “Using Sample and Expected Lower Partial Moments” on page 7-15
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• “Estimation of Transition Probabilities” on page 8-2
• “Forecasting Corporate Default Rates” on page 8-20
• “Credit Quality Thresholds” on page 8-52
• “About Credit Scorecards” on page 8-57
• “Credit Scorecard Modeling Workflow” on page 8-62
• “Troubleshooting Credit Scorecard Results” on page 8-65
• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Credit Default Swap (CDS)” on page 8-99
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Estimation of Transition Probabilities

In this section...

“Introduction” on page 8-2
“Estimate Transition Probabilities” on page 8-2
“Estimate Transition Probabilities for Different Rating Scales” on page 8-5
“Estimate Point-in-Time and Through-the-Cycle Probabilities” on page 8-6
“Estimate t-Year Default Probabilities” on page 8-9
“Estimate Bootstrap Confidence Intervals” on page 8-10
“Group Credit Ratings” on page 8-11
“Work with Nonsquare Matrices” on page 8-13
“Remove Outliers” on page 8-15
“Estimate Probabilities for Different Segments” on page 8-16
“Work with Large Datasets” on page 8-17

Introduction

Credit ratings rank borrowers according to their credit worthiness. Though this ranking
is, in itself, useful, institutions are also interested in knowing how likely it is that
borrowers in a particular rating category will be upgraded or downgraded to a different
rating, and especially, how likely it is that they will default.

Transition probabilities offer one way to characterize the past changes in credit quality of
obligors (typically firms), and are cardinal inputs to many risk management applications.
Financial Toolbox software supports the estimation of transition probabilities using
both cohort and duration (also known as hazard rate or intensity) approaches using
transprob and related functions.

Note: The sample dataset used throughout this section is simulated using a single
transition matrix. No attempt is made to match historical trends in transition rates.

Estimate Transition Probabilities

The Data_TransProb.mat file contains sample credit ratings data.
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load Data_TransProb

data(1:10,:)  

ans = 

        ID            Date         Rating

    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 

    '00010283'    '12-May-1986'    'B'   

    '00010283'    '29-Jun-1988'    'CCC' 

    '00010283'    '12-Dec-1991'    'D'   

    '00013326'    '09-Feb-1985'    'A'   

    '00013326'    '24-Feb-1994'    'AA'  

    '00013326'    '10-Nov-2000'    'BBB' 

    '00014413'    '23-Dec-1982'    'B'   

    '00014413'    '20-Apr-1988'    'BB'  

    '00014413'    '16-Jan-1998'    'B'    

The sample data is formatted as a cell array with three columns. Each row contains
an ID (column 1), a date (column 2), and a credit rating (column 3). The assigned
credit rating corresponds to the associated ID on the associated date. All information
corresponding to the same ID must be stored in contiguous rows. In this example, IDs,
dates, and ratings are stored in character vector format, but you also can enter them in
numeric format.

In this example, the simplest calling syntax for transprob passes the nRecords-by-3
cell array as the only input argument. The default startDate and endDate are the
earliest and latest dates in the data. The default estimation algorithm is the duration
method and 1-year transition probabilities are estimated:
transMat0 = transprob(data)

transMat0 =

93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017

 1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396

 0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753

 0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193

 0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050

 0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399

 0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167

      0         0         0         0         0         0         0  100.0000

It is recommended to provide explicit start and end dates. Otherwise the estimation
window for two different datasets can differ, and the estimates might not be comparable.
From this point, assume that the time window of interest is the 5-year period from
the end of 1995 to the end of 2000. For comparisons, compute the estimates for this
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time window. First use the duration algorithm (default option), and then the cohort
algorithm explicitly set.
startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

transMat1 = transprob(data,'startDate',startDate,'endDate',endDate)

transMat2 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort')

transMat1 =

90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043

 4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754

 0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832

 0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992

 0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980

 0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860

 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484

      0         0         0         0         0         0         0  100.0000

transMat2 =

90.1554    8.5492    0.9067    0.3886         0         0         0         0

 4.9512   88.5221    5.1763    1.0503    0.2251         0         0    0.0750

 0.2770    6.6482   86.2188    6.0942    0.6233    0.0693         0    0.0693

 0.0794    0.8737   11.6759   81.6521    4.3685    0.7943    0.1589    0.3971

 0.1002    0.4008    1.9038   15.4309   77.8557    3.4068         0    0.9018

      0         0    0.2262    2.4887   17.4208   74.2081    2.2624    3.3937

      0         0    0.7576    1.5152    6.0606   10.6061   75.0000    6.0606

      0         0         0         0         0         0         0  100.0000

By default, the cohort algorithm internally gets yearly snapshots of the credit ratings,
but the number of snapshots per year is definable using the parameter/value pair
snapsPerYear. To get the estimates using quarterly snapshots:
transMat3 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort','snapsPerYear',4)

transMat3 =

90.4765    8.0881    1.0072    0.4069    0.0164    0.0015    0.0002    0.0032

 4.5949   89.3216    4.6489    1.1239    0.2276    0.0074    0.0007    0.0751

 0.3747    6.3158   86.7380    5.6344    0.7675    0.0856    0.0040    0.0800

 0.0958    0.7967   11.0441   82.6138    4.1906    0.7230    0.1372    0.3987

 0.1028    0.3571    2.3312   14.4954   78.4276    3.1489    0.0383    1.0987

 0.0084    0.0399    0.6465    3.0962   16.0789   75.1300    1.9044    3.0956

 0.0031    0.0125    0.1445    1.8759    6.2613   10.7022   75.6300    5.3705

      0         0         0         0         0         0         0  100.0000

Both duration and cohort compute 1-year transition probabilities by default,
but the time interval for the transitions is definable using the parameter/value pair
transInterval. For example, to get the 2-year transition probabilities using the
cohort algorithm with the same snapshot periodicity and estimation window:
transMat4 = transprob(data,'startDate',startDate,'endDate',endDate,...

'algorithm','cohort','snapsPerYear',4,'transInterval',2)

transMat4 =
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82.2358   14.6092    2.2062    0.8543    0.0711    0.0074    0.0011    0.0149

 8.2803   80.4584    8.3606    2.2462    0.4665    0.0316    0.0030    0.1533

 0.9604   11.1975   76.1729    9.7284    1.5322    0.2044    0.0162    0.1879

 0.2483    2.0903   18.8440   69.5145    6.9601    1.2966    0.2329    0.8133

 0.2129    0.8713    5.4893   23.5776   62.6438    4.9464    0.1390    2.1198

 0.0378    0.1895    1.7679    7.2875   24.9444   57.1783    2.8816    5.7132

 0.0154    0.0716    0.6576    4.2157   11.4465   16.3455   57.4078    9.8399

      0         0         0         0         0         0         0  100.0000

Estimate Transition Probabilities for Different Rating Scales

The dataset data from Data_TransProb.mat contains sample credit ratings using the
default rating scale {'AAA', 'AA','A', 'BBB', 'BB', 'B', 'CCC', 'D'}. It also
contains the dataset dataIGSG with ratings investment grade ('IG'), speculative grade
('SG'), and default ('D'). To estimate the transition matrix for this dataset, use the
labels argument.

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

dataIGSG(1:10,:)

transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'},...

'startDate',startDate,'endDate',endDate)

ans = 

    '00011253'    '04-Apr-1983'    'IG'

    '00012751'    '17-Feb-1985'    'SG'

    '00012751'    '19-May-1986'    'D' 

    '00014690'    '17-Jan-1983'    'IG'

    '00012144'    '21-Nov-1984'    'IG'

    '00012144'    '25-Mar-1992'    'SG'

    '00012144'    '07-May-1994'    'IG'

    '00012144'    '23-Jan-2000'    'SG'

    '00012144'    '20-Aug-2001'    'IG'

    '00012937'    '07-Feb-1984'    'IG'

transMatIGSG =

   98.1986    1.5179    0.2835

    8.5396   89.4891    1.9713

         0         0  100.0000

There is another dataset, dataIGSGnum, with the same information as dataIGSG,
except the ratings are mapped to a numeric scale where 'IG'=1, 'SG'=2, and 'D'=3.

8-5



8 Credit Risk Analysis

To estimate the transition matrix, use the labels optional argument specifying the
numeric scale as a cell array.

dataIGSGnum(1:10,:)

% Note {1,2,3} and num2cell(1:3) are equivalent; num2cell is convenient

% when the number of ratings is larger

transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3},...

'startDate',startDate,'endDate',endDate)

ans = 

    '00011253'    '04-Apr-1983'    [1]

    '00012751'    '17-Feb-1985'    [2]

    '00012751'    '19-May-1986'    [3]

    '00014690'    '17-Jan-1983'    [1]

    '00012144'    '21-Nov-1984'    [1]

    '00012144'    '25-Mar-1992'    [2]

    '00012144'    '07-May-1994'    [1]

    '00012144'    '23-Jan-2000'    [2]

    '00012144'    '20-Aug-2001'    [1]

    '00012937'    '07-Feb-1984'    [1]

transMatIGSGnum =

   98.1986    1.5179    0.2835

    8.5396   89.4891    1.9713

         0         0  100.0000

Any time the input dataset contains ratings not included in the default rating scale
{'AAA', 'AA', 'A', 'BBB', 'BB', 'B', 'CCC', 'D'}, the full rating scale must
be specified using the labels optional argument. For example, if the dataset contains
ratings 'AAA', ..., 'CCC, 'D', and 'NR' (not rated), use labels with this cell
array {'AAA', 'AA', 'A','BBB','BB','B','CCC','D','NR'}.

Estimate Point-in-Time and Through-the-Cycle Probabilities

Transition probability estimates are sensitive to the length of the estimation window.
When the estimation window is small, the estimates only capture recent credit events,
and these can change significantly from one year to the next. These are called point-in-
time (PIT) estimates. In contrast, a large time window yields fairly stable estimates that
average transition rates over a longer period of time. These are called through-the-cycle
(TTC) estimates.
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The estimation of PIT probabilities requires repeated calls to transprob with a rolling
estimation window. Use transprobprep every time repeated calls to transprob are
required. transprobprep performs a preprocessing step on the raw dataset that is
independent of the estimation window. The benefits of transprobprep are greater as
the number of repeated calls to transprob increases. Also, the performance gains from
transprobprep are more significant for the cohort algorithm.
load Data_TransProb

prepData = transprobprep(data);

Years = 1991:2000;

nYears = length(Years);

nRatings = length(prepData.ratingsLabels);

transMatPIT = zeros(nRatings,nRatings,nYears);

algorithm = 'duration';

sampleTotals(nYears,1) = struct('totalsVec',[],'totalsMat',[],...

'algorithm',algorithm);

for t = 1:nYears

   startDate = ['31-Dec-' num2str(Years(t)-1)];

   endDate = ['31-Dec-' num2str(Years(t))];

   [transMatPIT(:,:,t),sampleTotals(t)] = transprob(prepData,...

    'startDate',startDate,'endDate',endDate,'algorithm',algorithm);

end

Here is the PIT transition matrix for 1993. Recall that the sample dataset contains
simulated credit migrations so the PIT estimates in this example do not match actual
historical transition rates.
transMatPIT(:,:,Years==1993)

ans =

   95.3193    4.5999    0.0802    0.0004    0.0002    0.0000    0.0000    0.0000

    2.0631   94.5931    3.3057    0.0254    0.0126    0.0002    0.0000    0.0000

    0.0237    2.1748   95.5901    1.4700    0.7284    0.0131    0.0000    0.0000

    0.0003    0.0372    3.2585   95.2914    1.3876    0.0250    0.0001    0.0000

    0.0000    0.0005    0.0657    3.8292   92.7474    3.3459    0.0111    0.0001

    0.0000    0.0001    0.0128    0.7977    8.0926   90.4897    0.5958    0.0113

    0.0000    0.0000    0.0005    0.0459    0.5026   11.1621   84.9315    3.3574

         0         0         0         0         0         0         0  100.0000

A structure array stores the sampleTotals optional output from transprob. The
sampleTotals structure contains summary information on the total time spent on
each rating, and the number of transitions out of each rating, for each year under
consideration. For more information on the sampleTotals structure, see “Algorithms”
on page 18-1718.

As an example, the sampleTotals structure for 1993 is used here. The total time spent
on each rating is stored in the totalsVec field of the structure. The total transitions out
of each rating are stored in the totalsMat field. A third field, algorithm, indicates the
algorithm used to generate the structure.
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sampleTotals(Years==1993).totalsVec

sampleTotals(Years==1993).totalsMat

sampleTotals(Years==1993).algorithm

ans =

  144.4411  230.0356  262.2438  204.9671  246.1315  147.0767   54.9562  215.1479

ans =

     0     7     0     0     0     0     0     0

     5     0     8     0     0     0     0     0

     0     6     0     4     2     0     0     0

     0     0     7     0     3     0     0     0

     0     0     0    10     0     9     0     0

     0     0     0     1    13     0     1     0

     0     0     0     0     0     7     0     2

     0     0     0     0     0     0     0     0

ans =

duration

To get the TTC transition matrix, pass the sampleTotals structure array to
transprobbytotals. Internally, transprobbytotals aggregates the information in
the sampleTotals structures to get the total time spent on each rating over the 10 years
considered in this example, and the total number of transitions out of each rating during
the same period. transprobbytotals uses the aggregated information to get the TTC
matrix, or average 1-year transition matrix.
transMatTTC = transprobbytotals(sampleTotals)

transMatTTC =

   92.8544    6.1068    0.7463    0.2761    0.0123    0.0009    0.0001    0.0032

    2.9399   92.2329    3.8394    0.7349    0.1676    0.0050    0.0004    0.0799

    0.2410    4.5963   90.3468    3.9572    0.6909    0.0521    0.0025    0.1133

    0.0530    0.4729    7.9221   87.2751    3.5075    0.4650    0.0791    0.2254

    0.0460    0.1636    1.1873    9.3442   85.4305    2.9520    0.1150    0.7615

    0.0031    0.0152    0.2608    1.5563   10.4468   83.8525    1.9771    1.8882

    0.0009    0.0041    0.0542    0.8378    2.9996    7.3614   82.4758    6.2662

         0         0         0         0         0         0         0  100.0000

The same TTC matrix could be obtained with a direct call to transprob, setting the
estimation window to the 10 years under consideration. But it is much more efficient to
use the sampleTotals structures, whenever they are available. (Note, for the duration
algorithm, these alternative workflows can result in small numerical differences in the
estimates whenever leap years are part of the sample.)

In “Estimate Transition Probabilities” on page 8-2, a 1-year transition matrix
is estimated using the 5-year time window from 1996 through 2000. This is another
example of a TTC matrix and this can also be computed using the sampleTotals
structure array.
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transprobbytotals(sampleTotals(Years>=1996&Years<=2000))

ans =

   90.6239    7.9048    1.0313    0.4123    0.0210    0.0020    0.0003    0.0043

    4.4776   89.5565    4.5294    1.1224    0.2283    0.0094    0.0009    0.0754

    0.3982    6.1159   87.0651    5.4797    0.7636    0.0892    0.0050    0.0832

    0.1029    0.8571   10.7909   83.0218    3.9968    0.7001    0.1313    0.3991

    0.1043    0.3744    2.2960   14.0947   78.9851    3.0012    0.0463    1.0980

    0.0113    0.0544    0.7054    3.2922   15.4341   75.6004    1.8165    3.0858

    0.0044    0.0189    0.1903    1.9742    6.2318   10.2332   75.9990    5.3482

         0         0         0         0         0         0         0  100.0000

Estimate t-Year Default Probabilities

By varying the start and end dates, the amount of data considered for the estimation is
changed, but the output still contains, by default, 1-year transition probabilities. You can
change the default behavior by specifying the transInterval argument, as illustrated
in “Estimate Transition Probabilities” on page 8-2.

However, when t-year transition probabilities are required for a whole range of values
of t, for example, 1-year, 2-year, 3-year, 4-year, and 5-year transition probabilities, it is
more efficient to call transprob once to get the optional output sampleTotals. You can
use the same sampleTotals structure can be used to get the t-year transition matrix for
any transition interval t. Given a sampleTotals structure and a transition interval, you
can get the corresponding transition matrix by using transprobbytotals.

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[~,sampleTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

DefProb = zeros(7,5);

for t = 1:5

   transMatTemp = transprobbytotals(sampleTotals,'transInterval',t);

   DefProb(:,t) = transMatTemp(1:7,8);

end

DefProb

DefProb =

    0.0043    0.0169    0.0377    0.0666    0.1033

    0.0754    0.1542    0.2377    0.3265    0.4213

    0.0832    0.1936    0.3276    0.4819    0.6536

    0.3992    0.8127    1.2336    1.6566    2.0779

    1.0980    2.1189    3.0668    3.9468    4.7644

    3.0860    5.6994    7.9281    9.8418   11.4963
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    5.3484    9.8053   13.5320   16.6599   19.2964

Estimate Bootstrap Confidence Intervals

transprob also returns the idTotals structure array which contains, for each ID, or
company, the total time spent on each rating, and the total transitions out of each rating.
For more information on the idTotals structure, see “Algorithms” on page 18-1718.
The idTotals structure is similar to the sampleTotals structures (see “Estimate
Point-in-Time and Through-the-Cycle Probabilities” on page 8-6), but idTotals has
the information at an ID level. Because most companies only migrate between very few
ratings, the numeric arrays in idTotals are stored as sparse arrays to reduce memory
requirements.

You can use the idTotals structure array to estimate confidence intervals for the
transition probabilities using a bootstrapping procedure, as the following example
demonstrates. To do this, call transprob and keep the third output argument,
idTotals. The idTotals fields are displayed for the last company in the sample.
Within the estimation window, this company spends almost a year as 'AA' and it is then
upgraded to 'AAA'.
load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[transMat,~,idTotals] = transprob(data,...

   'startDate',startDate,'endDate',endDate);

% Total time spent on each rating

full(idTotals(end).totalsVec)

% Total transitions out of each rating

full(idTotals(end).totalsMat)

% Algorithm

idTotals(end).algorithm

ans =

    4.0820    0.9180         0         0         0         0         0         0

ans =

     0     0     0     0     0     0     0     0

     1     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0
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ans =

duration

Next, use bootstrp from Statistics and Machine Learning Toolbox with
transprobbytotals as the bootstrap function and idTotals as the data to sample
from. Each bootstrap sample corresponds to a dataset made of companies sampled with
replacement from the original data. However, you do not have to draw companies from
the original data, because a bootstrap idTotals sample contains all the information
required to compute the transition probabilities. transprobbytotals aggregates all
structures in each bootstrap idTotals sample and finds the corresponding transition
matrix.

To estimate 95% confidence intervals for the transition matrix and display the
probabilities of default together with its upper and lower confidence bounds:
PD = transMat(1:7,8);

bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotals);

ci = prctile(bootstat,[2.5 97.5]); % 95% confidence

CIlower = reshape(ci(1,:),8,8);

CIupper = reshape(ci(2,:),8,8);

PD_LB = CIlower(1:7,8);

PD_UB = CIupper(1:7,8);

[PD_LB PD PD_UB]

ans =

    0.0004    0.0043    0.0106

    0.0028    0.0754    0.2192

    0.0126    0.0832    0.2180

    0.1659    0.3992    0.6617

    0.5703    1.0980    1.7260

    1.7264    3.0860    4.7602

    1.7678    5.3484    9.5055

Group Credit Ratings

Credit rating scales can be more or less granular. For example, there are ratings with
qualifiers (such as, 'AA+', 'BB-', etc.), whole ratings ('AA', 'BB', etc.), and investment
or speculative grade ('IG', 'SG') categories. Given a dataset with credit ratings at
a more granular level, transition probabilities for less granular categories can be of
interest. For example, you might be interested in a transition matrix for investment and
speculative grades given a dataset with whole ratings. Use transprobgrouptotals for
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this evaluation, as illustrated in the following examples. The sample dataset data has
whole credit ratings:

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

data(1:5,:)

ans = 

    '00010283'    '10-Nov-1984'    'CCC'

    '00010283'    '12-May-1986'    'B'  

    '00010283'    '29-Jun-1988'    'CCC'

    '00010283'    '12-Dec-1991'    'D'  

    '00013326'    '09-Feb-1985'    'A'  

A call to transprob returns the transition matrix and totals structures for the eight
('AAA' to 'D') whole credit ratings. The array with number of transitions out of each
credit rating is displayed after the call to transprob:
[transMat,sampleTotals,idTotals] = transprob(data,'startDate',startDate,...

'endDate',endDate);

sampleTotals.totalsMat

ans =

     0    67     7     3     0     0     0     0

    67     0    68    15     3     0     0     1

     4   101     0    93    11     1     0     1

     1     7   163     0    62    10     2     5

     1     3    16   168     0    37     0    11

     0     0     2    10    83     0    10    14

     0     0     0     2     8    16     0     7

     0     0     0     0     0     0     0     0

Next, use transprobgrouptotals to group whole ratings into investment and
speculative grades. This function takes a totals structure as the first argument. The
second argument indicates the edges between rating categories. In this case, ratings
1 through 4 ('AAA' through 'BBB') correspond to the first category ('IG'), ratings 5
through 7 ('BB' through 'CCC') to the second category ('SG'), and rating 8 ('D') is a
category of its own. transprobgrouptotals adds up the total time spent on ratings
that belong to the same category. For example, total times spent on 'AAA' through
'BBB' are added up as the total time spent on 'IG'. transprobgrouptotals also adds
up the total number of transitions between any 'IG' rating and any 'SG' rating, for
example, a credit migration from 'BBB' to 'BB'.
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The grouped totals can then be passed to transprobbytotals to obtain the transition
matrix for investment and speculative grades. Both totalsMat and the new transition
matrix are both 3-by-3, corresponding to the grouped categories 'IG', 'SG', and 'D'.

sampleTotalsIGSG = transprobgrouptotals(sampleTotals,[4 7 8])

transMatIGSG = transprobbytotals(sampleTotalsIGSG)

sampleTotalsIGSG = 

    totalsVec: [4.8591e+003 1.5034e+003 1.1621e+003]

    totalsMat: [3x3 double]

    algorithm: 'duration'

transMatIGSG =

   98.1591    1.6798    0.1611

   12.3228   85.6961    1.9811

         0         0  100.0000

When a totals structure array is passed to transprobgrouptotals, this function
groups each structure in the array individually and preserves sparsity, if the fields in
the input structures are sparse. One way to exploit this feature is to compute confidence
intervals for the investment grade default rate and the speculative grade default rate
(see also “Estimate Bootstrap Confidence Intervals” on page 8-10).
PDIGSG = transMatIGSG(1:2,3);

idTotalsIGSG = transprobgrouptotals(idTotals,[4 7 8]);

bootstat = bootstrp(100,@(totals)transprobbytotals(totals),idTotalsIGSG);

ci = prctile(bootstat,[2.5 97.5]); % 95% confidence

CIlower = reshape(ci(1,:),3,3);

CIupper = reshape(ci(2,:),3,3);

PDIGSG_LB = CIlower(1:2,3);

PDIGSG_UB = CIupper(1:2,3);

[PDIGSG_LB PDIGSG PDIGSG_UB]

ans =

    0.0603    0.1611    0.2538

    1.3470    1.9811    2.6195

Work with Nonsquare Matrices

Transition probabilities and the number of transitions between ratings are usually
reported without the 'D' ('Default') row. For example, a credit report can contain the
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following table, indicating the number of issuers starting in each rating (first column),
and the number of transitions between ratings (remaining columns):

     Initial  AAA   AA    A  BBB   BB    B  CCC    D

  AAA     98   88    9    1    0    0    0    0    0

   AA    389    0  368   19    2    0    0    0    0

    A   1165    1   21 1087   56    0    0    0    0

  BBB   1435    0    2   89 1289   45    8    0    2

   BB    915    0    0    1   60  776   73    2    3

    B    867    0    0    1    7   88  715   39   17

  CCC    112    0    0    0    1    3   34   61   13

You can store the information in this table in a totals structure compatible with the
cohort algorithm. For more information on the cohort algorithm and the totals
structure, see “Algorithms” on page 18-1718. The totalsMat field is a nonsquare array
in this case.

% Define totals structure

totals.totalsVec = [98 389 1165 1435 915 867 112];

totals.totalsMat = [

   88    9    1    0    0    0    0    0;

    0  368   19    2    0    0    0    0;

    1   21 1087   56    0    0    0    0;

    0    2   89 1289   45    8    0    2;

    0    0    1   60  776   73    2    3;

    0    0    1    7   88  715   39   17;

    0    0    0    1    3   34   61   13];

totals.algorithm = 'cohort';

transprobbytotals and transprobgrouptotals accept totals inputs with nonsquare
totalsMat fields. To get the transition matrix corresponding to the previous table, and
to group ratings into investment and speculative grade with the corresponding matrix:
transMat = transprobbytotals(totals)

% Group into IG/SG and get IG/SG transition matrix

totalsIGSG = transprobgrouptotals(totals,[4 7]);

transMatIGSG = transprobbytotals(totalsIGSG)

transMat =

   89.7959    9.1837    1.0204         0         0         0         0         0

         0   94.6015    4.8843    0.5141         0         0         0         0

    0.0858    1.8026   93.3047    4.8069         0         0         0         0

         0    0.1394    6.2021   89.8258    3.1359    0.5575         0    0.1394

         0         0    0.1093    6.5574   84.8087    7.9781    0.2186    0.3279

         0         0    0.1153    0.8074   10.1499   82.4683    4.4983    1.9608

         0         0         0    0.8929    2.6786   30.3571   54.4643   11.6071
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transMatIGSG =

   98.2183    1.7169    0.0648

    3.6959   94.5618    1.7423

Remove Outliers

The idTotals output from transprob can also be exploited to update the transition
probability estimates after removing some outlier information. For more information on
idTotals, see “Algorithms” on page 18-1718. For example, if you know that the credit
rating migration information for the 4th and 27th companies in the data have problems,
you can remove those companies and efficiently update the transition probabilities as
follows:

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[transMat,~,idTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

transMat

transMat =

90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043

 4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754

 0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832

 0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992

 0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980

 0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860

 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484

      0         0         0         0         0         0         0  100.0000

nIDs = length(idTotals);

keepInd = setdiff(1:nIDs,[4 27]);

transMatNoOutlier = transprobbytotals(idTotals(keepInd))

transMatNoOutlier =

90.6241    7.9067    1.0290    0.4124    0.0211    0.0020    0.0003    0.0043

 4.4917   89.5918    4.4779    1.1240    0.2288    0.0094    0.0009    0.0756

 0.3990    6.1220   87.0530    5.4841    0.7643    0.0893    0.0050    0.0833

 0.1030    0.8576   10.7909   83.0207    3.9971    0.7001    0.1313    0.3992

 0.1043    0.3746    2.2960   14.0955   78.9840    3.0013    0.0463    1.0980

 0.0113    0.0544    0.7054    3.2925   15.4350   75.5988    1.8166    3.0860

 0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484

      0         0         0         0         0         0         0  100.0000

Deciding which companies to remove is a case-by-case situation. Reasons to remove
a company can include a typo in one of the ratings histories, or an unusual migration
between ratings whose impact on the transition probability estimates must be measured.
transprob does not reorder the companies in any way. The ordering of companies in the
input data is the same as the ordering in the idTotals array.
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Estimate Probabilities for Different Segments

You can use idTotals efficiently to get estimates over different segments of the sample.
For more information on idTotals, see “Algorithms” on page 18-1718. For example,
assume that the companies in the example are grouped into three geographic regions and
that the companies were grouped by geographic regions previously, so that the first 340
companies correspond to the first region, the next 572 companies to the second region,
and the rest to the third region. You can efficiently get transition probabilities for each
region as follows:

load Data_TransProb

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

[~,~,idTotals] = transprob(data,'startDate', ...

startDate, 'endDate',endDate);

n1 = 340;

n2 = 572;

transMatG1 = transprobbytotals(idTotals(1:n1))

transMatG2 = transprobbytotals(idTotals(n1+1:n1+n2))

transMatG3 = transprobbytotals(idTotals(n1+n2+1:end))

transMatG1 =

90.8299    7.6501    0.3178    1.1700    0.0255    0.0044    0.0021    0.0002

 4.3572   89.0262    5.7838    0.8039    0.0245    0.0029    0.0013    0.0001

 0.7066    6.7567   86.6320    5.4950    0.3721    0.0252    0.0101    0.0023

 0.0626    1.3688   10.3895   83.5022    3.6823    0.6466    0.3084    0.0396

 0.0256    0.7884    2.6970   13.7857   78.8321    2.8310    0.0561    0.9842

 0.0026    0.1095    0.4280    3.5204   21.1437   72.9230    1.6456    0.2273

 0.0005    0.0216    0.0730    0.4574    4.9586    4.2821   80.3062    9.9006

      0         0         0         0         0         0         0  100.0000

transMatG2 =

90.5798    8.4877    0.8202    0.0884    0.0132    0.0011    0.0000    0.0096

 4.1999   90.0371    3.8657    1.4744    0.2144    0.0128    0.0001    0.1956

 0.3022    5.9869   86.7128    5.5526    1.0411    0.1902    0.0015    0.2127

 0.0204    0.5606   10.9342   82.9195    4.0123    0.7398    0.0059    0.8073

 0.0089    0.3338    2.1185   16.6496   76.2395    3.1241    0.0261    1.4995

 0.0013    0.0465    0.6710    2.4731   14.7281   76.7378    1.2993    4.0428

 0.0002    0.0080    0.0681    0.4598    4.1324    8.4380   80.9092    5.9843

      0         0         0         0         0         0         0  100.0000

transMatG3 =

90.5655    7.5408    1.5288    0.3369    0.0258    0.0015    0.0003    0.0004

 4.8073   89.3842    4.4865    0.9582    0.3509    0.0095    0.0009    0.0025

 0.3153    5.8771   87.6353    5.4101    0.7160    0.0322    0.0052    0.0088

 0.1995    0.8625   10.8682   82.8717    4.1423    0.6903    0.1565    0.2090

 0.2465    0.1091    2.1558   12.0289   81.5803    3.0057    0.0616    0.8122

 0.0227    0.0400    0.9380    4.3175   12.3632   75.9429    2.5766    3.7991

 0.0149    0.0180    0.3414    3.6918    8.1414   13.6010   70.7254    3.4661

      0         0         0         0         0         0         0  100.0000
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Work with Large Datasets

This example shows how to aggregate estimates from two (or more) datasets. It is
possible that two datasets, coming from two different databases, must be considered for
the estimation of the transition probabilities. Also, if a dataset is too large and cannot
be loaded into memory, the dataset can be split into two (or more) datasets. In these
cases, it is simple to apply transprob to each individual dataset, and then get the final
estimates corresponding to the aggregated data with a call to transprobbytotals at
the end.

For example, the dataset data is artificially split into two sections in this example. In
practice the two datasets would come from different files or databases. When aggregating
multiple datasets, the history of a company cannot be split across datasets. You can
analyze that this condition is satisfied for the arbitrarily chosen cut-off point.

load Data_TransProb

cutoff = 2099;

data(cutoff-5:cutoff,:)

data(cutoff+1:cutoff+6,:)

ans = 

    '00011166'    '24-Aug-1995'    'BBB'

    '00011166'    '25-Jan-1997'    'A'  

    '00011166'    '01-Feb-1998'    'AA' 

    '00014878'    '15-Mar-1983'    'B'  

    '00014878'    '21-Sep-1986'    'BB' 

    '00014878'    '17-Jan-1998'    'BBB'

ans = 

    '00012043'    '09-Feb-1985'    'BBB'

    '00012043'    '03-Jan-1988'    'A'  

    '00012043'    '15-Jan-1994'    'AAA'

    '00011157'    '24-Jun-1984'    'A'  

    '00011157'    '09-Dec-1999'    'BBB'

    '00011157'    '28-Mar-2001'    'A'  

When working with multiple datasets, it is important to set the start and end dates
explicitly. Otherwise, the estimation window differs for each dataset because the default
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start and end dates used by transprob are the earliest and latest dates found in the
input data.

startDate = '31-Dec-1995';

endDate = '31-Dec-2000';

In practice, this is the point where you can read in the first dataset. Now, the dataset
is already obtained. Call transprob with the first dataset and the explicit start
and end dates. Keep only the sampleTotals output. For details on sampleTotals,
see“Algorithms” on page 18-1718.

[~,sampleTotals(1)] = transprob(data(1:cutoff,:),...

   'startDate',startDate,'endDate',endDate);

Repeat for the remaining datasets. Note the different sampleTotals structures are
stored in a structured array.

[~,sampleTotals(2)] = transprob(data(cutoff+1:end,:),...

   'startDate',startDate,'endDate',endDate);

To get the transition matrix corresponding to the aggregated dataset, use
transprobbytotals. When the totals input is a structure array, transprobbytotals
aggregates the information over all structures, and returns a single transition matrix.
transMatAggr = transprobbytotals(sampleTotals)

transMatAggr =

   90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043

    4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754

    0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832

    0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992

    0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980

    0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860

    0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484

         0         0         0         0         0         0         0  100.0000

As a sanity check, for this example you can analyze that the aggregation procedure yields
the same estimates (up to numerical differences) as estimating the probabilities directly
over the entire sample:
transMatWhole = transprob(data,'startDate',startDate,'endDate',endDate)

aggError = max(max(abs(transMatAggr - transMatWhole)))

transMatWhole =

   90.6236    7.9051    1.0314    0.4123    0.0210    0.0020    0.0003    0.0043

    4.4780   89.5558    4.5298    1.1225    0.2284    0.0094    0.0009    0.0754

    0.3983    6.1164   87.0641    5.4801    0.7637    0.0892    0.0050    0.0832

    0.1029    0.8572   10.7918   83.0204    3.9971    0.7001    0.1313    0.3992

    0.1043    0.3745    2.2962   14.0954   78.9840    3.0013    0.0463    1.0980
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    0.0113    0.0544    0.7055    3.2925   15.4350   75.5988    1.8166    3.0860

    0.0044    0.0189    0.1903    1.9743    6.2320   10.2334   75.9983    5.3484

         0         0         0         0         0         0         0  100.0000

aggError =

  2.8422e-014

See Also
bootstrp | transprob | transprobbytotals | transprobfromthresholds |
transprobgrouptotals | transprobprep | transprobtothresholds

Related Examples
• “Credit Quality Thresholds” on page 8-52
• “Credit Rating by Bagging Decision Trees”
• “Forecasting Corporate Default Rates” on page 8-20

External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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Forecasting Corporate Default Rates

This example shows how to build a forecasting model for corporate default rates.

Risk parameters are dynamic in nature, and understanding how these parameters
change in time is a fundamental task for risk management.

In the first part, we work with historical credit migrations data to construct some
time series of interest, and to visualize default rates dynamics. In the second part, we
use some of the series constructed in the first part, and some additional data, to fit a
forecasting model for corporate default rates, and to show some backtesting and stress
testing concepts. A linear regression model for corporate default rates is studied there,
but the tools and concepts described can be used in combination with other forecasting
methodologies. The appendix at the end touches on the handling of models for full
transition matrices.

People interested in forecasting, backtesting and stress testing may go directly to the
second part. The first part is more relevant for people who work with credit migration
data.

Part I: Working with Credit Migrations Data

We work with historical transition probabilities for corporate issuers (variable
TransMat). This is yearly data for the period 1981-2005, from [10]. The data includes,
for each year, the number of issuers per rating at the beginning of the year (variable
nIssuers), and the number of new issuers per rating per year (variable nNewIssuers).
There is also a corporate profits forecast, from [9], and a corporate spread, from [4]
(variables CPF and SPR). A variable indicating recession years (Recession), consistent
with recession dates from [7], is used mainly for visualizations.

Example_LoadData

Getting Default Rates for Different Ratings Categories

We start by performing some aggregations to get corporate default rates for Investment
Grade (IG) and Speculative Grade (SG) issuers, and the overall corporate default rate.

Aggregation and segmentation are relative terms. IG is an aggregate with respect to
credit ratings, but a segment from the perspective of the overall corporate portfolio.
Other segments are of interest in practice, for example, economic sectors, industries, or
geographic regions. The data we use, however, is aggregated by credit ratings, so further
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segmentation is not possible. Nonetheless, the tools and workflow discussed here may be
useful to work with other segment-specific models.

We use existing functionality in Financial Toolbox™, specifically, functions
transprobgrouptotals and transprobbytotals, to perform the aggregation. These
functions take as inputs structures with credit migration information in a particular
format. We set up the inputs here, and visualize them below to understand their
information and format.

% Pre-allocate the struct array

totalsByRtg(nYears,1) = struct('totalsVec',[],'totalsMat',[],...

   'algorithm','cohort');

for t = 1:nYears

   % Number of issuers per rating at the beginning of the year

   totalsByRtg(t).totalsVec = nIssuers(t,:);

   % Number of transitions between ratings during the year

   totalsByRtg(t).totalsMat = round(diag(nIssuers(t,:))*...

      (0.01*TransMat(:,:,t)));

   % Algorithm

   totalsByRtg(t).algorithm = 'cohort';

end

It is useful to see both the original data and the data stored in these totals structures
side to side. The original data contains number of issuers and transition probabilities for
each year. For example, for 2005

fprintf('\nTransition matrix for 2005:\n\n')

Example_DisplayTransitions(squeeze(TransMat(:,:,end)),nIssuers(end,:),...

   {'AAA','AA','A','BBB','BB','B','CCC'},...

   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

Transition matrix for 2005:

         Init    AAA     AA      A    BBB     BB      B    CCC      D     NR 

   AAA     98  88.78   9.18   1.02      0      0      0      0      0   1.02 

    AA    407      0  90.66   4.91   0.49      0      0      0      0   3.93 

     A   1224   0.08   1.63  88.89   4.41      0      0      0      0   4.98 

   BBB   1535      0    0.2   5.93  84.04   3.06   0.46      0   0.07   6.25 

    BB   1015      0      0      0   5.71  76.75    6.9    0.2    0.2  10.25 

     B   1010      0      0    0.1   0.59   8.51  70.59   3.76   1.58  14.85 

   CCC    126      0      0      0   0.79   0.79   25.4  46.83   8.73  17.46 

The totals structure stores the total number of issuers per rating at the beginning of
the year in the totalsVec field, and the total number of migrations between ratings

8-21



8 Credit Risk Analysis

(instead of transition probabilities) in the totalsMat field. Here is the information for
2005

fprintf('\nTransition counts (totals struct) for 2005:\n\n')

Example_DisplayTransitions(totalsByRtg(end).totalsMat,...

   totalsByRtg(end).totalsVec,...

   {'AAA','AA','A','BBB','BB','B','CCC'},...

   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

Transition counts (totals struct) for 2005:

         Init    AAA     AA      A    BBB     BB      B    CCC      D     NR 

   AAA     98     87      9      1      0      0      0      0      0      1 

    AA    407      0    369     20      2      0      0      0      0     16 

     A   1224      1     20   1088     54      0      0      0      0     61 

   BBB   1535      0      3     91   1290     47      7      0      1     96 

    BB   1015      0      0      0     58    779     70      2      2    104 

     B   1010      0      0      1      6     86    713     38     16    150 

   CCC    126      0      0      0      1      1     32     59     11     22 

The third field in the totals structure, algorithm, indicates that we are working with
the 'cohort' method ('duration' is also supported, although the information in totalsVec
and totalsMat would be different). These structures are usually obtained as optional
outputs from transprob, but this example shows how a user can define these structures
directly.

We now group ratings 'AAA' to 'BBB' (ratings 1 to 4) into the IG category and ratings
'BB' to 'CCC' (ratings 5 to 7) into the SG category. We use transprobgrouptotals for
this. The 'edges' argument tells the function which ratings are to be grouped together
(1 to 4, and 5 to 7). We also group all non-default ratings into one category. These are
preliminary steps to get the IG, SG and overall default rates for each year.

edgesIGSG = [4 7];

totalsIGSG = transprobgrouptotals(totalsByRtg,edgesIGSG);

edgesAll = 7; % could also use edgesAll = 2 with totalsIGSG

totalsAll = transprobgrouptotals(totalsByRtg,edgesAll);

Here are the 2005 totals grouped at IG/SG level, and the corresponding transition
matrix, recovered using transprobbytotals.

fprintf('\nTransition counts for 2005 at IG/SG level:\n\n')

Example_DisplayTransitions(totalsIGSG(end).totalsMat,...
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   totalsIGSG(end).totalsVec,...

   {'IG','SG'},...

   {'IG','SG','D','NR'})

fprintf('\nTransition matrix for 2005 at IG/SG level:\n\n')

Example_DisplayTransitions(transprobbytotals(totalsIGSG(end)),[],...

   {'IG','SG'},...

   {'IG','SG','D','NR'})

Transition counts for 2005 at IG/SG level:

         Init     IG     SG      D     NR 

    IG   3264   3035     54      1    174 

    SG   2151     66   1780     29    276 

Transition matrix for 2005 at IG/SG level:

           IG     SG      D     NR 

    IG  92.98   1.65   0.03   5.33 

    SG   3.07  82.75   1.35  12.83 

We now get transition matrices for every year both at IG/SG and non-default/default
levels and store the default rates only (we do not use the rest of the transition
probabilities).

DefRateIG = zeros(nYears,1);

DefRateSG = zeros(nYears,1);

DefRate = zeros(nYears,1);

for t=1:nYears

   % Get transition matrix at IG/SG level and extract IG default rate and

   % SG default rate for year t

   tmIGSG = transprobbytotals(totalsIGSG(t));

   DefRateIG(t) = tmIGSG(1,3);

   DefRateSG(t) = tmIGSG(2,3);

   % Get transition matrix at most aggregate level and extract overall

   % corporate default rate for year t

   tmAll = transprobbytotals(totalsAll(t));

   DefRate(t) = tmAll(1,2);

end

Here is a visualization of the dynamics of IG, SG and overall corporate default rates
together. To emphasize their patterns, rather than their magnitudes, a log scale is
used. The shaded bands indicate recession years. The patterns of SG and IG are slightly
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different. For example, the IG rate is higher in 1994 than in 1995, but the opposite is
true for SG. More noticeably, the IG default rate peaked after the 2001 recession, in
2002, whereas the peak for SG is in 2001. This suggests that models for the dynamics of
the IG and SG default rates could have important differences, a common situation when
working with different segments. The overall corporate default rate is by construction
a combination of the other two, and its pattern is closer to SG, most likely due to the
relative magnitude of SG versus IG.

minIG = min(DefRateIG(DefRateIG~=0));

figure

plot(Years,log(DefRateSG),'m-*')

hold on

plot(Years,log(DefRate),'b-o')

plot(Years,log(max(DefRateIG,minIG-0.001)),'r-+')

Example_RecessionBands

hold off

grid on

title('{\bf Default Rates (log scale)}')

ylabel('log %')

legend({'SG','Overall','IG'},'location','NW')

8-24



 Forecasting Corporate Default Rates

Getting Default Rates for Different Time Periods

The default rates just obtained are examples of point-in-time (PIT) rates, only the most
recent information is used to estimate them. On the other extreme, we can use all the
migrations observed in the 25 years spanned by the dataset to estimate long-term, or
through-the-cycle (TTC) default rates. Other rates of interest are the average default
rates over recession or expansion years.

All of these are easy to estimate with the data we have and the same tools. For
example, to estimate the average transition probabilities over recession years,
pass to transprobbytotals the totals structures corresponding to the recession
years only. We use logical indexing below, taking advantage of the Recession
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variable. transprobbytotals aggregates the information over time and returns the
corresponding transition matrix.

tmAllRec = transprobbytotals(totalsAll(Recession));

DefRateRec = tmAllRec(1,2);

tmAllExp = transprobbytotals(totalsAll(~Recession));

DefRateExp = tmAllExp(1,2);

tmAllTTC = transprobbytotals(totalsAll);

DefRateTTC = tmAllTTC(1,2);

The following figure shows the estimated PIT rates, TTC rates and recession and
expansion rates.

DefRateTwoValues = DefRateExp*ones(nYears,1);

DefRateTwoValues(Recession) = DefRateRec;

figure

plot(Years,DefRate,'bo:','LineWidth',1.2)

hold on

stairs(Years-0.5,DefRateTwoValues,'m-','LineWidth',1.5)

plot(Years,DefRateTTC*ones(nYears,1),'r-.','LineWidth',1.5)

Example_RecessionBands

hold off

grid on

title('{\bf Default Rate}')

ylabel('%')

legend({'Point-in-time (PIT)','Recession/Expansion Avg',...

   'Through-the-cycle (TTC)'},'location','NW')
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Some analyses (see, for example, [11]) use simulations where the default rate is
conditional on the general state of the economy, e.g., recession v. expansion. The
recession and expansion estimates just obtained can be useful in such a framework.
These are all historical averages, however, and may not work well if used as predictions
for the actual default rates expected on any particular year. In the second part, we revisit
the use these types of historical averages as forecasting tools in a backtesting exercise.

Building Predictors Using Credit Ratings Data

Using the credit data one can build new time series of interest. We start with an age
proxy that is used as predictor in the forecasting model in the second part.
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Age is known to be an important factor in predicting default rates; see, e.g., [1] and [5].
Age here means the number of years since a bond was issued. By extension, the age of a
portfolio is the average age of its bonds. Certain patterns have been observed historically.
Many low quality borrowers default just a few years after issuing a bond. When troubled
companies issue bonds, the amount borrowed helps them make payments for a year or
two. Beyond that point, their only source of money is their cash flows, and if they are
insufficient, default occurs.

We cannot calculate the exact age of the portfolio, because there is no information at
issuer level in the dataset. We follow [6], however, and use the number of new issuers
in year t-3 divided by the total number of issuers at the end of year t as an age proxy.
Because of the lag, the age proxy starts in 1984. For the numerator, we have explicit
information on the number of new issuers. For the denominator, the number of issuers
at the end of a year equals the number of issuers at the beginning of next year. This
is known for all years but the last one, which is set to the total transitions into a non-
default rating plus the number of new issuers on that year.

% Total number of issuers at the end of the year

nEOY = zeros(nYears,1);

% nIssuers is number of issuers per ratings at the beginning of the year

% nEOY ( 1981 ) = sum nIssuers ( 1982 ), etc until 2004

nEOY(1:end-1) = sum(nIssuers(2:end,:),2);

% nEOY ( 2005 ) = issuers in non-default state at end of 2005 plus

% new issuers in 2005

nEOY(end) = totalsAll(end).totalsMat(1,1) + sum(nNewIssuers(end,:));

% Age proxy

AGE = 100*[nan(3,1); sum(nNewIssuers(1:end-3,:),2)./nEOY(4:end)];

Examples of other time series of interest are the proportion of SG issuers at the end of
each year, or an age proxy for SG.

% nSGEOY: Number of SG issuers at the end of the year

% nSGEOY is similar to nEOY, but for SG only, from 5 ('BB') to 7 ('CCC')

indSG = 5:7;

nSGEOY = zeros(nYears,1);

nSGEOY(1:end-1) = sum(nIssuers(2:end,indSG),2);

nSGEOY(end) = sum(totalsIGSG(end).totalsMat(:,2)) +...

   sum(nNewIssuers(end,indSG));

% Proportion of SG issuers

SG = 100*nSGEOY./nEOY;

% SG age proxy: new SG issuers in t-3 / total issuers at the end of year t

AGESG = 100*[nan(3,1); sum(nNewIssuers(1:end-3,indSG),2)./nEOY(4:end)];
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Part II: A Forecasting Model for Default Rates

We work with the following linear regression model for corporate default rates

where

• AGE: Age proxy defined above
• CPF: Corporate profits forecast
• SPR: Corporate spread over treasuries

This is the same model as in [6], except the model in [6] is for IG only.

As discussed above, age is known to be an important factor regarding default rates.
The corporate profits provide information on the economic environment. The corporate
spread is a proxy for credit quality. Age, environment and quality are three dimensions
frequently found in credit analysis models.

inSample = 4:nYears-1;

T = length(inSample);

varNames = {'AGE','CPF','SPR'};

X = [AGE CPF SPR];

X = X(inSample,:);

y = DefRate(inSample+1); % DefaultRate, year t+1

stats = regstats(y,X);

fprintf('\nConst   AGE   CPF   SPR   adjR^2\n')

fprintf('%1.2f  %1.2f %1.2f  %1.2f   %1.4f\n',...

   [stats.beta;stats.adjrsquare])

Const   AGE   CPF   SPR   adjR^2

-1.19  0.15 -0.10  0.71   0.7424

The coefficients have the expected sign: default rates tend to increase with a higher
proportion of 3-year issuers, decrease with good corporate profits, and increase when the
corporate yields are higher. The adjusted R square shows a good fit.

The in-sample fit, or how close the model predictions are from the sample points used to
fit the model, is shown in the following figure.
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bHat = stats.beta;

yHat = [ones(T,1),X]*bHat;

figure

plot(Years(inSample+1),DefRate(inSample+1),'ko','LineWidth',1.5,...

   'MarkerSize',10,'MarkerFaceColor','g')

hold on

plot(Years(inSample+1),yHat,'b-s','LineWidth',1.2,'MarkerSize',10)

hold off

grid on

legend({'Actual','Model'},'location','NW')

title('{\bf Corporate Default Rate Models: In-Sample Fit}')

xlabel('Year')

ylabel('Percent')
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It can be shown that there is no strong statistical evidence to conclude that the linear
regression assumptions are violated. It is apparent that default rates are not normally
distributed. The model, however, does not make that assumption. The only normality
assumption in the model is that, given the predictors values, the error between the
predicted and the observed default rates is normally distributed. By looking at the in-
sample fit, this does not seem unreasonable. The magnitude of the errors certainly seems
independent of whether the default rates are high or low. Year 2001 has a high default
rate and a high error, but years 1991 or 2002 also have high rates and yet very small
errors. Likewise, low default rate years like 1996 and 1997 show considerable errors, but
years 2004 or 2005 have similarly low rates and tiny errors.

A thorough statistical analysis of the model is out of scope here, but there are several
detailed examples in Statistics and Machine Learning Toolbox™ and Econometrics
Toolbox™.

Backtesting

To evaluate how this model performs out-of-sample, we set up a backtesting exercise.
Starting at the end of 1995, we fit the linear regression model with the information
available up to that date, and compare the model prediction to the actual default rate
observed the following year. We repeat the same for all subsequent years until the end of
the sample.

For backtesting, relative performance of a model, when compared to alternatives, is
easier to assess than the performance of a model in isolation. Here we include two
alternatives to determine next year's default rate, both likely candidates in practice. One
is the TTC default rate, estimated with data from the beginning of the sample to the
current year, a very stable default rate estimate. The other is the PIT rate, estimated
using data from the most recent year only, much more sensitive to recent events.

XBT = [AGE,CPF,SPR];

yBT = DefRate;

iYear0 = find(Years==1984); % index of first year in sample, 1984

T = find(Years==1995); % ind "current" year, start at 1995, updated in loop

YearsBT = 1996:2005; % years predicted in BT exercise

iYearsBT = find(Years==1996):find(Years==2005); % corresponding indices

nYearsBT = length(YearsBT); % number of years in BT exercise

MethodTags = {'Model','PIT','TTC'};

nMethods = length(MethodTags);

PredDefRate = zeros(nYearsBT,nMethods);
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ErrorBT = zeros(nYearsBT,nMethods);

alpha = 0.05;

PredDefLoBnd = zeros(nYearsBT,1);

PredDefUpBnd = zeros(nYearsBT,1);

for k=1:nYearsBT

   % In sample years for predictors, from 1984 to "last" year (T-1)

   inSampleBT = iYear0:T-1;

   % Method 1: Linear regression model

   %   Fit regression model with data up to "current" year (T)

   s = regstats(yBT(inSampleBT+1),XBT(inSampleBT,:));

   %   Predict default rate for "next" year (T+1)

   PredDefRate(k,1) = [1 XBT(T,:)]*s.beta;

   %   Compute prediction intervals

   tCrit = tinv(1-alpha/2,s.tstat.dfe);

   PredStd = sqrt([1 XBT(T,:)]*s.covb*[1 XBT(T,:)]'+s.mse);

   PredDefLoBnd(k) = max(0,PredDefRate(k,1) - tCrit*PredStd);

   PredDefUpBnd(k) = PredDefRate(k,1) + tCrit*PredStd;

   % Method 2: Point-in-time (PIT) default rate

   PredDefRate(k,2) = DefRate(T);

   % Method 3: Through-the-cycle (TTC) default rate

   tmAll = transprobbytotals(totalsAll(iYear0:T));

   PredDefRate(k,3) = tmAll(1,2);

   % Update error

   ErrorBT(k,:) = PredDefRate(k,:) - DefRate(T+1);

   % Move to next year

   T = T + 1;

end

Here are the predictions of the three alternative approaches, compared to the actual
default rates observed. Unsurprisingly, TTC shows a very poor predictive power.
However, it is not obvious whether PIT or the linear regression model makes better
predictions in this 10-year time span.

Example_BacktestPlot(YearsBT,DefRate(iYearsBT),PredDefRate,'Year','%',...

   '{\bf Default Rate Estimation Methods: Backtesting}',...

   ['Actual' MethodTags],'NW')
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The following plot keeps track of cumulative square error, a measure often used for
comparisons in backtesting exercises. This confirms TTC as a poor alternative. PIT
shows lower cumulative error than the linear regression model in the late nineties, but
after the 2001 recession the situation is reversed. Cumulative square error, however, is
not an intuitive measure, it is hard to get a sense of what the difference between these
alternatives means in practical terms.

CumSqError = cumsum(ErrorBT.^2);

Example_BacktestPlot(YearsBT,[],CumSqError,'Year','Cum Sq Error',...

   '{\bf Cumulative Square Error in Backtesting Exercise}',...

   MethodTags,'NW')
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It makes sense to translate the prediction errors into a monetary measure. Here we
measure the impact of the prediction error on a simplified framework for generating loss
reserves in an institution.

We assume a homogeneous portfolio, where all credits have the same probability of
default, the same loss given default (LGD), and the same exposure at default (EAD). Both
LGD and EAD are assumed to be known. For simplicity, we keep these values constant
for the 10 years of the exercise. We set LGD at 45%, and EAD per bond at 100 million.
The portfolio is assumed to have a thousand bonds, so the total value of the portfolio, the
total EAD, is 100 billion.

The predicted default rate for year t, determined at the end of year t-1, is used to
calculate the expected loss for year t
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This is the amount added to the loss reserves at the start of year t. At the end of the year,
the actual losses are known

We assume that unused loss reserves remain in the reserves fund. The starting balance
in reserves at the beginning of the exercise is set to zero. If the actual losses surpass the
expected loss, unused reserves accumulated over the years are used first, and only if
these run out, capital is used to cover a shortfall. All this translates into the following
formula

or equivalently

The following figure shows the loss reserves balance for each of the three alternatives in
the backtesting exercise.

EAD = 100*ones(nYearsBT,1); % in billions

LGD = 0.45*ones(nYearsBT,1); % Loss given default, 45%

% Reserves excess or shortfall for each year, in billions

ReservesExcessShortfall = bsxfun(@times,EAD.*LGD,ErrorBT/100);

% Cumulative reserve balance for each year, in billions

ReservesBalanceEOY = cumsum(ReservesExcessShortfall);

Example_BacktestPlot(YearsBT,[],ReservesBalanceEOY,'Year',...

   'Billions of Dollars',...

   '{\bf Reserves Balance (EOY): Backtesting}',...

   MethodTags,'SW')

grid on
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Using the linear regression model we only observe a deficit in reserves in two out of ten
years, and the maximum deficit, in 2001, is 0.09 billion, only nine basis points of the
portfolio value.

In contrast, both TTC and PIT reach a deficit of 1.2 billion by 2001. Things get worse
for TTC in the next two years, reaching a deficit of 2.1 billion by 2003. PIT does make a
correction quickly after 2001, and by 2004 the reserves have a surplus. Yet, both TTC
and PIT lead to more deficit years than surplus years in this exercise.

The linear regression model shows more of a counter-cyclical effect than the alternatives
in this exercise. The money set aside using the linear regression model reaches close to
a billion in 1997 and 1998. High levels of unused reserves translate into a slower pace
of lending (not reflected in the exercise, because we exogenously impose the portfolio
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value). Moreover, capital is only slightly impacted during the 2001 recession thanks to
the reserves accumulated over the previous expansion. This translates into more capital
available to back up further lending, if desired, during the economic recovery.

The last backtesting tool we discuss is the use of prediction intervals. Linear regression
models provide standard formulas to compute confidence intervals for the values of new
observations. These intervals are shown in the next figure for the 10 years spanned in
the backtesting exercise.

figure

plot(YearsBT,DefRate(iYearsBT),'ko','LineWidth',1.5,'MarkerSize',10,...

   'MarkerFaceColor','g')

hold on

plot(YearsBT,PredDefRate(:,1),'b-s','LineWidth',1.2,'MarkerSize',10)

plot(YearsBT,[PredDefLoBnd PredDefUpBnd],'b:','LineWidth',1.2)

hold off

strConf = num2str((1-alpha)*100);

title(['{\bf Backtesting Results with ' strConf '% Prediction Intervals}'])

xlabel('Year');

ylabel('%');

legend({'Actual','Predicted','Conf Bounds'},'location','NW');

8-37



8 Credit Risk Analysis

The observed default rates fall outside the prediction intervals for two years, 1996 and
1997, where very low default rates are observed. For a 95% confidence level, two out of
ten seems high. Yet, the observed values in these cases fall barely outside the prediction
interval, which is a positive sign for the model. It is also positive that the prediction
intervals contain the observed values around the 2001 recession.

Stress Testing

Stress testing is a broad area that reaches far beyond computational tools; see, for
example, [3]. We show here some tools that can be incorporated into a comprehensive
stress testing framework. We build on the linear regression model presented above, but
the concepts and tools are compatible with other forecasting methodologies.
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The first tool is the use of prediction intervals to define a worst-case scenario forecasts.
This is to account for uncertainty in the model only, not in the value of the predictors.

We take a baseline scenario of predictors, in our case, the latest known values of our
age proxy AGE, corporate profits forecast CPF and corporate spread SPR. We then use
the linear regression model to compute a 95% confidence upper bound for the predicted
default rate. The motivation for this is illustrated in the last plot of the backtesting
section, where the 95% confidence upper limit acts as a conservative bound when the
prediction underestimates the actual default rates.

tCrit = tinv(1-alpha/2,stats.tstat.dfe);

XLast = [AGE(end),CPF(end),SPR(end)];

yPred = [1 XLast]*stats.beta;

PredStd = sqrt([1 XLast]*stats.covb*[1 XLast]'+stats.mse);

yPredUB = yPred + tCrit*PredStd;

fprintf('\nPredicted default rate:\n');

fprintf('     Baseline: %4.2f%%\n',yPred);

fprintf('     %g%% Upper Bound: %4.2f%%\n',(1-alpha)*100,yPredUB);

Predicted default rate:

     Baseline: 1.18%

     95% Upper Bound: 2.31%

The next step is to incorporate stressed scenarios of the predictors in the analysis. CPF
and SPR can change in the short term, whereas AGE cannot. This is important. The
corporate profits forecast and the corporate spread are influenced by world events,
including, for example, natural disasters. These predictors can significantly change
overnight. On the other hand, AGE depends on managerial decisions that can alter the
proportion of old and new loans in time, but these decisions take months, if not years,
to reflect in the AGE time series. Scenarios for AGE are compatible with longer term
analyses. Here we look at one year ahead only, and keep AGE fixed for the remainder of
this section.

It is convenient to define the predicted default rate and the confidence bounds as
functions of CPF and SPR to simplify the scenario analysis.

yPredFn = @(cpf,spr) [1 AGE(end) cpf spr]*stats.beta;

PredStdFn = @(cpf,spr) sqrt([1 AGE(end) cpf spr]*stats.covb*...

   [1 AGE(end) cpf spr]'+stats.mse);

yPredUBFn = @(cpf,spr) (yPredFn(cpf,spr) + tCrit*PredStdFn(cpf,spr));

yPredLBFn = @(cpf,spr) (yPredFn(cpf,spr) - tCrit*PredStdFn(cpf,spr));
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Two extreme scenarios of interest can be a drop in the corporate profits forecast of 4%
relative to the baseline, and an increase in the corporate spread of 100 basis points over
the baseline.

Moving one predictor at a time is not unreasonable in this case, because the correlation
between CPF and SPR is very low. Moderate correlation levels may require perturbing
predictors together to get more reliable results. Highly correlated predictors usually do
not coexist in the same model, since they offer redundant information.

fprintf('\n\n         What-if Analysis\n');

fprintf('Scenario         LB    Pred    UB\n');

cpf = CPF(end)-4;

spr = SPR(end);

yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];

fprintf('CPF drops 4%%    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);

cpf = CPF(end);

spr = SPR(end)+1;

yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];

fprintf('SPR rises 1%%    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);

cpf = CPF(end);

spr = SPR(end);

yPredRange = [yPredLBFn(cpf,spr),yPredFn(cpf,spr),yPredUBFn(cpf,spr)];

fprintf('    Baseline    %4.2f%%  %4.2f%%  %4.2f%%\n',yPredRange);

fprintf('\nCorrelation between CPF and SPR: %4.3f\n',corr(CPF,SPR));

         What-if Analysis

Scenario         LB    Pred    UB

CPF drops 4%    0.42%  1.57%  2.71%

SPR rises 1%    0.71%  1.88%  3.05%

    Baseline    0.04%  1.18%  2.31%

Correlation between CPF and SPR: 0.012

We now take a more global view of the scenario analysis. Instead of analyzing one
scenario at a time, we visualize the default rate forecasts as a function of CPF and SPR.
More precisely, we plot default rate contours over a whole grid of CPF and SPR values. We
use the conservative 95% upper bound.

If we assumed a particular bivariate distribution for the values of CPF and SPR, we
could plot the contours of their distribution in the same figure. That would give visual
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information on the probability of falling on each region. Lacking such a distribution,
we simply add to the plot the CPF - SPR pairs observed in our sample, as a historical,
empirical distribution. The last observation in the sample, the baseline scenario, is
marked in red.

gridCPF = 2*min(CPF):0.1:max(CPF);

gridSPR = min(SPR):0.1:2*max(SPR);

nGridCPF = length(gridCPF);

nGridSPR = length(gridSPR);

DefRateUB = zeros(nGridCPF,nGridSPR);

for i=1:nGridCPF

   for j=1:nGridSPR

      DefRateUB(i,j) = yPredUBFn(gridCPF(i),gridSPR(j));

   end

end

Example_StressTestPlot(gridCPF,gridSPR,DefRateUB,CPF,SPR,...

   'Corporate Profits Forecast (%)','Corporate Spread (%)',...

   ['{\bf ' strConf '% UB Default Rate Regions (in %)}'])
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Very different predictor values result in similar default rate levels. For example, consider
a profits forecast around 10% with a spread of 3.5%, and a profits forecast of -2.5% with a
spread of 2%, they both result in a default rate slightly above 3%. Also, only one point in
the available history yields a default rate higher than 4%.

Monetary terms, once again, may be more meaningful. We use Basel II's capital
requirements formula (see [2]) to translate the default rates into a monetary measure.
Basel II's formula is convenient because it is analytic (there is no need to simulate to
estimate the capital requirements), but also because it depends only on the probabilities
of default. We define Basel II's capital requirements as a function K.

% Correlation as a function of PD

w = @(pd) (1-exp(-50*pd))/(1-exp(-50)); % weight
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R = @(pd) (0.12*w(pd)+0.24*(1-w(pd))); % correlation

% Vasicek formula

V = @(pd) normcdf(norminv(pd)+R(pd).*norminv(0.999)./sqrt(1-R(pd)));

% Parameter b for maturity adjustment

b = @(pd) (0.11852-0.05478*log(pd)).^2;

% Basel II capital requirement with LGD=45% and maturity M=2.5 (numerator

% in maturity adjustment term becomes 1)

K = @(pd) 0.45*(V(pd)-pd).*(1./(1-1.5*b(pd)));

Worst-case default rates for a whole grid of CPF - SPR pairs are stored in DefRateUB. By
applying the function K to DefRateUB we can visualize the capital requirements over the
same grid.

CapReq = 100*K(DefRateUB/100);

Example_StressTestPlot(gridCPF,gridSPR,CapReq,CPF,SPR,...

   'Corporate Profits Forecast (%)','Corporate Spread (%)',...

   {'{\bf Capital Requirement Regions (% of value)}';...

   ['{\bf using ' strConf '% UB Default Rate}']})
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The contour levels now indicate capital requirements as a percentage of portfolio value.
The two scenarios above, profits of 10% with spread of 3.5%, and profits of -2.5% and
spread of 2%, result in capital requirements near 2.75%. The worst-case point from the
historical data yields a capital requirement of about 3%.

This visualization can also be used, for example, as part of a reverse stress test analysis.
Critical levels of capital can be determined first, and the figure can be used to determine
regions of risk factor values (in this case CPF and SPR) that lead to those critical levels.

Instead of historical observations of CPF and SPR, an empirical distribution for the
risk factors can be simulated using, for example, a vector autoregressive (VAR) model
from Econometrics Toolbox™. The capital requirements corresponding to each default
probability level can be found by simulation if a closed form formula is not available,
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and the same plots can be generated. For large simulations, a distributed computing
implementation using Parallel Computing Toolbox™ or MATLAB Distributed Computing
Server™ can make the process more efficient.

Appendix: Modeling Full Transition Matrices

Transition matrices change in time, and a full description of their dynamics requires
working with multi-dimensional time series. There are, however, techniques that exploit
the particular structure of transition matrices to reduce the dimensionality of the
problem. In [8], for example, a single parameter related to the proportion of downgrades
is used, and both [6] and [8] describe a method to shift transition probabilities using a
single parameter. The latter approach is shown in this appendix.

The method takes the TTC transition matrix as a baseline.

tmTTC = transprobbytotals(totalsByRtg);

Example_DisplayTransitions(tmTTC,[],...

   {'AAA','AA','A','BBB','BB','B','CCC'},...

   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 

   AAA   88.2   7.67   0.49   0.09   0.06      0      0      0   3.49 

    AA   0.58  87.16   7.63   0.58   0.06   0.11   0.02   0.01   3.85 

     A   0.05    1.9  87.24   5.59   0.42   0.15   0.03   0.04   4.58 

   BBB   0.02   0.16   3.85  84.13   4.27   0.76   0.17   0.27   6.37 

    BB   0.03   0.04   0.25   5.26  75.74   7.36    0.9   1.12   9.29 

     B      0   0.05   0.19   0.31   5.52  72.67   4.21   5.38  11.67 

   CCC      0      0   0.28   0.41   1.24  10.92  47.06  27.02  13.06 

An equivalent way to represent this matrix is by transforming it into credit quality
thresholds, that is, critical values of a standard normal distribution that yield the same
transition probabilities (row by row).

thresholdMat = transprobtothresholds(tmTTC);

Example_DisplayTransitions(thresholdMat,[],...

   {'AAA','AA','A','BBB','BB','B','CCC'},...

   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 

   AAA    Inf  -1.19  -1.74   -1.8  -1.81  -1.81  -1.81  -1.81  -1.81 

    AA    Inf   2.52  -1.16  -1.68  -1.75  -1.75  -1.76  -1.77  -1.77 

     A    Inf   3.31   2.07  -1.24  -1.62  -1.66  -1.68  -1.68  -1.69 

   BBB    Inf   3.57   2.91   1.75  -1.18  -1.43  -1.49   -1.5  -1.52 
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    BB    Inf   3.39   3.16   2.72   1.59  -0.89  -1.21  -1.26  -1.32 

     B    Inf    Inf   3.28   2.82   2.54   1.55   -0.8  -0.95  -1.19 

   CCC    Inf    Inf    Inf   2.77   2.46   2.07   1.13  -0.25  -1.12 

Credit quality thresholds are illustrated in the following figure. The segments in the
vertical axis represent transition probabilities, and the boundaries between them
determine the critical values in the horizontal axis, via the standard normal distribution.
Each row in the transition matrix determines a set of thresholds. The figure shows the
thresholds for the 'CCC' rating.

xliml = -5;

xlimr = 5;

step = 0.1;

x=xliml:step:xlimr;

thresCCC = thresholdMat(7,:);

centersY = (normcdf([thresCCC(2:end) xliml])+...

   normcdf([xlimr thresCCC(2:end)]))/2;

labels = {'AAA','AA','A','BBB','BB','B','CCC','D','NR'};

figure

plot(x,normcdf(x),'m','LineWidth',1.5)

for i=2:length(labels)

   val = thresCCC(i);

   line([val val],[0 normcdf(val)],'LineStyle',':');

   line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');

   if (centersY(i-1)-centersY(i))>0.05

      text(-4.5,centersY(i),labels{i});

   end

end

xlabel('Credit Quality Thresholds')

ylabel('Cumulative Probability')

title('{\bf Visualization of Credit Quality Thresholds}')

legend('Std Normal CDF','Location','E')
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Shifting the critical values to the right or left changes the transition probabilities. For
example, here is the transition matrix obtained by shifting the TTC thresholds by 0.5 to
the right. Note that default probabilities increase.

shiftedThresholds = thresholdMat+0.5;

Example_DisplayTransitions(transprobfromthresholds(shiftedThresholds),...

   [],{'AAA','AA','A','BBB','BB','B','CCC'},...

   {'AAA','AA','A','BBB','BB','B','CCC','D','NR'})

          AAA     AA      A    BBB     BB      B    CCC      D     NR 

   AAA  75.34  13.84   1.05   0.19   0.13      0      0      0   9.45 

    AA   0.13  74.49  13.53   1.21   0.12   0.22   0.04   0.02  10.24 

     A   0.01   0.51   76.4  10.02   0.83   0.31   0.06   0.08  11.77 

   BBB      0   0.03    1.2  74.03   7.22   1.39   0.32   0.51  15.29 
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    BB      0   0.01   0.05   1.77  63.35  10.94   1.47   1.88  20.52 

     B      0   0.01   0.04   0.07   1.91  59.67   5.74    8.1  24.46 

   CCC      0      0   0.05    0.1   0.36   4.61  35.06  33.18  26.65 

Given a particular PIT matrix, the idea in [6] and [8] is to vary the shifting parameter
applied to the TTC thresholds so that the resulting transition matrix is as close as
possible to the PIT matrix. Closeness is measured as the sum of squares of differences
between corresponding transition probabilities. The optimal shifting value is called credit
index. A credit index is determined for every PIT transition matrix in the sample.

Here we use fminunc from Optimization Toolbox™ to find the credit indices.

CreditIndex = zeros(nYears,1);

ExitFlag = zeros(nYears,1);

options = optimset('LargeScale','Off','Display','Off');

for i=1:nYears

   errorfun = @(z)norm(squeeze(TransMat(:,:,i))-...

      transprobfromthresholds(...

      transprobtothresholds(tmTTC)+z),'fro');

   [CreditIndex(i),~,ExitFlag(i)] = fminunc(errorfun,0,options);

end

In general, one expects that higher credit indices correspond to riskier years. The series
of credit indices found does not entirely match this pattern. There may be different
reasons for this. First, transition probabilities may deviate from their long-term averages
in different ways that may lead to confounding effects in the single parameter trying
to capture these difference, the credit index. Having separate credit indices for IG and
SG, for example, may help separate confounding effects. Second, a difference of five
basis points may be very significant for the 'BBB' default rate, but not as important for
the 'CCC' default rate, yet the norm used weights them equally. Other norms can be
considered. Also, it is always a good idea to check the exit flags of optimization solvers, in
case the algorithm could not find a solution. Here we get valid solutions for each year (all
exit flags are 1).

figure

plot(Years,CreditIndex,'-d')

hold on

Example_RecessionBands

hold off

grid on

xlabel('Year')

ylabel('Shift')

title('{\bf Credit Index}')
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The workflow above can be adapted to work with the series of credit indices instead
of the series of corporate default rates. A model can be fit to predict a credit index for
the following year, and a predicted transition matrix can be inferred and used for risk
analyses.
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See Also
bootstrp | transprob | transprobbytotals | transprobfromthresholds |
transprobgrouptotals | transprobprep | transprobtothresholds

Related Examples
• “Credit Quality Thresholds” on page 8-52
• “Credit Rating by Bagging Decision Trees”
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External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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Credit Quality Thresholds

In this section...

“Introduction” on page 8-52
“Compute Credit Quality Thresholds” on page 8-52
“Visualize Credit Quality Thresholds” on page 8-53

Introduction

An equivalent way to represent transition probabilities is by transforming them into
credit quality thresholds. These are critical values of a standard normal distribution that
yield the same transition probabilities.

An M-by-N matrix of transition probabilities TRANS and the corresponding M-by-N matrix
of credit quality thresholds THRESH are related as follows. The thresholds THRESH(i,j) are
critical values of a standard normal distribution z, such that
TRANS(i,N) = P[z < THRESH(i,N)],

TRANS(i,j) = P[z < THRESH(i,j)] - P[z < THRESH(i,j+1)], for 1<=j<N

Financial Toolbox supports the transformation between transition probabilities
and credit quality thresholds with the functions transprobtothresholds and
transprobfromthresholds.

Compute Credit Quality Thresholds

To compute credit quality thresholds, transition probabilities are required as input. Here
is a transition matrix estimated from credit ratings data:
load Data_TransProb

trans = transprob(data)

trans =

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167

         0         0         0         0         0         0         0  100.0000

Convert the transition matrix to credit quality thresholds using
transprobtothresholds:
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thresh = transprobtothresholds(trans)

thresh =

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276   -4.1413

       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523   -3.3554

       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631   -3.1736

       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663   -2.8490

       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275   -2.4547

       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491   -1.9703

       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556   -1.1399

       Inf       Inf       Inf       Inf       Inf       Inf       Inf       Inf

Conversely, given a matrix of thresholds, you can compute transition probabilities using
transprobfromthresholds. For example, take the thresholds computed previously as
input to recover the original transition probabilities:
trans1 = transprobfromthresholds(thresh)

trans1 =

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001    0.0017

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004    0.0396

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028    0.0753

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642    0.2193

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919    0.7050

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169    2.4399

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927   12.7167

         0         0         0         0         0         0         0  100.0000

Visualize Credit Quality Thresholds

You can graphically represent the relationship between credit quality thresholds and
transition probabilities. Here, this example shows the relationship for the 'CCC' credit
rating. In the plot, the thresholds are marked by the vertical lines and the transition
probabilities are the area below the standard normal density curve:

load Data_TransProb

trans = transprob(data);

thresh = transprobtothresholds(trans);

xliml = -5;

xlimr = 5;

step = 0.1;

x=xliml:step:xlimr;

thresCCC = thresh(7,:);

labels = {'AAA','AA','A','BBB','BB','B','CCC','D'};

centersX = ([5 thresCCC(2:end)]+[thresCCC(2:end) -5])*0.5;

omag = round(log10(trans(7,:)));

omag(omag>0)=omag(omag>0).^2;
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fs = 14+2*omag;

figure

plot(x,normpdf(x),'LineWidth',1.5)

text(centersX(1),0.2,labels{1},'FontSize',fs(1),...

   'HorizontalAlignment','center')

for i=2:length(labels)

   val = thresCCC(i);

   line([val val],[0 0.4],'LineStyle',':')

   text(centersX(i),0.2,labels{i},'FontSize',fs(i),...

      'HorizontalAlignment','center')

end

xlabel('Credit Quality Thresholds')

ylabel('Probability Density Function')

title('{\bf Visualization of Credit Quality Thresholds}')

legend('Std Normal PDF','Location','S')

The second plot uses the cumulative density function instead. The thresholds are
represented by vertical lines. The transition probabilities are given by the distance
between horizontal lines.
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figure

plot(x,normcdf(x),'m','LineWidth',1.5)

text(centersX(1),0.2,labels{1},'FontSize',fs(1),...

   'HorizontalAlignment','center')

for i=2:length(labels)

   val = thresCCC(i);

   line([val val],[0 normcdf(val)],'LineStyle',':');

   line([x(1) val],[normcdf(val) normcdf(val)],'LineStyle',':');

   text(centersX(i),0.2,labels{i},'FontSize',fs(i),...

      'HorizontalAlignment','center')

end

xlabel('Credit Quality Thresholds')

ylabel('Cumulative Probability')

title('{\bf Visualization of Credit Quality Thresholds}')

legend('Std Normal CDF','Location','W')

See Also
bootstrp | transprob | transprobbytotals | transprobfromthresholds |
transprobgrouptotals | transprobprep | transprobtothresholds
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Related Examples
• “Estimation of Transition Probabilities” on page 8-2
• “Credit Rating by Bagging Decision Trees”
• “Forecasting Corporate Default Rates” on page 8-20

External Websites
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)
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About Credit Scorecards

In this section...

“What Is a Credit Scorecard?” on page 8-57
“Credit Scorecard Development Process” on page 8-60

What Is a Credit Scorecard?

Credit scoring is one of the most widely used credit risk analysis tools. The goal of credit
scoring is ranking borrowers by their credit worthiness. In the context of retail credit
(credit cards, mortgages, car loans, etc.), credit scoring is performed using a credit
scorecard. Credit scorecards represent different characteristics of a customer (age,
residential status, time at current address, time at current job, and so on) translated into
points and the total number of points becomes the credit score. The credit worthiness of
customers is summarized by their credit score; high scores usually correspond to low-risk
customers, and conversely. Scores are also used for corporate credit analysis of small and
medium enterprises, and, large corporations.

A credit scorecard is a lookup table that maps specific characteristics of a borrower
into points. The total number of points becomes the credit score. Credit scorecards are
a widely used type of credit scoring model. As such, the goal of a credit scorecard is to
distinguish between customers who repay their loans (“good” customers), and customers
who will not (“bad” customers). Like other credit scoring models, credit scorecards
quantify the risk that a borrower will not repay a loan in the form of a score and a
probability of default.

For example, a credit scorecard can give individual borrowers points for their age and
income according to the following table. Other characteristics such as residential status,
employment status, might also be included, although, for brevity, they are not shown in
this table.
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Using the credit scorecard in this example, a particular customer who is 31 and has
an income of $52,000 a year, is placed into the second age group (26–40) and receives
25 points for their age, and similarly, receives 28 points for their income. Other
characteristics (not shown here) might contribute additional points to their score. The
total score is the sum of all points, which in this example is assumed to give the customer
a total of 238 points (this is a fictitious example on an arbitrary scoring scale).
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Technically, to determine the credit scorecard points, start out by selecting a set of
potential predictors (column 1 in the next figure). Then, bin data into groups (for
example, ages ‘Up to 25’, ’25 to 40’ (column 2 in the figure). This grouping helps to
distinguish between “good” and “bad” customers. The Weight of Evidence (WOE) is a
way to measure how well the distribution of “good” and “bad” are separated across bins
or groups for each individual predictor (column 3 in the figure). By fitting a logistic
regression model, you can identify which predictors, when put together, do a better
job distinguishing between “good” and “bad” customers. The model is summarized by
its coefficients (column 4 in the figure). Finally, the combination of WOE’s and model
coefficients (commonly scaled, shifted, and rounded) make up the scorecard points
(column 5 in the figure).
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Credit Scorecard Development Process

1 Data gathering and preparation phase

This includes data gathering and integration, such as querying, merging,
aligning. It also includes treatment of missing information and outliers. There
is a prescreening step based on reports of association measures between the
predictors and the response variable. Finally, there is a sampling step, to produce
a training set, sometimes called the modeling view, and usually a validation
set, too. The training set, in the form of a table, is the required data input to the
creditscorecard object, and this training set table must be prepared before
creating a creditscorecard object in the Modeling phase.

2 Modeling phase

Use the creditscorecard object and associated object functions to develop a
credit scorecard model. You can bin the data, apply the Weight of Evidence (WOE)
transformation, and compute other statistics, such as the Information Value. You
can fit a logistic regression model and also review the resulting scorecard points
and format their scaling and rounding. For details on using the creditscorecard
object, see creditscorecard.

3 Deployment phase
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Deployment entails integrating a credit scorecard model into an IT production
environment and keeping tracking logs, performance reports, and so on.

The creditscorecard object is designed for the Modeling phase of the credit scorecard
workflow. Support for all three phases requires other MathWorks® products.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-65
• “Case Study for a Credit Scorecard Analysis” on page 8-75

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
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Credit Scorecard Modeling Workflow

Create, model, and analyze credit scorecards as follows.

1 Create a creditscorecard object.

Create a creditscorecard object for credit scorecard analysis by specifying
“training” data in table format. The training data, sometimes called the modeling
view, is the result of multiple data preparation tasks (see “About Credit Scorecards”
on page 8-57) that must be performed before creating a creditscorecard object.

You can use optional input arguments for creditscorecard to specify scorecard
properties such as the response variable and the GoodLabel. Perform some initial
data exploration when the creditscorecard object is created, although data
analysis is usually done in combination with data binning (see step 2). For more
information and examples, see creditscorecard and step 1 in “Case Study for a
Credit Scorecard Analysis” on page 8-75.

2 Bin the data.

Perform manual or automatic binning of the data loaded into the creditscorecard
object.

A common starting point is to apply automatic binning to all or selected variables
using autobinning, report using bininfo, and visualize bin information with
respect to bin counts and statistics or association measures such as Weight of
Evidence (WOE) using plotbins. The bins can be modified or fine-tuned either
manually using modifybins or with a different automatic binning algorithm using
autobinning. Bins that show a close-to-linear trend in the WOE are frequently
desired in the credit scorecard context.

Alternatively, with Risk Management Toolbox™, you can use the Binning
Explorer app to interactively bin. The Binning Explorer enables you to
interactively apply a binning algorithm and modify bins. For more information, see
Binning Explorer.

For more information and examples, see autobinning, modifybins, bininfo,
and plotbins and step 2 in “Case Study for a Credit Scorecard Analysis” on page
8-75.

3 Fit a logistic regression model.
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Fit a logistic regression model to the WOE data from the creditscorecard object.
The fitmodel function internally bins the training data, transforms it into WOE
values, maps the response variable so that 'Good' is 1, and fits a linear logistic
regression model.

By default, fitmodel uses a stepwise procedure to determine which predictors
should be in the model, but optional input arguments can also be used, for example,
to fit a full model. For more information and examples, see fitmodel and step 3 in
“Case Study for a Credit Scorecard Analysis” on page 8-75.

4 Review and format credit scorecard points.

After fitting the logistic model, use displaypoints to summarize the scorecard
points. By default, the points are unscaled and come directly from the combination of
Weight of Evidence (WOE) values and model coefficients.

The formatpoints function lets you control scaling and rounding of scorecard
points. For more information and examples, see displaypoints and
formatpoints and step 4 in “Case Study for a Credit Scorecard Analysis” on page
8-75.

5 Score the data.

The score function computes the scores for the training data.

An optional data input can also be passed to score, for example, validation data.
The points per predictor for each customer are also provided as an optional output.
For more information and examples, see score and step 5 in “Case Study for a
Credit Scorecard Analysis” on page 8-75.

6 Calculate the probability of default for credit scorecard scores.

The probdefault function to calculate the probability of default for training data.

In addition, you can compute likelihood of default for a different dataset (for
example, a validation data set) using the probdefault function. For more
information and examples, see probdefault and step 6 in “Case Study for a Credit
Scorecard Analysis” on page 8-75.

7 Validate the credit scorecard model.

Use the validatemodel function to validate the quality of the credit scorecard
model.
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You can obtain the Cumulative Accuracy Profile (CAP), Receiver Operating
Characteristic (ROC), and Kolmogorov-Smirnov (KS) plots and statistics for a given
dataset using the validatemodel function. For more information and examples, see
validatemodel and step 7 in “Case Study for a Credit Scorecard Analysis” on page
8-75.

For an example of this workflow, see “Case Study for a Credit Scorecard Analysis” on
page 8-75.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-65
• “Case Study for a Credit Scorecard Analysis” on page 8-75

More About
• “About Credit Scorecards” on page 8-57
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Troubleshooting Credit Scorecard Results

In this section...

“Predictor Name Is Unspecified and the Parser Returns an Error” on page 8-65
“Using bininfo or plotbins Before Binning” on page 8-65
“If Categorical Data Is Given as Numeric” on page 8-68
“NaNs Returned When Scoring a “Test” Dataset ” on page 8-71

This topic shows some of the results when using credit scorecards that need
troubleshooting. These examples cover the full range of the credit score card workflow.
For details on the overall process of creating and developing credit scorecards, see “Credit
Scorecard Modeling Workflow” on page 8-62.

Predictor Name Is Unspecified and the Parser Returns an Error

If you attempt to use modifybins, bininfo, or plotbins and omit the predictor's
name, the parser returns an error.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);

modifybins(sc,'CutPoints',[20 30 50 65])

Error using creditscorecard/modifybins (line 79)

Expected a string for the parameter name, instead the input type was 'double'.

Solution: Make sure to include the predictor’s name when using these functions. Use
this syntax to specify the PredictorName when using modifybins.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);

modifybins(sc,'CustIncome','CutPoints',[20 30 50 65]);

Using bininfo or plotbins Before Binning

If you use bininfo or plotbins before binning, the results might be unusable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);
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bininfo(sc,'CustAge')

plotbins(sc,'CustAge')

ans = 

      Bin       Good    Bad     Odds         WOE       InfoValue 

    ________    ____    ___    _______    _________    __________

    '21'          2       1          2    -0.011271    3.1821e-07

    '22'          3       1          3      0.39419    0.00047977

    '23'          1       2        0.5      -1.3976     0.0053002

    '24'          3       4       0.75      -0.9921     0.0062895

    '25'          3       1          3      0.39419    0.00047977

    '26'          4       2          2    -0.011271    6.3641e-07

    '27'          6       5        1.2      -0.5221     0.0026744

    '28'         10       2          5      0.90502     0.0067112

    '29'          8       6     1.3333     -0.41674     0.0021465

    '30'          9      10        0.9     -0.80978      0.011321

    '31'          8       6     1.3333     -0.41674     0.0021465

    '32'         13      13          1     -0.70442      0.011663

    '33'          9      11    0.81818     -0.90509      0.014934

    '34'         14      12     1.1667     -0.55027     0.0070391

    '35'         18      10        1.8     -0.11663    0.00032342

    '36'         23      14     1.6429     -0.20798     0.0013772

    '37'         28      19     1.4737     -0.31665     0.0041132

    '38'         24      14     1.7143     -0.16542     0.0008894

    '39'         21      14        1.5     -0.29895     0.0027242

    '40'         31      12     2.5833      0.24466     0.0020499

    '41'         21      18     1.1667     -0.55027      0.010559

    '42'         29       9     3.2222      0.46565     0.0062605

    '43'         29      23     1.2609     -0.47262      0.010312

    '44'         28      16       1.75      -0.1448    0.00078672

    '45'         36      16       2.25      0.10651    0.00048246

    '46'         33      19     1.7368     -0.15235     0.0010303

    '47'         28       6     4.6667      0.83603      0.016516

    '48'         32      17     1.8824    -0.071896    0.00021357

    '49'         38      10        3.8      0.63058      0.013957

    '50'         33      14     2.3571      0.15303    0.00089239

    '51'         28       9     3.1111      0.43056     0.0052525

    '52'         35       8      4.375      0.77149       0.01808

    '53'         14       8       1.75      -0.1448    0.00039336

    '54'         27      12       2.25      0.10651    0.00036184

    '55'         20       9     2.2222     0.094089    0.00021044

    '56'         20      11     1.8182     -0.10658    0.00029856

    '57'         16       7     2.2857      0.12226    0.00028035

    '58'         11       7     1.5714     -0.25243    0.00099297

    '59'         11       6     1.8333    -0.098283    0.00013904

    '60'          9       4       2.25      0.10651    0.00012061

    '61'         11       2        5.5       1.0003     0.0086637

    '62'          8       0        Inf          Inf           Inf

    '63'          7       1          7       1.2415     0.0076953

    '64'         10       0        Inf          Inf           Inf

    '65'          4       1          4      0.68188     0.0016791

    '66'          6       1          6       1.0873     0.0053857

    '67'          2       3    0.66667      -1.1099     0.0056227

    '68'          6       1          6       1.0873     0.0053857

    '69'          6       0        Inf          Inf           Inf

    '70'          1       0        Inf          Inf           Inf

    '71'          1       0        Inf          Inf           Inf

    '72'          1       0        Inf          Inf           Inf

    '73'          3       0        Inf          Inf           Inf

    '74'          1       0        Inf          Inf           Inf
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    'Totals'    803     397     2.0227          NaN           Inf

The plot for CustAge is not readable because it has too many bins. Additionally,
bininfo returns data that have Inf values for the WOE due to zero observations for
either Good or Bad.

Solution: Bin the data using autobinning or modifybins before plotting or inquiring
about the bin statistics, to avoid having too many bins or having NaNs and Infs.
For example, you can use the name-value pair argument for AlgoOptions with the
autobinning function to define the number of bins.
load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);

AlgoOptions = {'NumBins',4};

sc = autobinning(sc,'CustAge','Algorithm','EqualFrequency',...

'AlgorithmOptions',AlgoOptions);

bininfo(sc,'CustAge','Totals','off')

plotbins(sc,'CustAge')

ans = 

        Bin        Good    Bad     Odds       WOE       InfoValue

    ___________    ____    ___    ______    ________    _________

    '[-Inf,39)'    186     133    1.3985    -0.36902      0.03815
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    '[39,46)'      195     108    1.8056    -0.11355    0.0033158

    '[46,52)'      192      75      2.56     0.23559     0.011823

    '[52,Inf]'     230      81    2.8395     0.33921      0.02795

If Categorical Data Is Given as Numeric

Categorical data is often recorded using numeric values, and can be stored in a numeric
array. Although you know that the data should be interpreted as categorical information,
for creditscorecard this predictor looks like a numeric array.

To show the case where categorical data is given as numeric data, the data for the
variable ResStatus is intentionally converted to numeric values.

load CreditCardData

data.ResStatus = double(data.ResStatus);

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:
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                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1x11 cell}

        NumericPredictors: {1x7 cell}

    CategoricalPredictors: {'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1x9 cell}

Note that 'ResStatus' appears as part of the NumericPredictors property. If we
applied automatic binning, the resulting bin information raises flags regarding the
predictor type.

sc = autobinning(sc,'ResStatus');

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

       Bin        Good    Bad     Odds        WOE       InfoValue 

    __________    ____    ___    ______    _________    __________

    '[-Inf,2)'    365     177    2.0621     0.019329     0.0001682

    '[2,Inf]'     438     220    1.9909    -0.015827    0.00013772

    'Totals'      803     397    2.0227          NaN    0.00030592

cg =

     2

The numeric ranges in the bin labels show that 'ResStatus' is being treated as a
numeric variable. This is also confirmed by the fact that the optional output from
bininfo is a numeric array of cut points, as opposed to a table with category groupings.
Moreover, the output from predictorinfo confirms that the credit scorecard is treating
the data as numeric.

[T,Stats] = predictorinfo(sc,'ResStatus')

T = 

                 PredictorType        LatestBinning     

                 _____________    ______________________

    ResStatus    'Numeric'        'Automatic / Monotone'

Stats = 

             Value 

            _______

    Min           1

    Max           3

    Mean     1.7017
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    Std     0.71863

Solution: For creditscorecard, 'Categorical' means a MATLAB categorical data
type. For more information, see categorical. To treat'ResStatus' as categorical,
change the 'PredictorType' of the PredictorName 'ResStatus' from 'Numeric'
to 'Categorical' using modifypredictor.

sc = modifypredictor(sc,'ResStatus','PredictorType','Categorical')

[T,Stats] = predictorinfo(sc,'ResStatus')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1x11 cell}

        NumericPredictors: {1x6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1x9 cell}

T = 

                 PredictorType    Ordinal     LatestBinning 

                 _____________    _______    _______________

    ResStatus    'Categorical'    false      'Original Data'

Stats = 

          Count

          _____

    C1    542  

    C2    474  

    C3    184  

Note that 'ResStatus' now appears as part of the Categorical predictors. Also,
predictorinfo now describes 'ResStatus' as categorical and displays the category
counts.

If you apply autobinning, the categories are now reordered, as shown by calling
bininfo, which also shows the category labels, as opposed to numeric ranges. The
optional output of bininfo is now a category grouping table.

sc = autobinning(sc,'ResStatus');

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

      Bin       Good    Bad     Odds        WOE       InfoValue

    ________    ____    ___    ______    _________    _________
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    'C2'        307     167    1.8383    -0.095564    0.0036638

    'C1'        365     177    2.0621     0.019329    0.0001682

    'C3'        131      53    2.4717      0.20049    0.0059418

    'Totals'    803     397    2.0227          NaN    0.0097738

cg = 

    Category    BinNumber

    ________    _________

    'C2'        1        

    'C1'        2        

    'C3'        3        

NaNs Returned When Scoring a “Test” Dataset

When applying a creditscorecard model to a “test” dataset using the score function,
if an observation in the “test” dataset has a NaN or <undefined> value, a NaN total score
is returned for each of these observations. For example, a creditscorecard object is
created using “training” data.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

sc = autobinning(sc);

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized Linear regression model:

    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
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Suppose that a missing observation (Nan) is added to the data and then newdata is
scored using the score function. By default, the points and score assigned to the missing
value is NaN.

newdata = data(1:10,:);

newdata.CustAge(1) = NaN;

[Scores,Points] = score(sc,newdata)

Scores =

       NaN

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

         NaN    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

Additionally, notice that because the CustAge predictor for the first observation is NaN,
the corresponding Scores output is NaN also.

Solution: To resolve this issue, use the formatpoints function with the name-value
pair argument Missing. When using Missing, you can replace a predictor’s NaN value
according to three alternative criteria ('ZeroWoe', 'MinPoints', or 'MaxPoints').

For example, use Missing to replace the missing value with the 'MinPoints' option.
The row with the missing data now has a score corresponding to assigning it the
minimum possible points for CustAge.

sc = formatpoints(sc,'Missing','MinPoints');

[Scores,Points] = score(sc,newdata)

PointsTable = displaypoints(sc);

PointsTable(1:7,:)

8-72



 Troubleshooting Credit Scorecard Results

Scores =

    0.7074

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

    -0.15894    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

ans = 

    Predictors        Bin         Points  

    __________    ___________    _________

    'CustAge'     '[-Inf,33)'     -0.15894

    'CustAge'     '[33,37)'       -0.14036

    'CustAge'     '[37,40)'      -0.060323

    'CustAge'     '[40,46)'       0.046408

    'CustAge'     '[46,48)'        0.21445

    'CustAge'     '[48,58)'        0.23039

    'CustAge'     '[58,Inf]'         0.479

Notice that the Scores output has a value for the first customer record because CustAge
now has a value and the score can be calculated for the first customer record.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Case Study for a Credit Scorecard Analysis” on page 8-75
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More About
• “About Credit Scorecards” on page 8-57
• “Credit Scorecard Modeling Workflow” on page 8-62
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Case Study for a Credit Scorecard Analysis

This example shows how to create a creditscorecard object, bin data, display and plot
binned data information. This example also shows how to fit a logistic regression model,
obtain a score for the scorecard model, and determine the probabilities of default and
validate the credit scorecard model using three different metrics.

Step 1. Create a creditscorecard object.

Use the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
By default, 'ResponseVar' is set to the last column in the data ('status' in this
example) and the 'GoodLabel' to the response value with the highest count (0 in this
example). The syntax for creditscorecard indicates that 'CustID' is the 'IDVar' to
remove from the list of predictors.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

            IDVar: 'CustID'

        GoodLabel: 0

      ResponseVar: 'status'

         VarNames: {1x11 cell}

    PredictorVars: {1x9 cell}

Perform some initial data exploration. Inquire about predictor statistics for the
categorical variable 'ResStatus' and plot the bin information for 'ResStatus'.

bininfo(sc,'ResStatus')

plotbins(sc,'ResStatus')

ans = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

8-75



8 Credit Risk Analysis

This bin information contains the frequencies of “Good” and “Bad,” and bin statistics.
Avoid having bins with frequencies of zero because they lead to infinite or undefined
(NaN) statistics. Use the modifybins or autobinning functions to bin the data
accordingly.

For numeric data, a common first step is "fine classing." This means binning the data
into several bins, defined with a regular grid. To illustrate this point, use the predictor
'CustIncome'.

cp = 20000:5000:60000;

sc = modifybins(sc,'CustIncome','CutPoints',cp);

bininfo(sc,'CustIncome')

plotbins(sc,'CustIncome')

ans = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,20000)'       3       5        0.6      -1.2152      0.010765
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    '[20000,25000)'     23      16     1.4375     -0.34151     0.0039819

    '[25000,30000)'     38      47    0.80851     -0.91698      0.065166

    '[30000,35000)'    131      75     1.7467     -0.14671      0.003782

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,45000)'    173      76     2.2763      0.11814     0.0028361

    '[45000,50000)'    131      47     2.7872      0.32063      0.014348

    '[50000,55000)'     82      24     3.4167      0.52425      0.021842

    '[55000,60000)'     21       8      2.625      0.26066     0.0015642

    '[60000,Inf]'        8       1          8        1.375      0.010235

    'Totals'           803     397     2.0227          NaN       0.13469

Step 2a. Automatically bin the data.

Use the autobinning function to perform automatic binning for every predictor
variable, using the default 'Monotone' algorithm with default algorithm options.

sc = autobinning(sc);

After the automatic binning step, every predictor bin must be reviewed using the
bininfo and plotbins functions and fine-tuned. A monotonic, ideally linear trend in
the Weight of Evidence (WOE) is desirable for credit scorecards because this translates
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into linear points for a given predictor. The WOE trends can be visualized using
plotbins.

plotbins(sc,sc.PredictorVars)
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Unlike the initial plot of 'ResStatus' when the scorecard was created, the new plot
for 'ResStatus' shows an increasing WOE trend. This is because the autobinning
function, by default, sorts the order of the categories by increasing odds.

These plots show that the 'Monotone' algorithm does a good job finding monotone WOE
trends for this dataset. To complete the binning process, it is necessary to make only a
few manual adjustments for some predictors using the modifybins function.

Step 2b. Fine-tune the bins using manual binning.

Common steps to manually modify bins are:

• Use the bininfo function with two output arguments where the second argument
contains binning rules.

• Manually modify the binning rules using the second output argument from bininfo.
• Set the updated binning rules with modifybins and then use plotbins or bininfo

to review the updated bins.
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For example, based on the plot for 'CustAge' in Step 2a, bins number 1 and 2 have
similar WOE's as do bins number 5 and 6. To merge these bins using the steps outlined
above:

[bi,cp] = bininfo(sc,'CustAge');

cp([1 5]) = []; % To merge bins 1 and 2, and bins 5 and 6

sc = modifybins(sc,'CustAge','CutPoints',cp);

plotbins(sc,'CustAge')

For 'CustIncome', based on the plot above, it is best to merge bins 3, 4 and 5 because
they have similar WOE's. To merge these bins:

[bi,cp] = bininfo(sc,'CustIncome');

cp([3 4]) = [];

sc = modifybins(sc,'CustIncome','CutPoints',cp);

plotbins(sc,'CustIncome')
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For 'TmWBank', based on the plot above, it is best to merge bins 2 and 3 because they
have similar WOE's. To merge these bins:

[bi,cp] = bininfo(sc,'TmWBank');

cp(2) = [];

sc = modifybins(sc,'TmWBank','CutPoints',cp);

plotbins(sc,'TmWBank')
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For 'AMBalance', based on the plot above, it is best to merge bins 2 and 3 because they
have similar WOE's. To merge these bins:

[bi,cp] = bininfo(sc,'AMBalance');

cp(2) = [];

sc = modifybins(sc,'AMBalance','CutPoints',cp);

plotbins(sc,'AMBalance')
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Now that the binning fine-tuning is completed, the bins for all predictors have close-to-
linear WOE trends.

Step 3. Fit a logistic regression model.

The fitmodel function fits a logistic regression model to the WOE data. fitmodel
internally bins the training data, transforms it into WOE values, maps the response
variable so that 'Good' is 1, and fits a linear logistic regression model. By default,
fitmodel uses a stepwise procedure to determine which predictors should be in the
model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08

2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06

3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829

4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428

5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237

6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555

7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized Linear regression model:

    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance

    Distribution = Binomial
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Estimated Coefficients:

                   Estimate      SE       tStat       pValue  

                   ________    _______    ______    __________

    (Intercept)     0.7024       0.064    10.975    5.0407e-28

    CustAge        0.61562     0.24783    2.4841      0.012988

    ResStatus       1.3776     0.65266    2.1107      0.034799

    EmpStatus      0.88592     0.29296     3.024     0.0024946

    CustIncome     0.69836     0.21715     3.216     0.0013001

    TmWBank          1.106     0.23266    4.7538    1.9958e-06

    OtherCC         1.0933     0.52911    2.0662      0.038806

    AMBalance       1.0437     0.32292    3.2322     0.0012285

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 4. Review and format scorecard points.

After fitting the logistic model, by default the points are unscaled and come directly from
the combination of WOE values and model coefficients. The displaypoints function
summarizes the scorecard points.

p1 = displaypoints(sc);

disp(p1)

  Predictors            Bin             Points  

    ____________    __________________    _________

    'CustAge'       '[-Inf,37)'            -0.15314

    'CustAge'       '[37,40)'             -0.062247

    'CustAge'       '[40,46)'              0.045763

    'CustAge'       '[46,58)'               0.22888

    'CustAge'       '[58,Inf]'              0.48354

    'ResStatus'     'Tenant'              -0.031302

    'ResStatus'     'Home Owner'            0.12697

    'ResStatus'     'Other'                 0.37652

    'EmpStatus'     'Unknown'             -0.076369

    'EmpStatus'     'Employed'              0.31456

    'CustIncome'    '[-Inf,29000)'         -0.45455

    'CustIncome'    '[29000,33000)'         -0.1037

    'CustIncome'    '[33000,42000)'        0.077768

    'CustIncome'    '[42000,47000)'         0.24406

    'CustIncome'    '[47000,Inf]'           0.43536

    'TmWBank'       '[-Inf,12)'            -0.18221

    'TmWBank'       '[12,45)'             -0.038279

    'TmWBank'       '[45,71)'               0.39569

    'TmWBank'       '[71,Inf]'              0.95074
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    'OtherCC'       'No'                     -0.193

    'OtherCC'       'Yes'                   0.15868

    'AMBalance'     '[-Inf,558.88)'          0.3552

    'AMBalance'     '[558.88,1597.44)'    -0.026797

    'AMBalance'     '[1597.44,Inf]'        -0.21168

This is a good time to modify the bin labels, if this is something of interest for cosmetic
reasons. To do so, use modifybins to change the bin labels.
sc = modifybins(sc,'CustAge','BinLabels',...

{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...

{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...

{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...

{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);

disp(p1)

 Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       'Up to 36'              -0.15314

    'CustAge'       '37 to 39'             -0.062247

    'CustAge'       '40 to 45'              0.045763

    'CustAge'       '46 to 57'               0.22888

    'CustAge'       '58 and up'              0.48354

    'ResStatus'     'Tenant'               -0.031302

    'ResStatus'     'Home Owner'             0.12697

    'ResStatus'     'Other'                  0.37652

    'EmpStatus'     'Unknown'              -0.076369

    'EmpStatus'     'Employed'               0.31456

    'CustIncome'    'Up to 28999'           -0.45455

    'CustIncome'    '29000 to 32999'         -0.1037

    'CustIncome'    '33000 to 41999'        0.077768

    'CustIncome'    '42000 to 46999'         0.24406

    'CustIncome'    '47000 and up'           0.43536

    'TmWBank'       'Up to 11'              -0.18221

    'TmWBank'       '12 to 44'             -0.038279

    'TmWBank'       '45 to 70'               0.39569

    'TmWBank'       '71 and up'              0.95074

    'OtherCC'       'No'                      -0.193

    'OtherCC'       'Yes'                    0.15868

    'AMBalance'     'Up to 558.87'            0.3552
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    'AMBalance'     '558.88 to 1597.43'    -0.026797

    'AMBalance'     '1597.44 and up'        -0.21168

Points are usually scaled and also often rounded. To do this, use the formatpoints
function. For example, you can set a target level of points corresponding to a target odds
level and also set the required points-to-double-the-odds (PDO).
TargetPoints = 500;

TargetOdds = 2;

PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);

p2 = displaypoints(sc);

disp(p2)

 Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       'Up to 36'             53.239

    'CustAge'       '37 to 39'             59.796

    'CustAge'       '40 to 45'             67.587

    'CustAge'       '46 to 57'             80.796

    'CustAge'       '58 and up'            99.166

    'ResStatus'     'Tenant'               62.028

    'ResStatus'     'Home Owner'           73.445

    'ResStatus'     'Other'                91.446

    'EmpStatus'     'Unknown'              58.777

    'EmpStatus'     'Employed'             86.976

    'CustIncome'    'Up to 28999'          31.497

    'CustIncome'    '29000 to 32999'       56.805

    'CustIncome'    '33000 to 41999'       69.896

    'CustIncome'    '42000 to 46999'       81.891

    'CustIncome'    '47000 and up'          95.69

    'TmWBank'       'Up to 11'             51.142

    'TmWBank'       '12 to 44'             61.524

    'TmWBank'       '45 to 70'             92.829

    'TmWBank'       '71 and up'            132.87

    'OtherCC'       'No'                   50.364

    'OtherCC'       'Yes'                  75.732

    'AMBalance'     'Up to 558.87'         89.908

    'AMBalance'     '558.88 to 1597.43'    62.353

    'AMBalance'     '1597.44 and up'       49.016 
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Step 5. Score the data.

The score function computes the scores for the training data. An optional data input
can also be passed to score, for example, validation data. The points per predictor for
each customer are provided as an optional output.

[Scores,Points] = score(sc);

disp(Scores(1:10))

disp(Points(1:10,:))

528.2044

  554.8861

  505.2406

  564.0717

  554.8861

  586.1904

  441.8755

  515.8125

  524.4553

  508.3169

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance

    _______    _________    _________    __________    _______    _______    _________

    80.796     62.028       58.777        95.69        92.829     75.732     62.353   

    99.166     73.445       86.976        95.69        61.524     75.732     62.353   

    80.796     62.028       86.976       69.896        92.829     50.364     62.353   

    80.796     73.445       86.976        95.69        61.524     75.732     89.908   

    99.166     73.445       86.976        95.69        61.524     75.732     62.353   

    99.166     73.445       86.976        95.69        92.829     75.732     62.353   

    53.239     73.445       58.777       56.805        61.524     75.732     62.353   

    80.796     91.446       86.976        95.69        61.524     50.364     49.016   

    80.796     62.028       58.777        95.69        61.524     75.732     89.908   

    80.796     73.445       58.777        95.69        61.524     75.732     62.353   

Step 6. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.
pd = probdefault(sc);

Define the probability of being “Good” and plot the predicted odds versus the formatted
scores. Visually analyze that the target points and target odds match and that the points-
to-double-the-odds (PDO) relationship holds.
ProbGood = 1-pd;

PredictedOdds = ProbGood./pd;

figure

scatter(Scores,PredictedOdds)

title('Predicted Odds vs. Score')

xlabel('Score')

ylabel('Predicted Odds')

hold on

xLimits = xlim;
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yLimits = ylim;

% Target points and odds

plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')

plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO

plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')

plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO

plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')

plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off

Step 7. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov
statistic

The creditscorecard class supports three validation methods, the Cumulative Accuracy
Profile (CAP), the Receiver Operating Characteristic (ROC), and the Kolmogorov-
Smirnov (K-S) statistic. For more information on CAP, ROC, and KS, see Cumulative
Accuracy Profile (CAP) on page 18-2055, Receiver Operating Characteristic (ROC) on
page 18-2055, and Kolmogorov-Smirnov statistic (KS) on page 18-2056.
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
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disp(Stats)

disp(T(1:15,:))

          Measure             Value 

    ______________________    _______

    'Accuracy Ratio'          0.32225

    'Area under ROC curve'    0.66113

    'KS statistic'            0.22324

    'KS score'                 499.18

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  

    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

     369.4     0.7535         0          1            802          397                   0      0.0012453     0.00083333

    377.86    0.73107         1          1            802          396           0.0025189      0.0012453      0.0016667

    379.78     0.7258         2          1            802          395           0.0050378      0.0012453         0.0025

    391.81    0.69139         3          1            802          394           0.0075567      0.0012453      0.0033333

    394.77    0.68259         3          2            801          394           0.0075567      0.0024907      0.0041667

    395.78    0.67954         4          2            801          393            0.010076      0.0024907          0.005

    396.95    0.67598         5          2            801          392            0.012594      0.0024907      0.0058333

    398.37    0.67167         6          2            801          391            0.015113      0.0024907      0.0066667

    401.26    0.66276         7          2            801          390            0.017632      0.0024907         0.0075

    403.23    0.65664         8          2            801          389            0.020151      0.0024907      0.0083333

    405.09    0.65081         8          3            800          389            0.020151       0.003736      0.0091667

    405.15    0.65062        11          5            798          386            0.027708      0.0062267       0.013333

    405.37    0.64991        11          6            797          386            0.027708       0.007472       0.014167

    406.18    0.64735        12          6            797          385            0.030227       0.007472          0.015

    407.14    0.64433        13          6            797          384            0.032746       0.007472       0.015833
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | score | setmodel | validatemodel

Related Examples
• “Troubleshooting Credit Scorecard Results” on page 8-65
• “Credit Rating by Bagging Decision Trees”

More About
• “About Credit Scorecards” on page 8-57
• “Credit Scorecard Modeling Workflow” on page 8-62
• Monotone Adjacent Pooling Algorithm (MAPA) on page 18-2036
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Credit Default Swap (CDS)

In this section...

“Bootstrapping a Default Probability Curve” on page 8-99
“Finding Breakeven Spread for New CDS Contract” on page 8-102
“Valuing an Existing CDS Contract” on page 8-105
“Converting from Running to Upfront” on page 8-106
“Bootstrapping from Inverted Market Curves” on page 8-109

A credit default swap (CDS) is a contract that protects against losses resulting from
credit defaults. The transaction involves two parties, the protection buyer and the
protection seller, and also a reference entity, usually a bond. The protection buyer pays
a stream of premiums to the protection seller, who in exchange offers to compensate the
buyer for the loss in the bond’s value if a credit event occurs. The stream of premiums
is called the premium leg, and the compensation when a credit event occurs is called
the protection leg. Credit events usually include situations in which the bond issuer
goes bankrupt, misses coupon payments, or enters a restructuring process. Financial
Instruments Toolbox™ software supports:

CDS Functions

Function Purpose

cdsbootstrap Compute default probability parameters from CDS market
quotes.

cdsspread Compute breakeven spreads for the CDS contracts.
cdsprice Compute the price for the CDS contracts.

Bootstrapping a Default Probability Curve

In a typical workflow, pricing a new CDS contract involves first estimating a default
probability term structure using cdsbootstrap. This requires market quotes of existing
CDS contracts, or quotes of CDS indices (e.g., iTraxx). The estimated default probability
curve is then used as input to cdsspread or cdsprice. If the default probability
information is already known, cdsbootstrap can be bypassed and cdsspread or
cdsprice can be called directly.
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The market information in this example is provided in the form of running spreads of
CDS contracts maturing on the CDS standard payment dates closest to 1, 2, 3, 5, and 7
years from the valuation date.

Settle = '17-Jul-2009'; % valuation date for the CDS

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

The bootstrapped default probability curve is plotted against time, in years, from the
valuation date.

ProbTimes = yearfrac(Settle,ProbData(:,1));

figure

plot([0; ProbTimes],[0; ProbData(:,2)])

grid on

axis([0 ProbTimes(end,1) 0 ProbData(end,2)])

xlabel('Time (years)')

ylabel('Cumulative Default Probability')

title('Bootstrapped Default Probability Curve')
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The associated hazard rates are returned as an optional output. The convention is that
the first hazard rate applies from the settlement date to the first market date, the second
hazard rate from the first to the second market date, etc., and the last hazard rate
applies from the second-to-last market date onwards. The following plot displays the
bootstrapped hazard rates, plotted against time, in years, from the valuation date:

HazTimes = yearfrac(Settle,HazData(:,1));

figure

stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...

[HazData(:,2);HazData(end,2)])

grid on

axis([0 HazTimes(end,1)+1 0.9*HazData(1,2) 1.1*HazData(end,2)])

xlabel('Time (years)')

ylabel('Hazard Rate')

title('Bootstrapped Hazard Rates')
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Finding Breakeven Spread for New CDS Contract

The breakeven, or running, spread is the premium a protection buyer must pay, with no
upfront payments involved, to receive protection for credit events associated to a given
reference entity. Spreads are expressed in basis points (bp). There is a notional amount
associated to the CDS contract to determine the monetary amounts of the premium
payments.

New quotes for CDS contracts can be obtained with cdsspread. After obtaining a
default probability curve using cdsbootstrap, you get quotes that are consistent with
current market conditions.

In this example, instead of standard CDS payment dates, define new maturity dates.
Using the period from 3 and 5 years (CDS standard dates), maturities are defined within
this range spaced at quarterly intervals (measuring time from the valuation date):
Settle = '17-Jul-2009';  % valuation date for the CDS

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});
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MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity1 = datestr(daysadd('17-Jul-09',360*(3.25:0.25:5),1));

Spread1 = cdsspread(ZeroData,ProbData,Settle,Maturity1);

figure

scatter(yearfrac(Settle,Maturity1),Spread1,'*')

hold on

scatter(yearfrac(Settle,MarketData(3:4,1)),MarketData(3:4,2))

hold off

grid on

xlabel('Time (years)')

ylabel('Spread (bp)')

title('CDS Spreads')

legend('New Quotes','Market','location','SouthEast')

This plot displays the resulting spreads:
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To evaluate the effect of the recovery rate parameter, instead of 40% (default value), use
a recovery rate of 35%:

Spread1Rec35 = cdsspread(ZeroData,ProbData,Settle,Maturity1,...

'RecoveryRate',0.35);

figure

plot(yearfrac(Settle,Maturity1),Spread1,...

yearfrac(Settle,Maturity1),Spread1Rec35,'--')

grid on

xlabel('Time (years)')

ylabel('Spread (bp)')

title('CDS Spreads with Different Recovery Rates')

legend('40%','35%','location','SouthEast')

The resulting plot shows that smaller recovery rates produce higher premia, as expected,
since in the event of default, the protection payments are higher:
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Valuing an Existing CDS Contract

The current value, or mark-to-market, of an existing CDS contract is the amount of
money the contract holder would receive (if positive) or pay (if negative) to unwind this
contract. The upfront of the contract is the current value expressed as a fraction of the
notional amount of the contract, and it is commonly used to quote market values.

The value of existing CDS contracts is obtained with cdsprice. By default, cdsprice
treats contracts as long positions. Whether a contract position is long or short is
determined from a protection standpoint, that is, long means that protection was bought,
and short means protection was sold. In the following example, an existing CDS contract
pays a premium that is lower than current market conditions. The price is positive, as
expected, since it would be more costly to buy the same type of protection today.
Settle = '17-Jul-2009';   % valuation date for the CDS

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity2 = '20-Sep-2012';

Spread2 = 196;

 

[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice(ZeroData,...

ProbData,Settle,Maturity2,Spread2);

 

fprintf('Dirty Price: %8.2f\n',Price);

fprintf('Accrued Premium: %8.2f\n',AccPrem);

fprintf('Clean Price: %8.2f\n',Price-AccPrem);

fprintf('\nPayment Schedule:\n\n');

fprintf('Date \t\t Time Frac \t Amount\n');

for k = 1:length(PaymentDates)

   fprintf('%s \t %5.4f \t %8.2f\n',datestr(PaymentDates(k)),...

      PaymentTimes(k),PaymentCF(k));

end

This resulting payment schedule is:

Dirty Price: 41628.50

Accrued Premium: 15244.44

Clean Price: 26384.05
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Payment Schedule:

Date    Time Frac   Amount

20-Sep-2009   0.1806   35388.89

20-Dec-2009   0.2528   49544.44

20-Mar-2010   0.2500   49000.00

20-Jun-2010   0.2556   50088.89

20-Sep-2010   0.2556   50088.89

20-Dec-2010   0.2528   49544.44

20-Mar-2011   0.2500   49000.00

20-Jun-2011   0.2556   50088.89

20-Sep-2011   0.2556   50088.89

20-Dec-2011   0.2528   49544.44

20-Mar-2012   0.2528   49544.44

20-Jun-2012   0.2556   50088.89

20-Sep-2012   0.2556   50088.89

Additionally, you can use cdsprice to value a portfolio of CDS contracts. In the
following example, a simple hedged position with two vanilla CDS contracts, one long,
one short, with slightly different spreads is priced in a single call and the value of the
portfolio is the sum of the returned prices:

[Price2,AccPrem2] = cdsprice(ZeroData,ProbData,Settle,...

repmat(datenum(Maturity2),2,1),[Spread2;Spread2+3],...

'Notional',[1e7; -1e7]);

fprintf('Contract \t Dirty Price \t Acc Premium \t  Clean Price\n');

fprintf('    Long \t $ %9.2f \t $ %9.2f \t $ %9.2f \t\n',...

   Price2(1), AccPrem2(1), Price2(1) - AccPrem2(1));

fprintf('   Short \t $ %8.2f \t $ %8.2f \t $ %8.2f \t\n',...

   Price2(2), AccPrem2(2), Price2(2) - AccPrem2(2));

fprintf('Mark-to-market of hedged position: $ %8.2f\n',sum(Price2));

This resulting value of the portfolio is:

Contract   Dirty Price   Acc Premium    Clean Price

    Long   $  41628.50   $  15244.44   $  26384.05  

   Short   $ -32708.11   $ -15477.78   $ -17230.33  

Mark-to-market of hedged position: $  8920.39

Converting from Running to Upfront

A CDS market quote is given in terms of a standard spread (usually 100 bp or 500 bp)
and an upfront payment, or in terms of an equivalent running or breakeven spread, with
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no upfront payment. The functions cdsbootstrap, cdsspread, and cdsprice perform
upfront to running or running to upfront conversions.

For example, to convert the market quotes to upfront quotes for a standard spread of 100
bp:
Settle = '17-Jul-2009';  % valuation date for the CDS

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity3 = MarketData(:,1);

Spread3Run = MarketData(:,2);

Spread3Std = 100*ones(size(Maturity3));

Price3 = cdsprice(ZeroData,ProbData,Settle,Maturity3,Spread3Std);

Upfront3 = Price3/10000000; % Standard notional of 10MM

display(Upfront3);

This resulting value is:

Upfront3 =

    0.0047

    0.0158

    0.0327

    0.0737

    0.1182

The conversion can be reversed to convert upfront quotes to market quotes:
ProbData3Upf = cdsbootstrap(ZeroData,[Maturity3 Upfront3 Spread3Std],Settle);

Spread3RunFromUpf = cdsspread(ZeroData,ProbData3Upf,Settle,Maturity3);

display([Spread3Run Spread3RunFromUpf]);

Comparing the results of this conversion to the original market spread demonstrates the
reversal:

ans =

  140.0000  140.0000

  175.0000  175.0000

  210.0000  210.0000
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  265.0000  265.0000

  310.0000  310.0000

Under the flat-hazard rate (FHR) quoting convention, a single market quote is used to
calibrate a probability curve. This convention yields a single point in the probability
curve, and a single hazard rate value. For example, assume a 4-year (standard dates)
CDS contract with a current FHR-based running spread of 550 bp needs conversion to a
CDS contract with a standard spread of 500 bp:
Maturity4 = datenum('20-Sep-13');

Spread4Run = 550;

ProbData4Run = cdsbootstrap(ZeroData,[Maturity4 Spread4Run],Settle);

Spread4Std = 500;

Price4 = cdsprice(ZeroData,ProbData4Run,Settle,Maturity4,Spread4Std);

Upfront4 = Price4/10000000;

fprintf('A running spread of %5.2f is equivalent to\n',Spread4Run);

fprintf('   a standard spread of %5.2f with an upfront of %8.7f\n',...

   Spread4Std,Upfront4);

A running spread of 550.00 is equivalent to

   a standard spread of 500.00 with an upfront of 0.0167576

To reverse the conversion:
ProbData4Upf = cdsbootstrap(ZeroData,[Maturity4 Upfront4 Spread4Std],Settle);

Spread4RunFromUpf = cdsspread(ZeroData,ProbData4Upf,Settle,Maturity4);

fprintf('A standard spread of %5.2f with an upfront of %8.7f\n',...

   Spread4Std,Upfront4);

fprintf('    is equivalent to a running spread of %5.2f\n',Spread4RunFromUpf);

A standard spread of 500.00 with an upfront of 0.0167576

    is equivalent to a running spread of 550.00

As discussed in Beumee et. al., 2009 (see “Credit Derivatives” on page A-10), the FHR
approach is a quoting convention only, and leads to quotes inconsistent with market
data. For example, calculating the upfront for the 3-year (standard dates) CDS contract
with a standard spread of 100 bp using the FHR approach and comparing the results to
the upfront amounts previously calculated, demonstrates that the FHR-based approach
yields a different upfront amount:
Maturity5 = MarketData(3,1);

Spread5Run = MarketData(3,2);

ProbData5Run = cdsbootstrap(ZeroData,[Maturity5 Spread5Run],Settle);

Spread5Std = 100;

Price5 = cdsprice(ZeroData,ProbData5Run,Settle,Maturity5,Spread5Std);

Upfront5 = Price5/10000000;

fprintf('Relative error of FHR-based upfront amount: %3.1f%%\n',...

   ((Upfront5-Upfront3(3))/Upfront3(3))*100);

Relative error of FHR-based upfront amount: -0.8%
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Bootstrapping from Inverted Market Curves

The following two examples demonstrate the behavior of bootstrapping with inverted
CDS market curves, that is, market quotes with higher spreads for short-term CDS
contracts. The first example is handled normally by cdsbootstrap:
Settle = '17-Jul-2009';  % valuation date for the CDS

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

MarketSpreadsInv1 = [750 650 550 500 450]';

MarketDataInv1 = [MarketDates MarketSpreadsInv1];

[ProbDataInv1,HazDataInv1] = cdsbootstrap(ZeroData,MarketDataInv1,Settle)

ProbDataInv1 =

   1.0e+05 *

    7.3440    0.0000

    7.3477    0.0000

    7.3513    0.0000

    7.3586    0.0000

    7.3659    0.0000

HazDataInv1 =

   1.0e+05 *

    7.3440    0.0000

    7.3477    0.0000

    7.3513    0.0000

    7.3586    0.0000

    7.3659    0.0000

In the second example, cdsbootstrap generates a warning:
MarketSpreadsInv2 = [800 550 400 250 100]';

MarketDataInv2 = [MarketDates MarketSpreadsInv2];

[ProbDataInv2,HazDataInv2] = cdsbootstrap(ZeroData,MarketDataInv2,Settle);

Warning: Found non-monotone default probabilities (negative hazard rates)
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A non-monotone bootstrapped probability curve implies negative default probabilities
and negative hazard rates for certain time intervals. Extreme market conditions can lead
to these types of situations. In these cases, you must assess the reliability and usefulness
of the bootstrapped results.

The following plot illustrates these bootstrapped probability curves. The curves are
concave, meaning that the marginal default probability decreases with time. This result
is consistent with the market information that indicates a higher default risk in the short
term. The second bootstrapped curve is non-monotone, as indicated by the warning.

ProbTimes = yearfrac(Settle, MarketDates);

figure

plot([0; ProbTimes],[0; ProbDataInv1(:,2)])

hold on

plot([0; ProbTimes],[0; ProbDataInv2(:,2)],'--')

hold off

grid on

axis([0 ProbTimes(end,1) 0 ProbDataInv1(end,2)])

xlabel('Time (years)')

ylabel('Cumulative Default Probability')

title('Probability Curves for Inverted Spread Curves')

legend('1st instance','2nd instance','location','SouthEast')

The resulting plot
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Also in line with the previous plot, the hazard rates for these bootstrapped curves are
decreasing because the short-term risk is higher. Some bootstrapped parameters in the
second curve are negative, as indicated by the warning.

HazTimes = yearfrac(Settle, MarketDates);

figure

stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...

   [HazDataInv1(:,2);HazDataInv1(end,2)])

hold on

stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...

   [HazDataInv2(:,2);HazDataInv2(end,2)],'--')

hold off

grid on

xlabel('Time (years)')

ylabel('Hazard Rate')

title('Hazard Rates for Inverted Spread Curves')

legend('1st instance','2nd instance','location','NorthEast')

The resulting plot shows the hazard rates for both bootstrapped curves:
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For further discussion on inverted curves, and their relationship to arbitrage, see O'Kane
and Turnbull, 2003 (“Credit Derivatives” on page A-10).

See Also
cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

Related Examples
• “First-to-Default Swaps”
• “Credit Default Swap Option”
• “Counterparty Credit Risk and CVA”

External Websites
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)
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Regression with Missing Data

• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
• “Multivariate Normal Regression Functions” on page 9-13
• “Multivariate Normal Regression Types” on page 9-17
• “Troubleshooting Multivariate Normal Regression” on page 9-24
• “Portfolios with Missing Data” on page 9-28
• “Valuation with Missing Data” on page 9-34
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Multivariate Normal Regression

In this section...

“Introduction” on page 9-2
“Multivariate Normal Linear Regression” on page 9-2
“Maximum Likelihood Estimation” on page 9-3
“Special Case of Multiple Linear Regression Model” on page 9-4
“Least-Squares Regression” on page 9-5
“Mean and Covariance Estimation” on page 9-5
“Convergence” on page 9-5
“Fisher Information” on page 9-6
“Statistical Tests” on page 9-7

Introduction

This section focuses on using likelihood-based methods for multivariate normal
regression. The parameters of the regression model are estimated via maximum
likelihood estimation. For multiple series, this requires iteration until convergence. The
complication due to the possibility of missing data is incorporated into the analysis with
a variant of the EM algorithm known as the ECM algorithm.

The underlying theory of maximum likelihood estimation and the definition and
significance of the Fisher information matrix can be found in Caines [1] and Cramér [2].
The underlying theory of the ECM algorithm can be found in Meng and Rubin [8] and
Sexton and Swensen [9].

In addition, these two examples of maximum likelihood estimation are presented:

• “Portfolios with Missing Data” on page 9-28
• “Estimation of Some Technology Stock Betas” on page 9-36

Multivariate Normal Linear Regression

Suppose that you have a multivariate normal linear regression model in the form
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where the model has m observations of n-dimensional random variables Z1, ..., Zm with a
linear regression model that has a p-dimensional model parameter vector b. In addition,
the model has a sequence of m design matrices H1, ..., Hm, where each design matrix is a
known n-by-p matrix.

Given a parameter vector b and a collection of design matrices, the collection of m
independent variables Zk is assumed to have independent identically distributed
multivariate normal residual errors Zk – Hk b with n-vector mean 0 and n-by-n
covariance matrix C for each k = 1, ..., m.

A concise way to write this model is

Z N H b Ck k∼ ,( )

for k = 1, ..., m.

The goal of multivariate normal regression is to obtain maximum likelihood estimates
for b and C given a collection of m observations z1, ..., zm of the random variables Z1, ...,
Zm. The estimated parameters are the p distinct elements of b and the n (n + 1)/2 distinct
elements of C (the lower-triangular elements of C).

Note: Quasi-maximum likelihood estimation works with the same models but with a
relaxation of the assumption of normally distributed residuals. In this case, however, the
parameter estimates are asymptotically optimal.

Maximum Likelihood Estimation

To estimate the parameters of the multivariate normal linear regression model using
maximum likelihood estimation, it is necessary to maximize the log-likelihood function
over the estimation parameters given observations z1, ... , zm.

Given the multivariate normal model to characterize residual errors in the regression
model, the log-likelihood function is
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Although the cross-sectional residuals must be independent, you can use this log-
likelihood function for quasi-maximum likelihood estimation. In this case, the estimates
for the parameters b and C provide estimates to characterize the first and second
moments of the residuals. See Caines [1] for details.

Except for a special case (see “Special Case of Multiple Linear Regression Model” on page
9-4), if both the model parameters in b and the covariance parameters in C are to
be estimated, the estimation problem is intractably nonlinear and a solution must use
iterative methods. Denote estimates for the parameters b and C for iteration t = 0, 1, ...
with the superscript notation b(t) and C(t).

Given initial estimates b(0) and C(0) for the parameters, the maximum likelihood
estimates for b and C  are obtained using a two-stage iterative process with

b H C H H C z
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for t = 0, 1, ... .

Special Case of Multiple Linear Regression Model

The special case mentioned in “Maximum Likelihood Estimation” on page 9-3 occurs
if n = 1 so that the sequence of observations is a sequence of scalar observations. This
model is known as a multiple linear regression model. In this case, the covariance matrix
C is a 1-by-1 matrix that drops out of the maximum likelihood iterates so that a single-
step estimate for b and C can be obtained with converged estimates b(1) and C(1).
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Least-Squares Regression

Another simplification of the general model is called least-squares regression. If b(0) =
0 and C(0) = I, then b(1) and C(1) from the two-stage iterative process are least-squares
estimates for b and C, where

b H H H z
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Mean and Covariance Estimation

A final simplification of the general model is to estimate the mean and covariance of a
sequence of n-dimensional observations z1, ..., zm. In this case, the number of series is
equal to the number of model parameters with n = p and the design matrices are identity
matrices with Hk = I for i = 1, ..., m so that b is an estimate for the mean and C is an
estimate of the covariance of the collection of observations z1, ..., zm.

Convergence

If the iterative process continues until the log-likelihood function increases by no more
than a specified amount, the resultant estimates are said to be maximum likelihood
estimates bML and CML.

If n = 1 (which implies a single data series), convergence occurs after only one iterative
step, which, in turn, implies that the least-squares and maximum likelihood estimates
are identical. If, however, n > 1, the least-squares and maximum likelihood estimates are
usually distinct.

In Financial Toolbox software, both the changes in the log-likelihood function and the
norm of the change in parameter estimates are monitored. Whenever both changes fall
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below specified tolerances (which should be something between machine precision and its
square root), the toolbox functions terminate under an assumption that convergence has
been achieved.

Fisher Information

Since maximum likelihood estimates are formed from samples of random variables,
their estimators are random variables; an estimate derived from such samples has an
uncertainty associated with it. To characterize these uncertainties, which are called
standard errors, two quantities are derived from the total log-likelihood function.

The Hessian of the total log-likelihood function is

— ( )2
1L z z

m
, , ;… q

and the Fisher information matrix is

I E L z zmq q( ) = - — ( )È
Î

˘
˚

2
1, , ; ,…

where the partial derivatives of the —
2  operator are taken with respect to the combined

parameter vector Θ that contains the distinct components of b and C with a total of q = p
+ n (n + 1)/2 parameters.

Since maximum likelihood estimation is concerned with large-sample estimates, the
central limit theorem applies to the estimates and the Fisher information matrix plays a
key role in the sampling distribution of the parameter estimates. Specifically, maximum
likelihood parameter estimates are asymptotically normally distributed such that

q q qt t
N I t

( ) - ( )
-( ) ( )( ) Æ •∼ 0

1
, , , as 

where Θ is the combined parameter vector and Θ(t) is the estimate for the combined
parameter vector at iteration t = 0, 1, ... .

The Fisher information matrix provides a lower bound, called a Cramér-Rao lower bound,
for the standard errors of estimates of the model parameters.
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Statistical Tests

Given an estimate for the combined parameter vector Θ, the squared standard errors are
the diagonal elements of the inverse of the Fisher information matrix

s I
i i

ii

2 1ˆ ˆq q( ) = ( )( )-

for i = 1, ..., q.

Since the standard errors are estimates for the standard deviations of the parameter
estimates, you can construct confidence intervals so that, for example, a 95% interval for
each parameter estimate is approximately

ˆ . ˆq q
i i

s± ( )1 96

for i = 1, ..., q.

Error ellipses at a level-of-significance α ε [0, 1] for the parameter estimates satisfy the
inequality

q q q q q c a-( ) ( ) -( ) £ -
ˆ ˆ ˆ

,

T

qI 1
2

and follow a c
2  distribution with q degrees-of-freedom. Similar inequalities can be

formed for any subcollection of the parameters.

In general, given parameter estimates, the computed Fisher information matrix, and the
log-likelihood function, you can perform numerous statistical tests on the parameters, the
model, and the regression.

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
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• “Multivariate Normal Regression Types” on page 9-17
• “Valuation with Missing Data” on page 9-34
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Maximum Likelihood Estimation with Missing Data

In this section...

“Introduction” on page 9-9
“ECM Algorithm” on page 9-9
“Standard Errors” on page 9-10
“Data Augmentation” on page 9-10

Introduction

Suppose that a portion of the sample data is missing, where missing values are
represented as NaNs. If the missing values are missing-at-random and ignorable, where
Little and Rubin [7] have precise definitions for these terms, it is possible to use a version
of the Expectation Maximization, or EM, algorithm of Dempster, Laird, and Rubin [3]
to estimate the parameters of the multivariate normal regression model. The algorithm
used in Financial Toolbox software is the ECM (Expectation Conditional Maximization)
algorithm of Meng and Rubin [8] with enhancements by Sexton and Swensen [9].

Each sample zk for k = 1, ..., m, is either complete with no missing values, empty with no
observed values, or incomplete with both observed and missing values. Empty samples
are ignored since they contribute no information.

To understand the missing-at-random and ignorabable conditions, consider an example
of stock price data before an IPO. For a counterexample, censored data, in which all
values greater than some cutoff are replaced with NaNs, does not satisfy these conditions.

In sample k, let xk represent the missing values in zk  and yk represent the observed
values. Define a permutation matrix Pk so that

z P
x

yk k
k

k

=
È

Î
Í

˘

˚
˙

for k = 1, ..., m.

ECM Algorithm

The ECM algorithm has two steps – an E, or expectation step, and a CM, or conditional
maximization, step. As with maximum likelihood estimation, the parameter estimates
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evolve according to an iterative process, where estimates for the parameters after t
iterations are denoted as b(t) and C(t).

The E step forms conditional expectations for the elements of missing data with

E X Y y b C

cov X Y y b C

k k k
t t

k k k
t t

=È
Î

˘
˚

=È
Î

˘
˚

( ) ( )

( ) ( )

; ,

; ,

for each sample k mŒ{ }1, ,…  that has missing data.

The CM step proceeds in the same manner as the maximum likelihood procedure without
missing data. The main difference is that missing data moments are imputed from the
conditional expectations obtained in the E step.

The E and CM steps are repeated until the log-likelihood function ceases to increase. One
of the important properties of the ECM algorithm is that it is always guaranteed to find
a maximum of the log-likelihood function and, under suitable conditions, this maximum
can be a global maximum.

Standard Errors

The negative of the expected Hessian of the log-likelihood function and the Fisher
information matrix are identical if no data is missing. However, if data is missing, the
Hessian, which is computed over available samples, accounts for the loss of information
due to missing data. So, the Fisher information matrix provides standard errors that are
a Cramér-Rao lower bound whereas the Hessian matrix provides standard errors that
may be greater if there is missing data.

Data Augmentation

The ECM functions do not “fill in” missing values as they estimate model parameters.
In some cases, you may want to fill in the missing values. Although you can fill in the
missing values in your data with conditional expectations, you would get optimistic and
unrealistic estimates because conditional estimates are not random realizations.

Several approaches are possible, including resampling methods and multiple imputation
(see Little and Rubin [7] and Shafer [10] for details). A somewhat informal sampling
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method for data augmentation is to form random samples for missing values based
on the conditional distribution for the missing values. Given parameter estimates for
X R

n
Ã  and ˆC , each observation has moments

E Z H bk k[ ] = ˆ

and

cov Z H CHk k k
T( ) = ˆ

for k = 1, ..., m, where you have dropped the parameter dependence on the left sides for
notational convenience.

For observations with missing values partitioned into missing values Xk and observed
values Yk = yk, you can form conditional estimates for any subcollection of random
variables within a given observation. Thus, given estimates E[ Zk ] and cov(Zk) based on
the parameter estimates, you can create conditional estimates

E X yk k
È
Î

˘
˚

and

cov X yk k( )

using standard multivariate normal distribution theory. Given these conditional
estimates, you can simulate random samples for the missing values from the conditional
distribution

X N E X y cov X yk k k k k∼ ÈÎ ˘̊ ( )( ), .

The samples from this distribution reflect the pattern of missing and nonmissing values
for observations k = 1, ..., m. You must sample from conditional distributions for each
observation to preserve the correlation structure with the nonmissing values at each
observation.

If you follow this procedure, the resultant filled-in values are random and generate mean
and covariance estimates that are asymptotically equivalent to the ECM-derived mean
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and covariance estimates. Note, however, that the filled-in values are random and reflect
likely samples from the distribution estimated over all the data and may not reflect
“true” values for a particular observation.

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Multivariate Normal Regression Types” on page 9-17
• “Valuation with Missing Data” on page 9-34
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Multivariate Normal Regression Functions

In this section...

“Multivariate Normal Regression Without Missing Data” on page 9-14
“Multivariate Normal Regression With Missing Data” on page 9-15
“Least-Squares Regression With Missing Data” on page 9-15
“Multivariate Normal Parameter Estimation With Missing Data” on page 9-15
“Support Functions” on page 9-16

Financial Toolbox software has a number of functions for multivariate normal regression
with or without missing data. The toolbox functions solve four classes of regression
problems with functions to estimate parameters, standard errors, log-likelihood
functions, and Fisher information matrices. The four classes of regression problems are:

• “Multivariate Normal Regression Without Missing Data” on page 9-14
• “Multivariate Normal Regression With Missing Data” on page 9-15
• “Least-Squares Regression With Missing Data” on page 9-15
• “Multivariate Normal Parameter Estimation With Missing Data” on page 9-15

Additional support functions are also provided, see “Support Functions” on page 9-16.

In all functions, the MATLAB representation for the number of observations (or samples)
is NumSamples = m, the number of data series is NumSeries = n, and the number
of model parameters is NumParams = p. The moment estimation functions have
NumSeries = NumParams.

The collection of observations (or samples) is stored in a MATLAB matrix Data such that

Data k,  :( ) = zk
T

for k = 1, ..., NumSamples, where Data is a NumSamples-by-NumSeries matrix.

For the multivariate normal regression or least-squares functions, an additional required
input is the collection of design matrices that is stored as either a MATLAB matrix or a
vector of cell arrays denoted as Design.

If Numseries = 1, Design can be a NumSamples-by-NumParams matrix. This is the
“standard” form for regression on a single data series.
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If Numseries = 1, Design can be either a cell array with a single cell or a cell array
with NumSamples cells. Each cell in the cell array contains a NumSeries-by-NumParams
matrix such that

Design k{ } = Hk

for k = 1, ..., NumSamples. If Design has a single cell, it is assumed to be the
same Design matrix for each sample such that

Design 1 1
{ } = = =H H

m
… .

Otherwise, Design must contain individual design matrices for each sample.

The main distinction among the four classes of regression problems depends upon how
missing values are handled and where missing values are represented as the MATLAB
value NaN. If a sample is to be ignored given any missing values in the sample, the
problem is said to be a problem “without missing data.” If a sample is to be ignored if and
only if every element of the sample is missing, the problem is said to be a problem “with
missing data” since the estimation must account for possible NaN values in the data.

In general, Data may or may not have missing values and Design should have no
missing values. In some cases, however, if an observation in Data is to be ignored, the
corresponding elements in Design are also ignored. Consult the function reference pages
for details.

Multivariate Normal Regression Without Missing Data

You can use the following functions for multivariate normal regression without missing
data.

mvnrmle Estimate model parameters, residuals, and the residual
covariance.

mvnrstd Estimate standard errors of model and covariance
parameters.

mvnrfish Estimate the Fisher information matrix.
mvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are supporting
functions that can be used for more detailed analyses.
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Multivariate Normal Regression With Missing Data

You can use the following functions for multivariate normal regression with missing
data.

ecmmvnrmle Estimate model parameters, residuals, and the residual
covariance.

ecmmvnrstd Estimate standard errors of model and covariance
parameters.

ecmmvnrfish Estimate the Fisher information matrix.
ecmmvnrobj Calculate the log-likelihood function.

The first two functions are the main estimation functions. The second two are supporting
functions used for more detailed analyses.

Least-Squares Regression With Missing Data

You can use the following functions for least-squares regression with missing data or for
covariance-weighted least-squares regression with a fixed covariance matrix.

ecmlsrmle Estimate model parameters, residuals, and the residual
covariance.

ecmlsrobj Calculate the least-squares objective function (pseudo
log-likelihood).

To compute standard errors and estimates for the Fisher information matrix, the
multivariate normal regression functions with missing data are used.

ecmmvnrstd Estimate standard errors of model and covariance
parameters.

ecmmvnrfish Estimate the Fisher information matrix.

Multivariate Normal Parameter Estimation With Missing Data

You can use the following functions to estimate the mean and covariance of multivariate
normal data.

ecmnmle Estimate the mean and covariance of the data.
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ecmnstd Estimate standard errors of the mean and covariance of
the data.

ecmnfish Estimate the Fisher information matrix.
ecmnhess Estimate the Fisher information matrix using the

Hessian.
ecmnobj Calculate the log-likelihood function.

These functions behave slightly differently from the more general regression functions
since they solve a specialized problem. Consult the function reference pages for details.

Support Functions

Two support functions are included.

convert2sur Convert a multivariate normal regression model into an
SUR model.

ecmninit Obtain initial estimates for the mean and covariance of a
Data matrix.

The convert2sur function converts a multivariate normal regression model into a
seemingly unrelated regression, or SUR, model. The second function ecmninit is a
specialized function to obtain initial ad hoc estimates for the mean and covariance of a
Data matrix with missing data. (If there are no missing values, the estimates are the
maximum likelihood estimates for the mean and covariance.)

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Multivariate Normal Regression Types” on page 9-17
• “Valuation with Missing Data” on page 9-34
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Multivariate Normal Regression Types

In this section...

“Regressions” on page 9-17
“Multivariate Normal Regression” on page 9-18
“Multivariate Normal Regression Without Missing Data” on page 9-18
“Multivariate Normal Regression With Missing Data” on page 9-18
“Least-Squares Regression” on page 9-18
“Least-Squares Regression Without Missing Data” on page 9-19
“Least-Squares Regression With Missing Data” on page 9-19
“Covariance-Weighted Least Squares” on page 9-19
“Covariance-Weighted Least Squares Without Missing Data” on page 9-20
“Covariance-Weighted Least Squares With Missing Data” on page 9-20
“Feasible Generalized Least Squares” on page 9-20
“Feasible Generalized Least Squares Without Missing Data” on page 9-20
“Feasible Generalized Least Squares With Missing Data” on page 9-21
“Seemingly Unrelated Regression” on page 9-21
“Seemingly Unrelated Regression Without Missing Data” on page 9-22
“Seemingly Unrelated Regression With Missing Data” on page 9-22
“Mean and Covariance Parameter Estimation” on page 9-23

Regressions

Each regression function has a specific operation. This section shows how to use these
functions to perform specific types of regressions. To illustrate use of the functions
for various regressions, “typical” usage is shown with optional arguments kept to
a minimum. For a typical regression, you estimate model parameters and residual
covariance matrices with the mle functions and estimate the standard errors of model
parameters with the std functions. The regressions “without missing data” essentially
ignore samples with any missing values, and the regressions “with missing data” ignore
samples with every value missing.
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Multivariate Normal Regression

Multivariate normal regression, or MVNR, is the “standard” implementation of the
regression functions in Financial Toolbox software.

Multivariate Normal Regression Without Missing Data

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Multivariate Normal Regression With Missing Data

Estimate Parameters

[Parameters, Covariance] = ecmmvnrmle(Data, Design);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Least-Squares Regression

Least-squares regression, or LSR, sometimes called ordinary least-squares or multiple
linear regression, is the simplest linear regression model. It also enjoys the property that,
independent of the underlying distribution, it is a best linear unbiased estimator (BLUE).

Given m = NumSamples observations, the typical least-squares regression model seeks to
minimize the objective function

Z H b Z H bk k

T

k k

k

m

-( ) -( )
=

Â
1

,

which, within the maximum likelihood framework of the multivariate normal regression
routine mvnrmle, is equivalent to a single-iteration estimation of just the parameters
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to obtain Parameters with the initial covariance matrix Covariance held fixed as the
identity matrix. In the case of missing data, however, the internal algorithm to handle
missing data requires a separate routine ecmlsrmle to do least-squares instead of
multivariate normal regression.

Least-Squares Regression Without Missing Data

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 1);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Least-Squares Regression With Missing Data

Estimate Parameters

[Parameters, Covariance] = ecmlsrmle(Data, Design);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares

Given m = NUMSAMPLES observations, the typical covariance-weighted least squares, or
CWLS, regression model seeks to minimize the objective function

Z H b C Z H bk k

T

k k

k

m

-( ) -( )
=

Â 0

1

with fixed covariance C0.

In most cases, C0 is a diagonal matrix. The inverse matrix W C=
-

0

1  has diagonal
elements that can be considered relative “weights” for each series. Thus, CWLS is a form
of weighted least squares with the weights applied across series.
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Covariance-Weighted Least Squares Without Missing Data

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], 

                                   Covar0);

Estimate Standard Errors

StdParameters = mvnrstd(Data, Design, Covariance);

Covariance-Weighted Least Squares With Missing Data

Estimate Parameters
[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [],

                                     Covar0);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Feasible Generalized Least Squares

An ad hoc form of least squares that has surprisingly good properties for misspecified or
nonnormal models is known as feasible generalized least squares, or FGLS. The basic
procedure is to do least-squares regression and then to do covariance-weighted least-
squares regression with the resultant residual covariance from the first regression.

Feasible Generalized Least Squares Without Missing Data

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, Design, 2, 0, 0); 

or (to illustrate the FGLS process explicitly)

[Parameters, Covar0] = mvnrmle(Data, Design, 1);

[Parameters, Covariance] = mvnrmle(Data, Design, 1, [], [], [], 

                                   Covar0);

Estimate Standard Errors
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StdParameters = mvnrstd(Data, Design, Covariance);

Feasible Generalized Least Squares With Missing Data

Estimate Parameters
[Parameters, Covar0] = ecmlsrmle(Data, Design);

[Parameters, Covariance] = ecmlsrmle(Data, Design, [], [], [], [], 

                                     Covar0);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, Design, Covariance);

Seemingly Unrelated Regression

Given a multivariate normal regression model in standard form with a Data matrix
and a Design array, it is possible to convert the problem into a seemingly unrelated
regression (SUR) problem by a simple transformation of the Design array. The main
idea of SUR is that instead of having a common parameter vector over all data series, you
have a separate parameter vector associated with each separate series or with distinct
groups of series that, nevertheless, share a common residual covariance. It is this ability
to aggregate and disaggregate series and to perform comparative tests on each design
that is the power of SUR.

To make the transformation, use the function convert2sur, which converts a standard-
form design array into an equivalent design array to do SUR with a specified mapping
of the series into NUMGROUPS groups. The regression functions are used in the usual
manner, but with the SUR design array instead of the original design array. Instead
of having NUMPARAMS elements, the SUR output parameter vector has NUMGROUPS of
stacked parameter estimates, where the first NUMPARAMS elements of Parameters
contain parameter estimates associated with the first group of series, the next
NUMPARAMS elements of Parameters contain parameter estimates associated with
the second group of series, and so on. If the model has only one series, for example,
NUMSERIES = 1, then the SUR design array is the same as the original design array since
SUR requires two or more series to generate distinct parameter estimates.

Given NUMPARAMS parameters and NUMGROUPS groups with a parameter vector
(Parameters) with NUMGROUPS * NUMPARAMS elements from any of the regression
routines, the following MATLAB code fragment shows how to print a table of SUR
parameter estimates with rows that correspond to each parameter and columns that
correspond to each group or series:
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fprintf(1,'Seemingly Unrelated Regression Parameter

   Estimates\n');

fprintf(1,'   %7s ',' ');

fprintf(1,'  Group(%3d) ',1:NumGroups);

fprintf(1,'\n');

for i = 1:NumParams

 fprintf(1,'   %7d ',i);

 ii = i;

     for j = 1:NumGroups

      fprintf(1,'%12g ',Param(ii));

      ii = ii + NumParams;

      end

      fprintf(1,'\n');

end

fprintf(1,'\n');

Seemingly Unrelated Regression Without Missing Data

Form an SUR Design

DesignSUR = convert2sur(Design, Group);

Estimate Parameters

[Parameters, Covariance] = mvnrmle(Data, DesignSUR); 

Estimate Standard Errors

StdParameters = mvnrstd(Data, DesignSUR, Covariance);

Seemingly Unrelated Regression With Missing Data

Form a SUR Design

DesignSUR = convert2sur(Design, Group);

Estimate Parameters

[Parameters, Covariance] = ecmmvnrmle(Data, DesignSUR);

Estimate Standard Errors

StdParameters = ecmmvnrstd(Data, DesignSUR, Covariance);
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Mean and Covariance Parameter Estimation

Without missing data, you can estimate the mean of your Data with the function mean
and the covariance with the function cov. Nevertheless, the function ecmnmle does this
for you if it detects an absence of missing values. Otherwise, it uses the ECM algorithm
to handle missing values.

Estimate Parameters

[Mean, Covariance] = ecmnmle(Data);

Estimate Standard Errors

StdMean = ecmnstd(Data, Mean, Covariance);

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
• “Valuation with Missing Data” on page 9-34
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Troubleshooting Multivariate Normal Regression

This section provides a few pointers to handle various technical and operational
difficulties that might occur.

Biased Estimates

If samples are ignored, the number of samples used in the estimation is less than
NumSamples. Clearly the actual number of samples used must be sufficient to obtain
estimates. In addition, although the model parameters Parameters (or mean estimates
Mean) are unbiased maximum likelihood estimates, the residual covariance estimate
Covariance is biased. To convert to an unbiased covariance estimate, multiply
Covariance by

Count Count -( )1 ,

where Count is the actual number of samples used in the estimation with
Count ≤ NumSamples. None of the regression functions perform this adjustment.

Requirements

The regression functions, particularly the estimation functions, have several
requirements. First, they must have consistent values for NumSamples, NumSeries, and
NumParams. As a rule, the multivariate normal regression functions require

Count NumSeries NumParams  NumSeries NumSeries¥ £ ¥ +( ){ }max , 1 2

and the least-squares regression functions require

Count NumSeries NumParams¥ £ ,

where Count is the actual number of samples used in the estimation with

Count NumSamples.£
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Second, they must have enough nonmissing values to converge. Third, they must have a
nondegenerate covariance matrix.

Although some necessary and sufficient conditions can be found in the references,
general conditions for existence and uniqueness of solutions in the missing-data case, do
not exist. Nonconvergence is usually due to an ill-conditioned covariance matrix estimate,
which is discussed in greater detail in “Nonconvergence” on page 9-25.

Slow Convergence

Since worst-case convergence of the ECM algorithm is linear, it is possible to execute
hundreds and even thousands of iterations before termination of the algorithm. If you
are estimating with the ECM algorithm regularly with regular updates, you can use
prior estimates as initial guesses for the next period's estimation. This approach often
speeds up things since the default initialization in the regression functions sets the
initial parameters b to zero and the initial covariance C to be the identity matrix.

Other ad hoc approaches are possible although most approaches are problem-dependent.
In particular, for mean and covariance estimation, the estimation function ecmnmle uses
a function ecmninit to obtain an initial estimate.

Nonrandom Residuals

Simultaneous estimates for parameters b and covariances C require C to be positive-
definite. So, the general multivariate normal regression routines require nondegenerate
residual errors. If you are faced with a model that has exact results, the least-squares
routine ecmlsrmle still works, although it provides a least-squares estimate with a
singular residual covariance matrix. The other regression functions fail.

Nonconvergence

Although the regression functions are robust and work for most “typical” cases, they can
fail to converge. The main failure mode is an ill-conditioned covariance matrix, where
failures are either soft or hard. A soft failure wanders endlessly toward a nearly singular
covariance matrix and can be spotted if the algorithm fails to converge after about 100
iterations. If MaxIterations is increased to 500 and display mode is initiated (with no
output arguments), a typical soft failure looks like this.
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This case, which is based on 20 observations of five assets with 30% of data missing,
shows that the log-likelihood goes linearly to infinity as the likelihood function goes to 0.
In this case, the function converges but the covariance matrix is effectively singular with
a smallest eigenvalue on the order of machine precision (eps).

For the function ecmnmle, a hard error looks like this:

> In ecmninit at 60

  In ecmnmle at 140

??? Error using ==> ecmnmle

Full covariance not positive-definite in iteration 218.

From a practical standpoint, if in doubt, test your residual covariance matrix from the
regression routines to ensure that it is positive-definite. This is important because a
soft error has a matrix that appears to be positive-definite but actually has a near-zero-
valued eigenvalue to within machine precision. To do this with a covariance estimate
Covariance, use cond(Covariance), where any value greater than 1/eps should be
considered suspect.
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If either type of failure occurs, however, note that the regression routine is indicating
that something is probably wrong with the data. (Even with no missing data, two time
series that are proportional to one another produce a singular covariance matrix.)

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
• “Valuation with Missing Data” on page 9-34
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Portfolios with Missing Data

This example illustrates how to use the missing data algorithms for portfolio
optimization and for valuation. This example works with five years of daily total return
data for 12 computer technology stocks, with 6 hardware and 6 software companies.
The example estimates the mean and covariance matrix for these stocks, forms efficient
frontiers with both a naïve approach and the ECM approach, and compares results.

You can run the example directly with ecmtechdemo.m.

1 Load the following data file:

load ecmtechdemo

This file contains these three quantities:

• Assets is a cell array of the tickers for the 12 stocks in the example.
• Data is a 1254-by-12 matrix of 1254 daily total returns for each of the 12 stocks.
• Dates is a 1254-by-1 column vector of the dates associated with the data.

The time period for the data extends from April 19, 2000 to April 18, 2005.

The sixth stock in Assets is Google (GOOG), which started trading on August 19,
2004. So, all returns before August 20, 2004 are missing and represented as NaNs.
Also, Amazon (AMZN) had a few days with missing values scattered throughout the
past five years.

2 A naïve approach to the estimation of the mean and covariance for these 12 assets
is to eliminate all days that have missing values for any of the 12 assets. Use the
function ecmninit with the nanskip option to do this.

[NaNMean, NaNCovar] = ecmninit(Data,'nanskip');

3 Contrast the result of this approach with using all available data and the function
ecmnmle to compute the mean and covariance. First, call ecmnmle with no output
arguments to establish that enough data is available to obtain meaningful estimates.

ecmnmle(Data);

The following figure shows that, even with almost 87% of the Google data being NaN
values, the algorithm converges after only four iterations.
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4 Estimate the mean and covariance as computed by ecmnmle.

[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean =

    0.0008

    0.0008

   -0.0005

    0.0002

    0.0011

    0.0038

   -0.0003

   -0.0000

   -0.0003

   -0.0000

   -0.0003

    0.0004
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ECMCovar =

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003

    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004

    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003

    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002

    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006

    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022

    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001

    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002

    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002

    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001

    0.0005    0.0006    0.0008    0.0005    0.0007    0.0003

    0.0006    0.0012    0.0008    0.0007    0.0011    0.0016

ECMCovar (continued)

    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006

    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012

    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008

    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007

    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011

    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016

    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006

    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004

    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007

    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005

    0.0005    0.0004    0.0007    0.0004    0.0013    0.0007

    0.0006    0.0004    0.0007    0.0005    0.0007    0.0020

5 Given estimates for the mean and covariance of asset returns derived from the naïve
and ECM approaches, estimate portfolios, and associated expected returns and risks
on the efficient frontier for both approaches.

[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);

[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);

6 Plot the results on the same graph to illustrate the differences.

figure(gcf)

plot(ECMRisk,ECMReturn,'-bo','MarkerFaceColor','b','MarkerSize', 3);

hold on

plot(NaNRisk,NaNReturn,'-ro','MarkerFaceColor','r','MarkerSize', 3);

title('\bfMean-Variance Efficient Frontiers under Various Assumptions');

legend('ECM','NaN','Location','SouthEast');

xlabel('\bfStd. Dev. of Returns');

ylabel('\bfMean of Returns');

hold off
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7 Clearly, the naïve approach is optimistic about the risk-return trade-offs for this
universe of 12 technology stocks. The proof, however, lies in the portfolio weights. To
view the weights, enter

Assets

ECMWts

NaNWts

which generates
>> Assets

ans = 

    'AAPL'    'AMZN'    'CSCO'    'DELL'    'EBAY'    'GOOG'

>> ECMWts
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ans =

    0.0358    0.0011   -0.0000    0.0000    0.0000    0.0989

    0.0654    0.0110    0.0000    0.0000    0.0000    0.1877

    0.0923    0.0194    0.0000    0.0000    0.0000    0.2784

    0.1165    0.0264    0.0000   -0.0000    0.0000    0.3712

    0.1407    0.0334   -0.0000         0    0.0000    0.4639

    0.1648    0.0403    0.0000         0   -0.0000    0.5566

    0.1755    0.0457    0.0000   -0.0000   -0.0000    0.6532

    0.1845    0.0509    0.0000    0.0000   -0.0000    0.7502

    0.1093    0.0174   -0.0000    0.0000         0    0.8733

         0         0   -0.0000    0.0000         0    1.0000

>> NaNWts

ans =

   -0.0000    0.0000   -0.0000    0.1185    0.0000    0.0522

    0.0576   -0.0000   -0.0000    0.1219    0.0000    0.0854

    0.1248   -0.0000   -0.0000    0.0952   -0.0000    0.1195

    0.1969   -0.0000   -0.0000    0.0529   -0.0000    0.1551

    0.2690   -0.0000   -0.0000    0.0105    0.0000    0.1906

    0.3414    0.0000   -0.0000   -0.0000   -0.0000    0.2265

    0.4235    0.0000   -0.0000   -0.0000   -0.0000    0.2639

    0.5245    0.0000   -0.0000   -0.0000   -0.0000    0.3034

    0.6269   -0.0000   -0.0000   -0.0000   -0.0000    0.3425

    1.0000   -0.0000   -0.0000    0.0000   -0.0000         0

Assets (continued)

    'HPQ'    'IBM'    'INTC'    'MSFT'    'ORCL'    'YHOO'

ECMWts (continued)

    0.0535    0.4676    0.0000    0.3431   -0.0000    0.0000

    0.0179    0.3899   -0.0000    0.3282    0.0000   -0.0000

         0    0.3025   -0.0000    0.3074    0.0000   -0.0000

    0.0000    0.2054   -0.0000    0.2806    0.0000    0.0000

    0.0000    0.1083   -0.0000    0.2538   -0.0000    0.0000

    0.0000    0.0111   -0.0000    0.2271   -0.0000    0.0000

    0.0000    0.0000   -0.0000    0.1255   -0.0000    0.0000

    0.0000         0   -0.0000    0.0143   -0.0000   -0.0000

    0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000

    0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000

NaNWts (continued)

    0.0824    0.1779    0.0000    0.5691   -0.0000    0.0000

    0.1274    0.0460    0.0000    0.5617   -0.0000   -0.0000

    0.1674   -0.0000    0.0000    0.4802    0.0129   -0.0000

    0.2056   -0.0000    0.0000    0.3621    0.0274   -0.0000

    0.2438   -0.0000    0.0000    0.2441    0.0419   -0.0000

    0.2782   -0.0000    0.0000    0.0988    0.0551   -0.0000

    0.2788   -0.0000    0.0000   -0.0000    0.0337   -0.0000

    0.1721   -0.0000    0.0000   -0.0000   -0.0000   -0.0000

    0.0306   -0.0000    0.0000    0.0000         0   -0.0000

         0    0.0000    0.0000   -0.0000   -0.0000   -0.0000

The naïve portfolios in NaNWts tend to favor Apple Computer (AAPL), which
happened to do well over the period from the Google IPO to the end of the estimation
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period, while the ECM portfolios in ECMWts tend to underweight Apple Computer
and to recommend increased weights in Google relative to the naïve weights.

8 To evaluate the impact of estimation error and, in particular, the effect of missing
data, use ecmnstd to calculate standard errors. Although it is possible to estimate
the standard errors for both the mean and covariance, the standard errors for the
mean estimates alone are usually the main quantities of interest.

StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher');

9 Calculate standard errors that use the data-generated Hessian matrix (which
accounts for the possible loss of information due to missing data) with the option
HESSIAN.

StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian');

The difference in the standard errors shows the increase in uncertainty of estimation
of asset expected returns due to missing data. This can be viewed by entering:

Assets

StdMeanH'

StdMeanF'

StdMeanH' - StdMeanF'

The two assets with missing data, AMZN and GOOG, are the only assets to have
differences due to missing information.

See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
• “Valuation with Missing Data” on page 9-34
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Valuation with Missing Data

In this section...

“Introduction” on page 9-34
“Capital Asset Pricing Model” on page 9-34
“Estimation of the CAPM” on page 9-35
“Estimation with Missing Data” on page 9-36
“Estimation of Some Technology Stock Betas” on page 9-36
“Grouped Estimation of Some Technology Stock Betas” on page 9-38
“References” on page 9-41

Introduction

The Capital Asset Pricing Model (CAPM) is a venerable but often maligned tool to
characterize comovements between asset and market prices. Although many issues arise
in CAPM implementation and interpretation, one problem that practitioners face is to
estimate the coefficients of the CAPM with incomplete stock price data.

This example shows how to use the missing data regression functions to estimate the
coefficients of the CAPM. You can run the example directly using CAPMdemo.m located at
matlabroot/toolbox/finance/findemos.

Capital Asset Pricing Model

Given a host of assumptions that can be found in the references (see Sharpe [11], Lintner
[6], Jarrow [5], and Sharpe, et. al. [12]), the CAPM concludes that asset returns have a
linear relationship with market returns. Specifically, given the return of all stocks that
constitute a market denoted as M and the return of a riskless asset denoted as C, the
CAPM states that the return of each asset Ri in the market has the expectational form

E R C E M Ci i i[ ] ( [ ] )= + + -a b

for assets i = 1, ..., n, where βi is a parameter that specifies the degree of comovement
between a given asset and the underlying market. In other words, the expected return of
each asset is equal to the return on a riskless asset plus a risk-adjusted expected market
return net of riskless asset returns. The collection of parameters β1, ..., βn is called asset
betas.
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The beta of an asset has the form

b
i

i
R M

M
=

( )
( )

cov ,

var
,

which is the ratio of the covariance between asset and market returns divided by the
variance of market returns. If an asset has a beta = 1, the asset is said to move with
the market; if an asset has a beta > 1, the asset is said to be more volatile than the
market. Conversely, if an asset has a beta < 1, the asset is said to be less volatile than
the market.

Estimation of the CAPM

The standard CAPM model is a linear model with additional parameters for each asset
to characterize residual errors. For each of n assets with m samples of observed asset
returns Rk,i, market returns Mk, and riskless asset returns Ck, the estimation model has
the form

R C M C Vk i i k i k k k i, ,( )= + + - +a b

for samples k = 1, ..., m and assets i = 1, ..., n, where αi is a parameter that specifies the
nonsystematic return of an asset, βi is the asset beta, and Vk,i is the residual error for
each asset with associated random variable Vi.

The collection of parameters α1, ..., αn are called asset alphas. The strict form of the
CAPM specifies that alphas must be zero and that deviations from zero are the result
of temporary disequilibria. In practice, however, assets may have nonzero alphas,
where much of active investment management is devoted to the search for assets with
exploitable nonzero alphas.

To allow for the possibility of nonzero alphas, the estimation model generally seeks to
estimate alphas and to perform tests to determine if the alphas are statistically equal to
zero.

The residual errors Vi are assumed to have moments

E V
i[ ] = 0

and
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E V V Si j ijÈÎ ˘̊ =

for assets i,j = 1, ..., n, where the parameters S11, ..., Snn are called residual or
nonsystematic variances/covariances.

The square root of the residual variance of each asset, for example, sqrt(Sii) for
i = 1, ..., n, is said to be the residual or nonsystematic risk of the asset since it
characterizes the residual variation in asset prices that are not explained by variations in
market prices.

Estimation with Missing Data

Although betas can be estimated for companies with sufficiently long histories of asset
returns, it is difficult to estimate betas for recent IPOs. However, if a collection of
sufficiently observable companies exists that can be expected to have some degree of
correlation with the new company's stock price movements, that is, companies within the
same industry as the new company, it is possible to obtain imputed estimates for new
company betas with the missing-data regression routines.

Estimation of Some Technology Stock Betas

To illustrate how to use the missing-data regression routines, estimate betas for 12
technology stocks, where a single stock (GOOG) is an IPO.

1 Load dates, total returns, and ticker symbols for the 12 stocks from the MAT-file
CAPMuniverse.

load CAPMuniverse

whos Assets Data Dates

  Name         Size                    Bytes  Class

  Assets       1x14                      952  cell array

  Data      1471x14                   164752  double array

  Dates     1471x1                     11768  double array

Grand total is 22135 elements using 177472 bytes

The assets in the model have the following symbols, where the last two series are
proxies for the market and the riskless asset:
Assets(1:7)

Assets(8:14)
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ans = 

  'AAPL'    'AMZN'    'CSCO'    'DELL'    'EBAY'    'GOOG'    'HPQ'

ans = 

  'IBM'    'INTC'    'MSFT'    'ORCL'    'YHOO'    'MARKET'    'CASH'

The data covers the period from January 1, 2000 to November 7, 2005 with
daily total returns. Two stocks in this universe have missing values that are
represented by NaNs. One of the two stocks had an IPO during this period and, so,
has significantly less data than the other stocks.

2 Compute separate regressions for each stock, where the stocks with missing data
have estimates that reflect their reduced observability.

[NumSamples, NumSeries] = size(Data);

NumAssets = NumSeries - 2;

StartDate = Dates(1);

EndDate = Dates(end);

fprintf(1,'Separate regressions with ');

fprintf(1,'daily total return data from %s to %s ...\n', ...

    datestr(StartDate,1),datestr(EndDate,1));

fprintf(1,'  %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');

fprintf(1,'  ---- -------------------- ');

fprintf(1,'-------------------- --------------------\n');

for i = 1:NumAssets

% Set up separate asset data and design matrices

  TestData = zeros(NumSamples,1);

  TestDesign = zeros(NumSamples,2);

  TestData(:) = Data(:,i) - Data(:,14);

  TestDesign(:,1) = 1.0;

  TestDesign(:,2) = Data(:,13) - Data(:,14);

% Estimate CAPM for each asset separately

  [Param, Covar] = ecmmvnrmle(TestData, TestDesign);

 % Estimate ideal standard errors for covariance parameters

  [StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, ... 

      Covar, 'fisher');

% Estimate sample standard errors for model parameters

  StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output

  Alpha = Param(1);

  Beta = Param(2);

  Sigma = sqrt(Covar);

  StdAlpha = StdParam(1);
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  StdBeta = StdParam(2);

  StdSigma = sqrt(StdCovar);

% Display estimates

  fprintf('  %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ...

     Assets{i},Alpha(1),abs(Alpha(1)/StdAlpha(1)), ...

     Beta(1),abs(Beta(1)/StdBeta(1)),Sigma(1),StdSigma(1));

end

This code fragment generates the following table.

Separate regressions with daily total return data from 03-Jan-2000 

to 07-Nov-2005 ...

      Alpha                Beta                 Sigma 

-------------------- -------------------- --------------------

AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)

AMZN    0.0006 (  0.5326)    1.3661 ( 13.6579)    0.0449 (  0.0086)

CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)

DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)

EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)

GOOG    0.0046 (  3.2107)    0.3742 (  1.7328)    0.0252 (  0.0071)

HPQ     0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)

IBM    -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)

INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)

MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)

ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)

YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

The Alpha column contains alpha estimates for each stock that are near zero as
expected. In addition, the t-statistics (which are enclosed in parentheses) generally
reject the hypothesis that the alphas are nonzero at the 99.5% level of significance.

The Beta column contains beta estimates for each stock that also have t-statistics
enclosed in parentheses. For all stocks but GOOG, the hypothesis that the betas
are nonzero is accepted at the 99.5% level of significance. It seems, however, that
GOOG does not have enough data to obtain a meaningful estimate for beta since its
t-statistic would imply rejection of the hypothesis of a nonzero beta.

The Sigma column contains residual standard deviations, that is, estimates for
nonsystematic risks. Instead of t-statistics, the associated standard errors for the
residual standard deviations are enclosed in parentheses.

Grouped Estimation of Some Technology Stock Betas

To estimate stock betas for all 12 stocks, set up a joint regression model that groups
all 12 stocks within a single design. (Since each stock has the same design matrix,
this model is actually an example of seemingly unrelated regression.) The routine to
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estimate model parameters is ecmmvnrmle, and the routine to estimate standard errors
is ecmmvnrstd.

Because GOOG has a significant number of missing values, a direct use of the missing
data routine ecmmvnrmle takes 482 iterations to converge. This can take a long time to
compute. For the sake of brevity, the parameter and covariance estimates after the first
480 iterations are contained in a MAT-file and are used as initial estimates to compute
stock betas.

load CAPMgroupparam

whos Param0 Covar0

Name         Size                    Bytes  Class

Covar0      12x12                     1152  double array

Param0      24x1                       192  double array

Grand total is 168 elements using 1344 bytes

Now estimate the parameters for the collection of 12 stocks.
fprintf(1,'\n');

fprintf(1,'Grouped regression with ');

fprintf(1,'daily total return data from %s to %s ...\n', ...

    datestr(StartDate,1),datestr(EndDate,1));

fprintf(1,'  %4s %-20s %-20s %-20s\n','','Alpha','Beta','Sigma');

fprintf(1,'  ---- -------------------- ');

fprintf(1,'-------------------- --------------------\n');

NumParams = 2 * NumAssets;

% Set up grouped asset data and design matrices

TestData = zeros(NumSamples, NumAssets);

TestDesign = cell(NumSamples, 1);

Design = zeros(NumAssets, NumParams);

for k = 1:NumSamples

    for i = 1:NumAssets

        TestData(k,i) = Data(k,i) - Data(k,14);

        Design(i,2*i - 1) = 1.0;

        Design(i,2*i) = Data(k,13) - Data(k,14);

    end

    TestDesign{k} = Design;

end

% Estimate CAPM for all assets together with initial parameter

% estimates

[Param, Covar] = ecmmvnrmle(TestData, TestDesign, [], [], [],... 

    Param0, Covar0);

% Estimate ideal standard errors for covariance parameters

[StdParam, StdCovar] = ecmmvnrstd(TestData, TestDesign, Covar,...

    'fisher');
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% Estimate sample standard errors for model parameters

StdParam = ecmmvnrstd(TestData, TestDesign, Covar, 'hessian');

% Set up results for output

Alpha = Param(1:2:end-1);

Beta = Param(2:2:end);

Sigma = sqrt(diag(Covar));

StdAlpha = StdParam(1:2:end-1);

StdBeta = StdParam(2:2:end);

StdSigma = sqrt(diag(StdCovar));

% Display estimates

for i = 1:NumAssets

  fprintf('  %4s %9.4f (%8.4f) %9.4f (%8.4f) %9.4f (%8.4f)\n', ... 

  Assets{i},Alpha(i),abs(Alpha(i)/StdAlpha(i)), ...

  Beta(i),abs(Beta(i)/StdBeta(i)),Sigma(i),StdSigma(i));

end

This code fragment generates the following table.
Grouped regression with daily total return data from 03-Jan-2000 

to 07-Nov-2005 ...

       Alpha                 Beta              Sigma 

---------------------- ----------------------------------------

AAPL    0.0012 (  1.3882)    1.2294 ( 17.1839)    0.0322 (  0.0062)

AMZN    0.0007 (  0.6086)    1.3673 ( 13.6427)    0.0450 (  0.0086)

CSCO   -0.0002 (  0.2878)    1.5653 ( 23.6085)    0.0298 (  0.0057)

DELL   -0.0000 (  0.0368)    1.2594 ( 22.2164)    0.0255 (  0.0049)

EBAY    0.0014 (  1.4326)    1.3441 ( 16.0732)    0.0376 (  0.0072)

GOOG    0.0041 (  2.8907)    0.6173 (  3.1100)    0.0337 (  0.0065)

HPQ     0.0001 (  0.1747)    1.3745 ( 24.2390)    0.0255 (  0.0049)

IBM    -0.0000 (  0.0312)    1.0807 ( 28.7576)    0.0169 (  0.0032)

INTC    0.0001 (  0.1608)    1.6002 ( 27.3684)    0.0263 (  0.0050)

MSFT   -0.0002 (  0.4871)    1.1765 ( 27.4554)    0.0193 (  0.0037)

ORCL    0.0000 (  0.0389)    1.5010 ( 21.1855)    0.0319 (  0.0061)

YHOO    0.0001 (  0.1282)    1.6543 ( 19.3838)    0.0384 (  0.0074)

Although the results for complete-data stocks are the same, the beta estimates for AMZN
and GOOG (the two stocks with missing values) are different from the estimates derived
for each stock separately. Since AMZN has few missing values, the differences in the
estimates are small. With GOOG, however, the differences are more pronounced.

The t-statistic for the beta estimate of GOOG is now significant at the 99.5% level of
significance. However, the t-statistics for beta estimates are based on standard errors
from the sample Hessian which, in contrast to the Fisher information matrix, accounts
for the increased uncertainty in an estimate due to missing values. If the t-statistic is
obtained from the more optimistic Fisher information matrix, the t-statistic for GOOG is
8.25. Thus, despite the increase in uncertainty due to missing data, GOOG nonetheless
has a statistically significant estimate for beta.
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Finally, note that the beta estimate for GOOG is 0.62 — a value that may require some
explanation. Although the market has been volatile over this period with sideways price
movements, GOOG has steadily appreciated in value. So, it is less tightly correlated with
the market, implying that it is less volatile than the market (beta < 1).
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See Also
convert2sur | ecmlsrmle | ecmlsrobj | ecmmvnrfish | ecmmvnrfish |
ecmmvnrmle | ecmmvnrobj | ecmmvnrstd | ecmmvnrstd | ecmnfish | ecmnhess
| ecmninit | ecmnmle | ecmnobj | ecmnstd | mvnrfish | mvnrmle | mvnrobj |
mvnrstd

Related Examples
• “Multivariate Normal Regression” on page 9-2
• “Maximum Likelihood Estimation with Missing Data” on page 9-9
• “Multivariate Normal Regression Types” on page 9-17
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• “Introduction” on page 10-2
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33



10 Solving Sample Problems

Introduction

This section shows how Financial Toolbox functions solve real-world problems. The
examples ship with the toolbox as MATLAB files. Try them by entering the commands
directly or by executing the code.

This section contains two major topics:

• A demonstration of how Financial Toolbox solves real-world financial problems,
specifically:

• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22

• An illustration of how the toolbox produces presentation-quality graphics by solving
these problems:

• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd
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Sensitivity of Bond Prices to Interest Rates

Macaulay and modified duration measure the sensitivity of a bond's price to changes in
the level of interest rates. Convexity measures the change in duration for small shifts
in the yield curve, and thus measures the second-order price sensitivity of a bond. Both
measures can gauge the vulnerability of a bond portfolio's value to changes in the level of
interest rates.

Alternatively, analysts can use duration and convexity to construct a bond portfolio
that is partly hedged against small shifts in the term structure. If you combine bonds
in a portfolio whose duration is zero, the portfolio is insulated, to some extent, against
interest rate changes. If the portfolio convexity is also zero, this insulation is even better.
However, since hedging costs money or reduces expected return, you must know how
much protection results from hedging duration alone compared to hedging both duration
and convexity.

This example demonstrates a way to analyze the relative importance of duration
and convexity for a bond portfolio using some of the SIA-compliant bond functions in
Financial Toolbox software. Using duration, it constructs a first-order approximation of
the change in portfolio price to a level shift in interest rates. Then, using convexity, it
calculates a second-order approximation. Finally, it compares the two approximations
with the true price change resulting from a change in the yield curve.

Step 1

Define three bonds using values for the settlement date, maturity date, face value, and
coupon rate. For simplicity, accept default values for the coupon payment periodicity
(semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/
actual). Also, synchronize the coupon payment structure to the maturity date (no odd
first or last coupon dates). Any inputs for which defaults are accepted are set to empty
matrices ([]) as placeholders where appropriate.

Settle     = '19-Aug-1999';

Maturity   = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];

Face       = [100; 100; 1000];

CouponRate = [0.07; 0.06; 0.045];

Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];
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Step 2

Use Financial Toolbox functions to calculate the price, modified duration in years, and
convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.
[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...

Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2, 0,...

[], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle, Maturity, 2, 0,...

[], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest;

Step 3

Choose a hypothetical amount by which to shift the yield curve (here, 0.2 percentage
point or 20 basis points).

dY = 0.002;

Weight the three bonds equally, and calculate the actual quantity of each bond in the
portfolio, which has a total value of $100,000.

PortfolioPrice   = 100000;

PortfolioWeights = ones(3,1)/3;

PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;

Step 4

Calculate the modified duration and convexity of the portfolio. The portfolio duration or
convextity is a weighted average of the durations or convexities of the individual bonds.
Calculate the first- and second-order approximations of the percent price change as a
function of the change in the level of interest rates.

PortfolioDuration  = PortfolioWeights' * Durations;

PortfolioConvexity = PortfolioWeights' * Convexities;

PercentApprox1 = -PortfolioDuration * dY * 100;

PercentApprox2 =  PercentApprox1 + ...

PortfolioConvexity*dY^2*100/2.0;
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Step 5

Estimate the new portfolio price using the two estimates for the percent price change.

PriceApprox1  =  PortfolioPrice + ... 

PercentApprox1 * PortfolioPrice/100; 

PriceApprox2  =  PortfolioPrice + ...

PercentApprox2 * PortfolioPrice/100;

Step 6

Calculate the true new portfolio price by shifting the yield curve.

[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...

CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...

Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);

Step 7

Compare the results. The analysis results are as follows:

• The original portfolio price was $100,000.
• The yield curve shifted up by 0.2 percentage point or 20 basis points.
• The portfolio duration and convexity are 10.3181 and 157.6346, respectively.

These are needed for “Bond Portfolio for Hedging Duration and Convexity” on page
10-7.

• The first-order approximation, based on modified duration, predicts the new portfolio
price (PriceApprox1), which is $97,936.37.

• The second-order approximation, based on duration and convexity, predicts the new
portfolio price (PriceApprox2), which is $97,967.90.

• The true new portfolio price (NewPrice) for this yield curve shift is $97,967.51.
• The estimate using duration and convexity is good (at least for this fairly small shift

in the yield curve), but only slightly better than the estimate using duration alone.
The importance of convexity increases as the magnitude of the yield curve shift
increases. Try a larger shift (dY) to see this effect.
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The approximation formulas in this example consider only parallel shifts in the term
structure, because both formulas are functions of dY, the change in yield. The formulas
are not well-defined unless each yield changes by the same amount. In actual financial
markets, changes in yield curve level typically explain a substantial portion of bond
price movements. However, other changes in the yield curve, such as slope, may also
be important and are not captured here. Also, both formulas give local approximations
whose accuracy deteriorates as dY increases in size. You can demonstrate this by running
the program with larger values of dY.

See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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Bond Portfolio for Hedging Duration and Convexity

This example constructs a bond portfolio to hedge the portfolio of “Sensitivity of Bond
Prices to Interest Rates” on page 10-3. It assumes a long position in (holding) the
portfolio, and that three other bonds are available for hedging. It chooses weights for
these three other bonds in a new portfolio so that the duration and convexity of the
new portfolio match those of the original portfolio. Taking a short position in the new
portfolio, in an amount equal to the value of the first portfolio, partially hedges against
parallel shifts in the yield curve.

Recall that portfolio duration or convexity is a weighted average of the durations or
convexities of the individual bonds in a portfolio. As in the previous example, this
example uses modified duration in years and convexity in years. The hedging problem
therefore becomes one of solving a system of linear equations, which is an easy to do in
MATLAB software.

Step 1

Define three bonds available for hedging the original portfolio. Specify values for the
settlement date, maturity date, face value, and coupon rate. For simplicity, accept
default values for the coupon payment periodicity (semiannual), end-of-month payment
rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon
payment structure to the maturity date (that is, no odd first or last coupon dates). Set
any inputs for which defaults are accepted to empty matrices ([]) as placeholders where
appropriate. The intent is to hedge against duration and convexity and constrain total
portfolio price.

Settle     = '19-Aug-1999';

Maturity   = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];

Face       = [500; 1000; 250];

CouponRate = [0.07; 0.066; 0.08];

Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2

Use Financial Toolbox functions to calculate the price, modified duration in years, and
convexity in years of each bond.
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The true price is quoted (clean price plus accrued interest.
[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,... 

Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...

2, 0, [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle,... 

Maturity, 2, 0, [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest;

Step 3

Set up and solve the system of linear equations whose solution is the weights of the new
bonds in a new portfolio with the same duration and convexity as the original portfolio.
In addition, scale the weights to sum to 1; that is, force them to be portfolio weights.
You can then scale this unit portfolio to have the same price as the original portfolio.
Recall that the original portfolio duration and convexity are 10.3181 and 157.6346,
respectively. Also, note that the last row of the linear system ensures that the sum of the
weights is unity.

A = [Durations'

     Convexities'

     1 1 1];

b = [ 10.3181

     157.6346

       1];

Weights = A\b;

Step 4

Compute the duration and convexity of the hedge portfolio, which should now match the
original portfolio.

PortfolioDuration  = Weights' * Durations;

PortfolioConvexity = Weights' * Convexities;

Step 5

Finally, scale the unit portfolio to match the value of the original portfolio and find the
number of bonds required to insulate against small parallel shifts in the yield curve.
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PortfolioValue = 100000;

HedgeAmounts   = Weights ./ Prices * PortfolioValue;

Step 6

Compare the results.

• As required, the duration and convexity of the new portfolio are 10.3181 and
157.6346, respectively.

• The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27,
respectively.

Notice that the hedge matches the duration, convexity, and value ($100,000) of the
original portfolio. If you are holding that first portfolio, you can hedge by taking a short
position in the new portfolio.

Just as the approximations of the first example are appropriate only for small parallel
shifts in the yield curve, the hedge portfolio is appropriate only for reducing the impact of
small level changes in the term structure.

See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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Bond Prices and Yield Curve Parallel Shifts

Often bond portfolio managers want to consider more than just the sensitivity of a
portfolio's price to a small shift in the yield curve, particularly if the investment horizon
is long. This example shows how MATLAB software can help you to visualize the price
behavior of a portfolio of bonds over a wide range of yield curve scenarios, and as time
progresses toward maturity.

This example uses Financial Toolbox bond pricing functions to evaluate the impact of
time-to-maturity and yield variation on the price of a bond portfolio. It plots the portfolio
value and shows the behavior of bond prices as yield and time vary.

Step 1

Specify values for the settlement date, maturity date, face value, coupon rate, and coupon
payment periodicity of a four-bond portfolio. For simplicity, accept default values for
the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). Also,
synchronize the coupon payment structure to the maturity date (no odd first or last
coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([])
as placeholders where appropriate.

Settle     = '15-Jan-1995';

Maturity   = datenum(['03-Apr-2020'; '14-May-2025'; ...

                      '09-Jun-2019'; '25-Feb-2019']);

Face       = [1000; 1000; 1000; 1000];

CouponRate = [0; 0.05; 0; 0.055];

Periods    = [0; 2; 0; 2];

Also, specify the points on the yield curve for each bond.

Yields = [0.078; 0.09; 0.075; 0.085];

Step 2

Use Financial Toolbox functions to calculate the true bond prices as the sum of the
quoted price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,... 

CouponRate,Settle, Maturity, Periods,...

[], [], [], [], [], [], Face);
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Prices  =  CleanPrice + AccruedInterest;

Step 3

Assume that the value of each bond is $25,000, and determine the quantity of each bond
such that the portfolio value is $100,000.

BondAmounts = 25000 ./ Prices;

Step 4

Compute the portfolio price for a rolling series of settlement dates over a range of
yields. The evaluation dates occur annually on January 15, beginning on 15-Jan-1995
(settlement) and extending out to 15-Jan-2018. Thus, this step evaluates portfolio price
on a grid of time of progression (dT) and interest rates (dY).
dy = -0.05:0.005:0.05;               % Yield changes

D  = datevec(Settle);                % Get date components

dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates

[dT, dY]  =  meshgrid(dt, dy); % Create grid

NumTimes  =  length(dt);       % Number of time steps

NumYields =  length(dy);       % Number of yield changes

NumBonds  =  length(Maturity); % Number of bonds

% Preallocate vector

Prices = zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of each bond in
the portfolio on the grid one bond at a time.

for i = 1:NumBonds

   [CleanPrice, AccruedInterest] = bndprice(Yields(i)+... 

   dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...

   [], [], [], [], [], [], Face(i));

   Prices(:,i) = CleanPrice + AccruedInterest;

end

Scale the bond prices by the quantity of bonds.
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Prices = Prices * BondAmounts;

Reshape the bond values to conform to the underlying evaluation grid.

Prices = reshape(Prices, NumYields, NumTimes);

Step 5

Plot the price of the portfolio as a function of settlement date and a range of yields, and
as a function of the change in yield (dY). This plot illustrates the interest rate sensitivity
of the portfolio as time progresses (dT), under a range of interest rate scenarios. With the
following graphics commands, you can visualize the three-dimensional surface relative to
the current portfolio value (that is, $100,000).

figure                   % Open a new figure window

surf(dt, dy, Prices)     % Draw the surface

Add the base portfolio value to the existing surface plot.

hold on                  % Add the current value for reference

basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));

Make it transparent, plot it so the price surface shows through, and draw a box around
the plot.

set(basemesh, 'facecolor', 'none');

set(basemesh, 'edgecolor', 'm');

set(gca, 'box', 'on');

Plot the x-axis using two-digit year (YY format) labels for ticks.

dateaxis('x', 11);

Add axis labels and set the three-dimensional viewpoint. MATLAB produces the figure.

xlabel('Evaluation Date (YY Format)');

ylabel('Change in Yield');

zlabel('Portfolio Price');

hold off

view(-25,25);
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MATLAB three-dimensional graphics allow you to visualize the interest rate risk
experienced by a bond portfolio over time. This example assumed parallel shifts in the
term structure, but it might similarly have allowed other components to vary, such as the
level and slope.

See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
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• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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Bond Prices and Yield Curve Nonparallel Shifts

Key rate duration enables you to determine the sensitivity of the price of a bond to
nonparallel shifts in the yield curve. This example uses bndkrdur to construct a portfolio
to hedge the interest rate risk of a U.S. Treasury bond maturing in 20 years.

Settle = datenum('2-Dec-2008');

CouponRate = 5.500/100;

Maturity = datenum('15-Aug-2028');

Price = 128.68;

The interest rate risk of this bond is hedged with the following four on-the-run Treasury
bonds:

The 30-year bond.

Maturity_30 = datenum('15-May-2038');

Coupon_30 = .045;

Price_30 = 124.69;

The 10-year note.

Maturity_10 = datenum('15-Nov-2018');

Coupon_10 = .0375;

Price_10 = 109.35;

The five-year note.

Maturity_05 = datenum('30-Nov-2013');

Coupon_05 = .02;

Price_05 = 101.67;

The two-year note.

Maturity_02 = datenum('30-Nov-2010');

Coupon_02 = .01250;

Price_02 =  100.72;

You can get the Treasury spot or zero curve from: http://www.treas.gov/offices/domestic-
finance/debt-management/interest-rate/yield.shtml.
ZeroDates = daysadd(Settle,[30 90 180 360 360*2 360*3 360*5 ...

360*7 360*10 360*20 360*30]);

ZeroRates = ([0.09 0.07 0.44 0.81 0.90 1.16 1.71 2.13 2.72 3.51 3.22]/100)';
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Step 1

Compute the key rate durations for both the bond and the hedging portfolio:
BondKRD = bndkrdur([ZeroDates ZeroRates], CouponRate, Settle,...

Maturity,'keyrates',[2 5 10 20]);

HedgeMaturity = [Maturity_02;Maturity_05;Maturity_10;Maturity_30];

HedgeCoupon = [Coupon_02;Coupon_05;Coupon_10;Coupon_30];

HedgeKRD = bndkrdur([ZeroDates ZeroRates], HedgeCoupon,...

Settle, HedgeMaturity, 'keyrates',[2 5 10 20]);

Step 2

Compute the dollar durations for each of the instruments and each of the key rates
(assuming holding 100 bonds):
PortfolioDD = 100*Price* BondKRD;

HedgeDD = bsxfun(@times, HedgeKRD,[Price_30;Price_10;Price_05;Price_02]);

Step 3

Compute the number of bonds to sell short to obtain a key rate duration that is 0 for the
entire portfolio:

NumBonds = PortfolioDD/HedgeDD;

NumBonds =

    3.8973    6.1596   23.0282   80.0522

These results indicate selling 4, 6, 23 and 80 bonds respectively of the 2-, 5-, 10-, and 30-
year bonds achieves a portfolio that is neutral with respect to the 2-, 5-, 10-, and 30-year
spot rates.

See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
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 Bond Prices and Yield Curve Nonparallel Shifts

• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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Greek-Neutral Portfolios of European Stock Options

The option sensitivity measures familiar to most option traders are often referred to as
the greeks: delta, gamma, vega, lambda, rho, and theta. Delta is the price sensitivity of
an option with respect to changes in the price of the underlying asset. It represents a
first-order sensitivity measure analogous to duration in fixed income markets. Gamma
is the sensitivity of an option's delta to changes in the price of the underlying asset,
and represents a second-order price sensitivity analogous to convexity in fixed income
markets. Vega is the price sensitivity of an option with respect to changes in the
volatility of the underlying asset. See “Pricing and Analyzing Equity Derivatives” on
page 2-42 or the Glossary for other definitions.

The greeks of a particular option are a function of the model used to price the option.
However, given enough different options to work with, a trader can construct a portfolio
with any desired values for its greeks. For example, to insulate the value of an option
portfolio from small changes in the price of the underlying asset, one trader might
construct an option portfolio whose delta is zero. Such a portfolio is then said to be “delta
neutral.” Another trader may want to protect an option portfolio from larger changes
in the price of the underlying asset, and so might construct a portfolio whose delta and
gamma are both zero. Such a portfolio is both delta and gamma neutral. A third trader
may want to construct a portfolio insulated from small changes in the volatility of the
underlying asset in addition to delta and gamma neutrality. Such a portfolio is then
delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an equity
option portfolio that is simultaneously delta, gamma, and vega neutral. The value of a
particular greek of an option portfolio is a weighted average of the corresponding greek
of each individual option. The weights are the quantity of each option in the portfolio.
Hedging an option portfolio thus involves solving a system of linear equations, an easy
process in MATLAB.

Step 1

Create an input data matrix to summarize the relevant information. Each row of
the matrix contains the standard inputs to Financial Toolbox Black-Scholes suite of
functions: column 1 contains the current price of the underlying stock; column 2 the
strike price of each option; column 3 the time to-expiry of each option in years; column 4
the annualized stock price volatility; and column 5 the annualized dividend rate of the
underlying asset. Rows 1 and 3 are data related to call options, while rows 2 and 4 are
data related to put options.
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DataMatrix = [100.000  100  0.2  0.3   0        % Call

              119.100  125  0.2  0.2   0.025    % Put

               87.200   85  0.1  0.23  0        % Call

              301.125  315  0.5  0.25  0.0333]  % Put

Also, assume that the annualized risk-free rate is 10% and is constant for all maturities
of interest.

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name reflects
the type of financial data in the column.

StockPrice   = DataMatrix(:,1);

StrikePrice  = DataMatrix(:,2);

ExpiryTime   = DataMatrix(:,3);

Volatility   = DataMatrix(:,4);

DividendRate = DataMatrix(:,5);

Step 2

Based on the Black-Scholes model, compute the prices, and the delta, gamma, and vega
sensitivity greeks of each of the four options. The functions blsprice and blsdelta
have two outputs, while blsgamma and blsvega have only one. The price and delta of
a call option differ from the price and delta of an otherwise equivalent put option, in
contrast to the gamma and vega sensitivities, which are valid for both calls and puts.
[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,... 

RiskFreeRate, ExpiryTime, Volatility, DividendRate);

[CallDeltas, PutDeltas] = blsdelta(StockPrice,... 

StrikePrice, RiskFreeRate, ExpiryTime, Volatility,... 

DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...

                  ExpiryTime, Volatility , DividendRate)';

Vegas  = blsvega(StockPrice, StrikePrice, RiskFreeRate,...

                 ExpiryTime, Volatility , DividendRate)';

Extract the prices and deltas of interest to account for the distinction between call and
puts.

Prices = [CallPrices(1) PutPrices(2) CallPrices(3)... 

PutPrices(4)];
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Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)... 

PutDeltas(4)];

Step 3

Now, assuming an arbitrary portfolio value of $17,000, set up and solve the linear system
of equations such that the overall option portfolio is simultaneously delta, gamma, and
vega-neutral. The solution computes the value of a particular greek of a portfolio of
options as a weighted average of the corresponding greek of each individual option in the
portfolio. The system of equations is solved using the back slash (\) operator discussed in
“Solving Simultaneous Linear Equations” on page 1-13.

A = [Deltas; Gammas; Vegas; Prices];

b = [0; 0; 0; 17000];

OptionQuantities = A\b; % Quantity (number) of each option.

Step 4

Finally, compute the market value, delta, gamma, and vega of the overall portfolio as
a weighted average of the corresponding parameters of the component options. The
weighted average is computed as an inner product of two vectors.

PortfolioValue =  Prices * OptionQuantities;

PortfolioDelta =  Deltas * OptionQuantities;

PortfolioGamma =  Gammas * OptionQuantities;

PortfolioVega  =  Vegas  * OptionQuantities;

The output for these computations is:

Option  Price    Delta    Gamma    Vega     Quantity

   1   6.3441   0.5856   0.0290  17.4293   22332.6131

   2   6.6035  -0.6255   0.0353  20.0347    6864.0731

   3   4.2993   0.7003   0.0548   9.5837  -15654.8657

   4  22.7694  -0.4830   0.0074  83.5225   -4510.5153

Portfolio Value: $17000.00

Portfolio Delta:      0.00

Portfolio Gamma:     -0.00

Portfolio Vega :      0.00

You can verify that the portfolio value is $17,000 and that the option portfolio is indeed
delta, gamma, and vega neutral, as desired. Hedges based on these measures are
effective only for small changes in the underlying variables.
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See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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Term Structure Analysis and Interest-Rate Swaps

This example illustrates some of the term-structure analysis functions found in Financial
Toolbox software. Specifically, it illustrates how to derive implied zero (spot) and forward
curves from the observed market prices of coupon-bearing bonds. The zero and forward
curves implied from the market data are then used to price an interest rate swap
agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of
the cash flows is based on a fixed interest rate held constant throughout the life of the
swap. The other cash flow stream is tied to some variable index rate. Pricing a swap
at inception amounts to finding the fixed rate of the swap agreement. This fixed rate,
appropriately scaled by the notional principal of the swap agreement, determines the
periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the variable
cash flows implied from the series of forward rates and the periodic sequence of fixed-
rate cash flows have the same current value. Thus, interest rate swap pricing and term
structure analysis are intimately related.

Step 1

Specify values for the settlement date, maturity dates, coupon rates, and market prices
for 10 U.S. Treasury Bonds. This data allows you to price a five-year swap with net cash
flow payments exchanged every six months. For simplicity, accept default values for the
end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid
issues of accrued interest, assume that all Treasury Bonds pay semiannual coupons and
that settlement occurs on a coupon payment date.

Settle   = datenum('15-Jan-1999');

BondData = {'15-Jul-1999'  0.06000   99.93

            '15-Jan-2000'  0.06125   99.72

            '15-Jul-2000'  0.06375   99.70

            '15-Jan-2001'  0.06500   99.40

            '15-Jul-2001'  0.06875   99.73

            '15-Jan-2002'  0.07000   99.42

            '15-Jul-2002'  0.07250   99.32

            '15-Jan-2003'  0.07375   98.45

            '15-Jul-2003'  0.07500   97.71
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            '15-Jan-2004'  0.08000   98.15};

BondData is an instance of a MATLAB cell array, indicated by the curly braces ({}).

Next assign the date stored in the cell array to Maturity, CouponRate, and Prices
vectors for further processing.

Maturity   = datenum(char(BondData{:,1}));

CouponRate = [BondData{:,2}]';

Prices     = [BondData{:,3}]';

Period     = 2; % semiannual coupons

Step 2

Now that the data has been specified, use the term structure function zbtprice to
bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This
implied zero curve represents the series of zero-coupon Treasury rates consistent with
the prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle); 

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the periodic,
six-month, interest rate is doubled to annualize). The first element of ZeroRates is the
annualized rate over the next six months, the second element is the annualized rate over
the next 12 months, and so on.

Step 3

From the implied zero curve, find the corresponding series of implied forward rates using
the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond
basis. The first element of ForwardRates is the annualized rate applied to the
interval between settlement and six months after settlement, the second element is the
annualized rate applied to the interval from six months to 12 months after settlement,
and so on. This implied forward curve is also consistent with the observed market prices
such that arbitrage activities will be unprofitable. Since the first forward rate is also a
zero rate, the first element of ZeroRates and ForwardRates are the same.
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Step 4

Now that you have derived the zero curve, convert it to a sequence of discount factors
with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5

From the discount factors, compute the present value of the variable cash flows derived
from the implied forward rates. For plain interest rate swaps, the notional principle
remains constant for each payment date and cancels out of each side of the present value
equation. The next line assumes unit notional principle.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6

Compute the swap's price (the fixed rate) by equating the present value of the fixed cash
flows with the present value of the cash flows derived from the implied forward rates.
Again, since the notional principle cancels out of each side of the equation, it is assumed
to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The output for these computations is:

  Zero Rates  Forward Rates

    0.0614        0.0614

    0.0642        0.0670

    0.0660        0.0695

    0.0684        0.0758

    0.0702        0.0774

    0.0726        0.0846

    0.0754        0.0925

    0.0795        0.1077

    0.0827        0.1089

    0.0868        0.1239

  Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the mid-point
between a market-maker's bid/ask quotes.
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See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | zbtprice | zero2disc | zero2fwd

Related Examples
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

10-25



10 Solving Sample Problems

Plotting an Efficient Frontier Using portopt

This example plots the efficient frontier of a hypothetical portfolio of three assets. It
illustrates how to specify the expected returns, standard deviations, and correlations
of a portfolio of assets, how to convert standard deviations and correlations into a
covariance matrix, and how to compute and plot the efficient frontier from the returns
and covariance matrix. The example also illustrates how to randomly generate a set of
portfolio weights, and how to add the random portfolios to an existing plot for comparison
with the efficient frontier.

First, specify the expected returns, standard deviations, and correlation matrix for a
hypothetical portfolio of three assets.

Returns      = [0.1 0.15 0.12];

STDs         = [0.2 0.25 0.18];

Correlations = [ 1  0.3  0.4

                0.3  1   0.3

                0.4 0.3   1 ];

Convert the standard deviations and correlation matrix into a variance-covariance
matrix with the Financial Toolbox function corr2cov.

Covariances = corr2cov(STDs, Correlations);

Evaluate and plot the efficient frontier at 20 points along the frontier, using the function
portopt and the expected returns and corresponding covariance matrix. Although
rather elaborate constraints can be placed on the assets in a portfolio, for simplicity
accept the default constraints and scale the total value of the portfolio to 1 and constrain
the weights to be positive (no short-selling).

Note: portopt has been partially removed and will no longer accept ConSet or
varargin arguments. Use Portfolio instead to solve portfolio problems that are more
than a long-only fully-invested portfolio. For information on the workflow when using
Portfolio objects, see “Portfolio Object Workflow” on page 4-18. For more information on
migrating portopt code to Portfolio, see “portopt Migration to Portfolio Object” on
page 3-14.

portopt(Returns, Covariances, 20)
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Now that the efficient frontier is displayed, randomly generate the asset weights for 1000
portfolios starting from the MATLAB initial state.

rng('default')

Weights = rand(1000, 3);

The previous line of code generates three columns of uniformly distributed random
weights, but does not guarantee they sum to 1. The following code segment normalizes
the weights of each portfolio so that the total of the three weights represent a valid
portfolio.

Total = sum(Weights, 2);     % Add the weights

Total = Total(:,ones(3,1));  % Make size-compatible matrix

Weights = Weights./Total;    % Normalize so sum = 1
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Given the 1000 random portfolios created, compute the expected return and risk of each
portfolio associated with the weights.

[PortRisk, PortReturn] = portstats(Returns, Covariances, ...

                         Weights);

Finally, hold the current graph, and plot the returns and risks of each portfolio on top of
the existing efficient frontier for comparison. After plotting, annotate the graph with a
title and return the graph to default holding status (any subsequent plots will erase the
existing data). The efficient frontier appears in blue, while the 1000 random portfolios
appear as a set of red dots on or below the frontier.

hold on

plot (PortRisk, PortReturn, '.r')

title('Mean-Variance Efficient Frontier and Random Portfolios')

hold off 
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See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | corr2cov | portopt | zbtprice | zero2disc | zero2fwd

Related Examples
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22

10-29



10 Solving Sample Problems

Plotting Sensitivities of an Option

This example creates a three-dimensional plot showing how gamma changes relative to
price for a Black-Scholes option.

Recall that gamma is the second derivative of the option price relative to the underlying
security price. The plot in this example shows a three-dimensional surface whose z-value
is the gamma of an option as price (x-axis) and time (y-axis) vary. The plot adds yet a
fourth dimension by showing option delta (the first derivative of option price to security
price) as the color of the surface. First set the price range of the options, and set the time
range to one year divided into half-months and expressed as fractions of a year.

Range = 10:70;

Span = length(Range);

j = 1:0.5:12;

Newj = j(ones(Span,1),:)'/12;

For each time period, create a vector of prices from 10 to 70 and create a matrix of all
ones.

JSpan = ones(length(j),1);

NewRange = Range(JSpan,:);

Pad = ones(size(Newj));

Calculate the gamma and delta sensitivities (greeks) using the blsgamma and blsdelta
functions. Gamma is the second derivative of the option price with respect to the stock
price, and delta is the first derivative of the option price with respect to the stock price.
The exercise price is $40, the risk-free interest rate is 10%, and volatility is 0.35 for all
prices and periods.

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Display the greeks as a function of price and time. Gamma is the z-axis; delta is the color.

mesh(Range, j, ZVal, Color);

xlabel('Stock Price ($)');

ylabel('Time (months)');

zlabel('Gamma');

title('Call Option Price Sensitivity');

axis([10 70  1 12  -inf inf]);

view(-40, 50);

colorbar('horiz');
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See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | corr2cov | portopt | zbtprice | zero2disc | zero2fwd

Related Examples
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
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• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
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Plotting Sensitivities of a Portfolio of Options

This example plots gamma as a function of price and time for a portfolio of 10 Black-
Scholes options.

The plot in this example shows a three-dimensional surface. For each point on the
surface, the height (z-value) represents the sum of the gammas for each option in the
portfolio weighted by the amount of each option. The x-axis represents changing price,
and the y-axis represents time. The plot adds a fourth dimension by showing delta as
surface color. This example has applications in hedging. First set up the portfolio with
arbitrary data. Current prices range from $20 to $90 for each option. Then, set the
corresponding exercise prices for each option.

Range = 20:90;

PLen = length(Range);

ExPrice = [75 70 50 55 75 50 40 75 60 35];

Set all risk-free interest rates to 10%, and set times to maturity in days. Set all
volatilities to 0.35. Set the number of options of each instrument, and allocate space for
matrices.

Rate = 0.1*ones(10,1);

Time = [36  36  36  27  18  18  18  9  9  9];

Sigma = 0.35*ones(10,1);

NumOpt = 1000*[4  8  3  5  5.5  2  4.8  3  4.8  2.5];

ZVal = zeros(36, PLen);

Color = zeros(36, PLen);

For each instrument, create a matrix (of size Time by PLen) of prices for each period.

for i = 1:10

    Pad = ones(Time(i),PLen);

    NewR = Range(ones(Time(i),1),:);

Create a vector of time periods 1 to Time and a matrix of times, one column for each
price.

  T = (1:Time(i))';

  NewT = T(:,ones(PLen,1));

Use the Black-Scholes gamma and delta sensitivity functions blsgamma and blsdelta to
compute gamma and delta.
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    ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...

        + NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...

        Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

    Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...

        + NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...

        Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because of the
viewpoint. The axes range from 20 to 90, 0 to 36, and -∞ to ∞.

mesh(Range, 1:36, ZVal, Color);

view(60,60);

set(gca, 'xdir','reverse', 'tag', 'mesh_axes_3');

axis([20 90  0 36  -inf inf]);
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Add a title and axis labels and draw a box around the plot. Annotate the colors with a bar
and label the color bar.

title('Call Option Portfolio Sensitivity');

xlabel('Stock Price ($)');

ylabel('Time (months)');

zlabel('Gamma');

set(gca, 'box', 'on');

colorbar('horiz');
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See Also
blsdelta | blsgamma | blsprice | blsvega | bndconvy | bnddury | bndkrdur |
bndprice | corr2cov | portopt | zbtprice | zero2disc | zero2fwd

Related Examples
• “Plotting Sensitivities of an Option” on page 10-30
• “Pricing and Analyzing Equity Derivatives” on page 2-42
• on page 10-18
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7

10-36



 Plotting Sensitivities of a Portfolio of Options

• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22
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• “Analyzing Financial Time Series” on page 11-2
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
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Analyzing Financial Time Series

Financial Toolbox software provides a collection of tools for the analysis of time series
data in the financial markets. The toolbox contains a financial time series object
constructor and several methods that operate on and analyze the object. Financial
engineers working with time series data, such as equity prices or daily interest
fluctuations, can use these tools for more intuitive data management than by using
regular vectors or matrices.

This section discusses how to create a financial time series object in one of two ways:

• “Using the Constructor” on page 11-3
• “Transforming a Text File” on page 11-13

chartfts is a graphical tool for visualizing financial time series objects. You can find
this discussion in “Visualizing Financial Time Series Objects” on page 11-16.
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Creating Financial Time Series Objects

In this section...

“Introduction” on page 11-3
“Using the Constructor” on page 11-3
“Transforming a Text File” on page 11-13

Introduction

Financial Toolbox software provides three ways to create a financial time series object:

• At the command line using the object constructor fints
• From a text data file through the function ascii2fts
• Use the Financial Time Series app, you can create a financial time series (fints)

object from one or more selected variables. For more information, see “Creating a
Financial Time Series Object” on page 13-12.

The structure of the object minimally consists of a description field, a frequency indicator
field, the date vector field, and at least one data series vector. The names for the fields
are fixed for the first three fields: desc, freq, and dates. You can specify names of your
choice for any data series vectors. If you do not specify names, the object uses the default
names series1, series2, series3, and so on.

If time-of-day information is incorporated in the date vector, the object contains an
additional field named times.

Using the Constructor

The object constructor function fints has five different syntaxes. These forms exist to
simplify object construction. The syntaxes vary according to the types of input arguments
presented to the constructor. The syntaxes are

• Single Matrix Input

• See “Time-of-Day Information Excluded” on page 11-4.
• See “Time-of-Day Information Included” on page 11-6.
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• Separate Vector Input

• See “Time-of-Day Information Excluded” on page 11-7.
• See “Time-of-Day Information Included” on page 11-8.

• See “Data Name Input” on page 11-9.
• See “Frequency Indicator Input” on page 11-11.
• See “Description Field Input” on page 11-12.

Single Matrix Input

The date information provided with this syntax must be in serial date number format.
The date number may or may not include time-of-day information.

Note If you are unfamiliar with the concepts of date character vectors and serial date
numbers, consult “Handle and Convert Dates” on page 2-4.

Time-of-Day Information Excluded

fts = fints(dates_and_data)

In this simplest form of syntax, the input must be at least a two-column matrix. The first
column contains the dates in serial date format; the second column is the data series. The
input matrix can have more than two columns, each additional column representing a
different data series or set of observations.

If the input is a two-column matrix, the output object contains four fields: desc, freq,
dates, and series1. The description field, desc, defaults to blanks '', and the
frequency indicator field, freq, defaults to 0. The dates field, dates, contains the serial
dates from the first column of the input matrix, while the data series field, series1, has
the data from the second column of the input matrix.

The first example makes two financial time series objects. The first one has only one data
series, while the other has more than one. A random vector provides the values for the
data series. The range of dates is arbitrarily chosen using the today function:

date_series = (today:today+100)';

data_series = exp(randn(1, 101))';

dates_and_data = [date_series data_series];

fts1 = fints(dates_and_data);
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Examine the contents of the object fts1 create. The actual date series you observe will
vary according to the day when you run the example (the value of today). Also, your
values in series1 will differ from those shown, depending upon the sequence of random
numbers generated:
fts1 = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'

    '12-Jul-1999'      [         0.3124]

    '13-Jul-1999'      [         3.2665]

    '14-Jul-1999'      [         0.9847]

    '15-Jul-1999'      [         1.7095]

    '16-Jul-1999'      [         0.4885]

    '17-Jul-1999'      [         0.5192]

    '18-Jul-1999'      [         1.3694]

    '19-Jul-1999'      [         1.1127]

    '20-Jul-1999'      [         6.3485]

    '21-Jul-1999'      [         0.7595]

    '22-Jul-1999'      [         9.1390]

    '23-Jul-1999'      [         4.5201]

    '24-Jul-1999'      [         0.1430]

    '25-Jul-1999'      [         0.1863]

    '26-Jul-1999'      [         0.5635]

    '27-Jul-1999'      [         0.8304]

    '28-Jul-1999'      [         1.0090]...

The output is truncated for brevity. There are actually 101 data points in the object.

The desc field displays as (none) instead of '', and that the contents of the object
display as cell array elements. Although the object displays as such, it should be thought
of as a MATLAB structure containing the default field names for a single data series
object: desc, freq, dates, and series1.

Now create an object with more than one data series in it:

date_series = (today:today+100)';

data_series1 = exp(randn(1, 101))';

data_series2 = exp(randn(1, 101))';

dates_and_data = [date_series data_series1 data_series2];

fts2 = fints(dates_and_data);

Now look at the object created (again in abbreviated form):
fts2 = 

    desc:  (none)

    freq:  Unknown (0)
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    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'

    '12-Jul-1999'      [         0.5816]    [         1.2816]

    '13-Jul-1999'      [         5.1253]    [         0.9262]

    '14-Jul-1999'      [         2.2824]    [         5.6869]

    '15-Jul-1999'      [         1.2596]    [         5.0631]

    '16-Jul-1999'      [         1.9574]    [         1.8709]

    '17-Jul-1999'      [         0.6017]    [         1.0962]

    '18-Jul-1999'      [         2.3546]    [         0.4459]

    '19-Jul-1999'      [         1.3080]    [         0.6304]

    '20-Jul-1999'      [         1.8682]    [         0.2451]

    '21-Jul-1999'      [         0.3509]    [         0.6876]

    '22-Jul-1999'      [         4.6444]    [         0.6244]

    '23-Jul-1999'      [         1.5441]    [         5.7621]

    '24-Jul-1999'      [         0.1470]    [         2.1238]

    '25-Jul-1999'      [         1.5999]    [         1.0671]

    '26-Jul-1999'      [         3.5764]    [         0.7462]

    '27-Jul-1999'      [         1.8937]    [         1.0863]

    '28-Jul-1999'      [         3.9780]    [         2.1516]...

The second data series name defaults to series2, as expected.

Before you can perform any operations on the object, you must set the frequency
indicator field freq to the valid frequency of the data series contained in the object. You
can leave the description field desc blank.

To set the frequency indicator field to a daily frequency, enter

fts2.freq = 1, or

fts2.freq = 'daily'.

For more information, see fints.

Time-of-Day Information Included

The serial date number used with this form of the fints function can incorporate time-
of-day information. When time-of-day information is present, the output of the function
contains a field times that indicates the time of day.

If you recode the previous example to include time-of-day information, you can see the
additional column present in the output object:

time_series = (now:now+100)';

data_series = exp(randn(1, 101))';

times_and_data = [time_series data_series];

fts1 = fints(times_and_data);

fts1 = 

 

    desc:  (none)
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    freq:  Unknown (0)

    'dates:  (101)'    'times:  (101)'    'series1:  (101)'

    '29-Nov-2001'      '14:57'            [         0.5816]

    '30-Nov-2001'      '14:57'            [         5.1253]

    '01-Dec-2001'      '14:57'            [         2.2824]

    '02-Dec-2001'      '14:57'            [         1.2596]...

Separate Vector Input

The date information provided with this syntax can be in serial date number or date
character vector format. The date information may or may not include time-of-day
information.

Time-of-Day Information Excluded

fts = fints(dates, data)

In this second syntax the dates and data series are entered as separate vectors to fints,
the financial time series object constructor function. The dates vector must be a column
vector, while the data series data can be a column vector (if there is only one data series)
or a column-oriented matrix (for multiple data series). A column-oriented matrix, in
this context, indicates that each column is a set of observations. Different columns are
different sets of data series.

Here is an example:

dates = (today:today+100)';

data_series1 = exp(randn(1, 101))';

data_series2 = exp(randn(1, 101))';

data = [data_series1 data_series2];

fts = fints(dates, data)

fts = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'

    '12-Jul-1999'      [         0.5816]    [         1.2816]

    '13-Jul-1999'      [         5.1253]    [         0.9262]

    '14-Jul-1999'      [         2.2824]    [         5.6869]

    '15-Jul-1999'      [         1.2596]    [         5.0631]

    '16-Jul-1999'      [         1.9574]    [         1.8709]

    '17-Jul-1999'      [         0.6017]    [         1.0962]

    '18-Jul-1999'      [         2.3546]    [         0.4459]

    '19-Jul-1999'      [         1.3080]    [         0.6304]

    '20-Jul-1999'      [         1.8682]    [         0.2451]

    '21-Jul-1999'      [         0.3509]    [         0.6876]

    '22-Jul-1999'      [         4.6444]    [         0.6244]

    '23-Jul-1999'      [         1.5441]    [         5.7621]
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    '24-Jul-1999'      [         0.1470]    [         2.1238]

    '25-Jul-1999'      [         1.5999]    [         1.0671]

    '26-Jul-1999'      [         3.5764]    [         0.7462]

    '27-Jul-1999'      [         1.8937]    [         1.0863]

    '28-Jul-1999'      [         3.9780]    [         2.1516]...

The result is exactly the same as the first syntax. The only difference between the first
and second syntax is the way the inputs are entered into the constructor function.

Time-of-Day Information Included

With this form of the function you can enter the time-of-day information either as a serial
date number or as a date character vector. If more than one serial date and time are
present, the entry must be in the form of a column-oriented matrix. If more than one
character vector date and time are present, the entry must be a column-oriented cell
array of character vectors for dates and times.

With date character vector input, the dates and times can initially be separate column-
oriented date and time series, but you must concatenate them into a single column-
oriented cell array before entering them as the first input to fints.

For date character vector input the allowable formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

The next example shows time-of-day information input as serial date numbers in a
column-oriented matrix:

f = fints([now;now+1],(1:2)')

f = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (2)'    'times:  (2)'    'series1:  (2)'

    '29-Nov-2001'    '15:22'          [            1]

    '30-Nov-2001'    '15:22'          [            2]

If the time-of-day information is in date character vector format, you must provide it to
fints as a column-oriented cell array:
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f = fints({'01-Jan-2001 12:00';'02-Jan-2001 12:00'},(1:2)')

f = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (2)'    'times:  (2)'    'series1:  (2)'

    '01-Jan-2001'    '12:00'          [            1]

    '02-Jan-2001'    '12:00'          [            2]

If the dates and times are in date character vector format and contained in separate
matrices, you must concatenate them before using the date and time information as
input to fints:

dates = ['01-Jan-2001'; '02-Jan-2001'; '03-Jan-2001'];

times = ['12:00';'12:00';'12:00'];

dates_time = cellstr([dates,repmat(' ',size(dates,1),1),times]);

f = fints(dates_time,(1:3)')

f = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (3)'    'times:  (3)'    'series1:  (3)'

    '01-Jan-2001'    '12:00'          [            1]

    '02-Jan-2001'    '12:00'          [            2]

    '03-Jan-2001'    '12:00'          [            3]

Data Name Input

fts = fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the argument
datanames. The datanames argument can be a MATLAB character vector for a single
data series. For multiple data series names, it must be a cell array of character vectors.

Look at two examples, one with a single data series and a second with two. The first
example sets the data series name to the specified name First:

dates = (today:today+100)';

data = exp(randn(1, 101))';

fts1 = fints(dates, data, 'First')
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fts1 = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'First:  (101)'

    '12-Jul-1999'      [       0.4615]

    '13-Jul-1999'      [       1.1640]

    '14-Jul-1999'      [       0.7140]

    '15-Jul-1999'      [       2.6400]

    '16-Jul-1999'      [       0.8983]

    '17-Jul-1999'      [       2.7552]

    '18-Jul-1999'      [       0.6217]

    '19-Jul-1999'      [       1.0714]

    '20-Jul-1999'      [       1.4897]

    '21-Jul-1999'      [       3.0536]

    '22-Jul-1999'      [       1.8598]

    '23-Jul-1999'      [       0.7500]

    '24-Jul-1999'      [       0.2537]

    '25-Jul-1999'      [       0.5037]

    '26-Jul-1999'      [       1.3933]

    '27-Jul-1999'      [       0.3687]...

The second example provides two data series named First and Second:

dates = (today:today+100)';

data_series1 = exp(randn(1, 101))';

data_series2 = exp(randn(1, 101))';

data = [data_series1 data_series2];

fts2 = fints(dates, data, {'First', 'Second'})

fts2 = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'

    '12-Jul-1999'      [       1.2305]    [        0.7396]

    '13-Jul-1999'      [       1.2473]    [        2.6038]

    '14-Jul-1999'      [       0.3657]    [        0.5866]

    '15-Jul-1999'      [       0.6357]    [        0.4061]

    '16-Jul-1999'      [       4.0530]    [        0.4096]

    '17-Jul-1999'      [       0.6300]    [        1.3214]

    '18-Jul-1999'      [       1.0333]    [        0.4744]

    '19-Jul-1999'      [       2.2228]    [        4.9702]

    '20-Jul-1999'      [       2.4518]    [        1.7758]
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    '21-Jul-1999'      [       1.1479]    [        1.3780]

    '22-Jul-1999'      [       0.1981]    [        0.8595]

    '23-Jul-1999'      [       0.1927]    [        1.3713]

    '24-Jul-1999'      [       1.5353]    [        3.8332]

    '25-Jul-1999'      [       0.4784]    [        0.1067]

    '26-Jul-1999'      [       1.7593]    [        3.6434]

    '27-Jul-1999'      [       0.2505]    [        0.6849]

    '28-Jul-1999'      [       1.5845]    [        1.0025]...

Note Data series names must be valid MATLAB variable names. The only allowed
nonalphanumeric character is the underscore (_) character.

Because freq for fts2 has not been explicitly indicated, the frequency indicator for
fts2 is set to Unknown. Set the frequency indicator field freq before you attempt
any operations on the object. You will not be able to use the object until the frequency
indicator field is set to a valid indicator.

Frequency Indicator Input

fts = fints(dates, data, datanames, freq)

With the fourth syntax you can set the frequency indicator field when you create the
financial time series object. The frequency indicator field freq is set as the fourth input
argument. You will not be able to use the financial time series object until freq is set to
a valid indicator. Valid frequency indicators are

UNKNOWN, Unknown, unknown, U, u,0

DAILY, Daily, daily, D, d,1     

WEEKLY, Weekly, weekly, W, w,2     

MONTHLY, Monthly, monthly, M, m,3     

QUARTERLY, Quarterly, quarterly, Q, q,4     

SEMIANNUAL, Semiannual, semiannual, S, s,5   

ANNUAL, Annual, annual, A, a,6

The previous example contained sets of daily data. The freq field displayed as
Unknown (0) because the frequency indicator was not explicitly set. The command

fts = fints(dates, data, {'First', 'Second'}, 1);

sets the freq indicator to Daily(1) when creating the financial time series object:

fts = 
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    desc:  (none)

    freq:  Daily (1)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'

    '12-Jul-1999'      [       1.2305]    [        0.7396]

    '13-Jul-1999'      [       1.2473]    [        2.6038]

    '14-Jul-1999'      [       0.3657]    [        0.5866]

    '15-Jul-1999'      [       0.6357]    [        0.4061]

    '16-Jul-1999'      [       4.0530]    [        0.4096]

    '17-Jul-1999'      [       0.6300]    [        1.3214]

    '18-Jul-1999'      [       1.0333]    [        0.4744]...

When you create the object using this syntax, you can use the other valid frequency
indicators for a particular frequency. For a daily data set you can use DAILY, Daily,
daily, D, or d. Similarly, with the other frequencies, you can use the valid character
vector indicators or their numeric counterparts.

Description Field Input

fts = fints(dates, data, datanames, freq, desc)

With the fifth syntax, you can explicitly set the description field as the fifth input
argument. The description can be anything you want. It is not used in any operations
performed on the object.

This example sets the desc field to 'Test TS'.

dates = (today:today+100)';

data_series1 = exp(randn(1, 101))';

data_series2 = exp(randn(1, 101))';

data = [data_series1 data_series2];

fts = fints(dates, data, {'First', 'Second'}, 1, 'Test TS')

fts = 

    desc:  Test TS

    freq:  Daily (1)

    'dates:  (101)'    'First:  (101)'    'Second:  (101)'

    '12-Jul-1999'      [       0.5428]    [        1.2491]

    '13-Jul-1999'      [       0.6649]    [        6.4969]

    '14-Jul-1999'      [       0.2428]    [        1.1163]

    '15-Jul-1999'      [       1.2550]    [        0.6628]

    '16-Jul-1999'      [       1.2312]    [        1.6674]
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    '17-Jul-1999'      [       0.4869]    [        0.3015]

    '18-Jul-1999'      [       2.1335]    [        0.9081]...

Now the description field is filled with the specified character vector 'Test TS' when
the constructor is called.

Transforming a Text File

The function ascii2fts creates a financial time series object from a text (ASCII) data
file if the data file conforms to a general format. The general format of the text data file
is as follows:

• Can contain header text lines.
• Can contain column header information. The column header information must

immediately precede the data series columns unless the skiprows argument (see
below) is specified.

• Leftmost column must be the date column.
• Dates must be in a valid date character vector format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
• 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in the
ftsdata subfolder within the folder matlabroot/toolbox/finance.

The syntax of the function

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

takes in the data file name (filename), the row number where the text for the
description field is (descrow), the row number of the column header information
(colheadrow), and the row numbers of rows to be skipped (skiprows). For example,
rows need to be skipped when there are intervening rows between the column head row
and the start of the time series data.

Look at the beginning of the ASCII file disney.dat in the ftsdata subfolder:
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Walt Disney Company (DIS)     

Daily prices (3/29/96 to 3/29/99)     

DATE     OPEN     HIGH     LOW     CLOSE     VOLUME

3/29/99  33.0625  33.188   32.75   33.063    6320500

3/26/99  33.3125  33.375   32.75   32.938    5552800

3/25/99  33.5     33.625   32.875  33.375    7936000

3/24/99  33.0625  33.25    32.625  33.188    6025400...

The command-line

disfts = ascii2fts('disney.dat', 1, 3, 2)

uses disney.dat to create time series object disfts. This example

• Reads the text data file disney.dat
• Uses the first line in the file as the content of the description field
• Skips the second line
• Parses the third line in the file for column header (or data series names)
• Parses the rest of the file for the date vector and the data series values

The resulting financial time series object looks like this.
disfts = 

 desc:  Walt Disney Company (DIS)    

 freq:  Unknown (0)

 'dates:  (782)'    'OPEN:  (782)'    'HIGH:  (782)'    'LOW:  (782)'

'29-Mar-1996'     [    21.1938]    [    21.6250]   [   21.2920]

'01-Apr-1996'     [    21.1120]    [    21.6250]   [   21.4170]

'02-Apr-1996'     [    21.3165]    [    21.8750]   [   21.6670]

'03-Apr-1996'     [    21.4802]    [    21.8750]   [   21.7500]

'04-Apr-1996'     [    21.4393]    [    21.8750]   [   21.5000]

'05-Apr-1996'     [        NaN]    [        NaN]   [       NaN]

'09-Apr-1996'     [    21.1529]    [    21.5420]   [   21.2080]

'10-Apr-1996'     [    20.7387]    [    21.1670]   [   20.2500]

'11-Apr-1996'     [    20.0829]    [    20.5000]   [   20.0420]

'12-Apr-1996'     [    19.9189]    [    20.5830]   [   20.0830]

'15-Apr-1996'     [    20.2878]    [    20.7920]   [   20.3750]

'16-Apr-1996'     [    20.3698]    [    20.9170]   [   20.1670]

'17-Apr-1996'     [    20.4927]    [    20.9170]   [   20.7080]

'18-Apr-1996'     [    20.4927]    [    21.0420]   [   20.7920]

There are 782 data points in this object. Only the first few lines are shown here. Also,
this object has two other data series, the CLOSE and VOLUME data series, that are not
shown here. In creating the financial time series object, ascii2fts sorts the data into
ascending chronological order.
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The frequency indicator field, freq, is set to 0 for Unknown frequency. You can manually
reset it to the appropriate frequency using structure syntax disfts.freq = 1 for
Daily frequency.

With a slightly different syntax, the function ascii2fts can create a financial time
series object when time-of-day data is present in the ASCII file. The new syntax has the
form

fts = ascii2fts(filename, timedata, descrow, colheadrow, 

skiprows);

Set timedata to 'T' when time-of-day data is present and to 'NT' when there is no
time data. For an example using this function with time-of-day data, see the reference
page for ascii2fts.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | today | tomonthly | toquarterly | tosemi | toweekly |
tsmovavg

Related Examples
• “Working with Financial Time Series Objects” on page 12-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Using the Financial Time Series App” on page 13-12
• “Using Time Series to Predict Equity Return” on page 12-25
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Visualizing Financial Time Series Objects

In this section...

“Introduction” on page 11-16
“Using chartfts” on page 11-16
“Zoom Tool” on page 11-19
“Combine Axes Tool” on page 11-22

Introduction

Financial Toolbox software contains the function chartfts, which provides a visual
representation of a financial time series object. chartfts is an interactive charting and
graphing utility for financial time series objects. With this function, you can observe time
series values on the entire range of dates covered by the time series.

Note Interactive charting is also available from the Graphs menu of the user interface.
See “Interactive Chart” on page 14-16 for additional information.

Using chartfts

chartfts requires a single input argument, tsobj, where tsobj is the name of the
financial time series object you want to explore. Most equity financial time series objects
contain four price series, such as opening, closing, highest, and lowest prices, plus an
additional series containing the volume traded. However, chartfts is not limited to a
time series of equity prices and volume traded. It can be used to display any time series
data you may have.

To illustrate the use of chartfts, use the equity price and volume traded data for the
Walt Disney Corporation (NYSE: DIS) provided in the file disney.mat:

load disney.mat

whos

  Name             Size         Bytes  Class

  dis            782x5          39290  fints object

  dis_CLOSE      782x1           6256  double array

11-16



 Visualizing Financial Time Series Objects

  dis_HIGH       782x1           6256  double array

  dis_LOW        782x1           6256  double array

  dis_OPEN       782x1           6256  double array

  dis_VOLUME     782x1           6256  double array

  dis_nv         782x4          32930  fints object

  q_dis           13x4           2196  fints object

For charting purposes look only at the objects dis (daily equity data including volume
traded) and dis_nv (daily data without volume traded). Both objects contain the series
OPEN, HIGH, LOW, and CLOSE, but only dis contains the additional VOLUME series.

Use chartfts(dis) to observe the values.

The chart contains five plots, each representing one of the series in the time series object.
Boxes indicate the value of each individual plot. The date box is always on the left. The
number of data boxes on the right depends upon the number of data series in the time
series object, five in this case. The order in which these boxes are arranged (left to right)
matches the plots from top to bottom. With more than eight data series in the object, the
scroll bar on the right is activated so that additional data from the other series can be
brought into view.
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Slide the mouse cursor over the chart. A vertical bar appears across all plots. This bar
selects the set of data shown in the boxes below. Move this bar horizontally and the data
changes accordingly.

Click the plot. A small information box displays the data at the point where you click the
mouse button.
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Zoom Tool

The zoom feature of chartfts enables a more detailed look at the data during a selected
time frame. The Zoom tool is found under the Chart Tools menu.

Note Due to the specialized nature of this feature, do not use the MATLAB zoom
command or Zoom In and Zoom Out from the Tools menu.
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When the feature is turned on, you will see two inactive buttons (ZOOM In and Reset
ZOOM) above the boxes. The buttons become active later after certain actions have been
performed.

The window title bar displays the status of the chart tool that you are using. With the
Zoom tool turned on, you see Zoom ON in the title bar in addition to the name of the
time series you are working with. When the tool is off, no status is displayed.

To zoom into the chart, you need to define the starting and ending dates. Define the
starting date by moving the cursor over the chart until the desired date appears at the
bottom-left box and click the mouse button. A blue vertical line indicates the starting
date that you have selected. Next, again move the cursor over the chart until the desired
ending date appears in the box and click the mouse once again. This time, a red vertical
line appears and the ZOOM In button is activated.
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To zoom into the chart, click the ZOOM In button.

The chart is zoomed in. The Reset ZOOM button now becomes active while the ZOOM
In button becomes inactive again. To return the chart to its original state (not zoomed),
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click the Reset ZOOM button. To zoom into the chart even further, repeat the steps
above for zooming into the chart.

Turn off the Zoom tool by going back to the Chart Tools menu and choosing Zoom Off.

With the tool turned off, the chart stays at the last state that it was in. If you turn it
off when the chart is zoomed in, the chart stays zoomed in. If you reset the zoom before
turning it off, the chart becomes the original (not zoomed).

Combine Axes Tool

The Combine Axes tool allows you to combine all axes or specific axes into one. With axes
combined, you can visually spot any trends that can occur among the data series in a
financial time series object.

To illustrate this tool, use dis_nv, the financial time series object that does not contain
volume traded data:

chartfts(dis_nv)
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To combine axes, choose the Chart Tools menu, followed by Combine Axes and On.

When the Combine Axes tool is on, check boxes appear beside each individual plot. An
additional check box enables the combination of all plots.
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Combining All Axes

To combine all plots, select the Select all plots check box.
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Now click the Combine Selected Graphs button to combine the chosen plots. In this
case, all plots are combined.
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The combined plots have a single plot axis with all data series traced. The background
of each data box has changed to the color corresponding to the color of the trace that
represents the data series. After the axes are combined, the tool is turned off.

Combining Selected Axes

You can choose any combination of the available axes to combine. For example, combine
the HIGH and LOW price series of the Disney time series. Click the check boxes next to the
corresponding plots. The Combine Selected Graphs button appears and is active.
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Click the Combine Selected Graphs button. The chart with the combined plots looks
like the next figure.
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The plot with the combined axes is located at the top of the chart while the remaining
plots follow it. The data boxes have also been changed. The boxes that correspond to the
combined axes are relocated to the beginning, and the background colors are set to the
color of the respective traces. The data boxes for the remaining axes retain their original
formats.

Resetting Axes

If you have altered the chart by combining axes, you must reset the axes before you can
visualize additional combinations. Reset the axes with the Reset Axes menu item under
Chart Tools > Combine Axes. Now the On and Off features are turned off.

11-28



 Visualizing Financial Time Series Objects

With axes reset, the interactive chart appears in its original format, and you can proceed
with additional axes combinations.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
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toannual | todaily | today | tomonthly | toquarterly | tosemi | toweekly |
tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Working with Financial Time Series Objects” on page 12-3
• “Using the Financial Time Series App” on page 13-12
• “Using Time Series to Predict Equity Return” on page 12-25
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12 Using Financial Time Series

Introduction

This section discusses how to manipulate and analyze financial time series data. The
major topics discussed include

• “Financial Time Series Object Structure” on page 12-3
• “Data Extraction” on page 12-4
• “Object-to-Matrix Conversion” on page 12-5
• “Indexing a Financial Time Series Object” on page 12-18
• “Financial Time Series Operations” on page 12-8
• “Data Transformation and Frequency Conversion” on page 12-12

Much of this information is summarized in the “Using Time Series to Predict Equity
Return” on page 12-25.
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Working with Financial Time Series Objects

In this section...

“Introduction” on page 12-3
“Financial Time Series Object Structure” on page 12-3
“Data Extraction” on page 12-4
“Object-to-Matrix Conversion” on page 12-5

Introduction

A financial time series object is used as if it were a MATLAB structure. (See the
MATLAB documentation for a description of MATLAB structures or how to use MATLAB
in general.)

This part of the tutorial assumes that you know how to use MATLAB and are familiar
with MATLAB structures. The terminology is similar to that of a MATLAB structure.
The financial time series object term component is interchangeable with the MATLAB
structure term field.

Financial Time Series Object Structure

A financial time series object always contains three component names: desc (description
field), freq (frequency indicator field), and dates (date vector). If you build the object
using the constructor fints, the default value for the description field is a blank
character vector (''). If you build the object from a text data file using ascii2fts, the
default is the name of the text data file. The default for the frequency indicator field is 0
(Unknown frequency). Objects created from operations can default the setting to 0. For
example, if you decide to pick out values selectively from an object, the frequency of the
new object might not be the same as that of the object from which it came.

The date vector dates does not have a default set of values. When you create an object,
you have to supply the date vector. You can change the date vector afterward but, at
object creation time, you must provide a set of dates.

The final component of a financial time series object is one or more data series vectors. If
you do not supply a name for the data series, the default name is series1. If you have
multiple data series in an object and do not supply the names, the default is the name
series followed by a number, for example, series1, series2, and series3.
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Data Extraction

Here is an exercise on how to extract data from a financial time series object. As
mentioned before, you can think of the object as a MATLAB structure. Highlight each
line in the exercise in the MATLAB Help browser, press the right mouse button, and
select Evaluate Selection to execute it.

To begin, create a financial time series object called myfts:

dates = (datenum('05/11/99'):datenum('05/11/99')+100)';

data_series1 = exp(randn(1, 101))';

data_series2 = exp(randn(1, 101))';

data = [data_series1 data_series2];

myfts = fints(dates, data);

The myfts object looks like this:
myfts = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'series1:  (101)'    'series2:  (101)'

    '11-May-1999'      [         2.8108]    [         0.9323]

    '12-May-1999'      [         0.2454]    [         0.5608]

    '13-May-1999'      [         0.3568]    [         1.5989]

    '14-May-1999'      [         0.5255]    [         3.6682]

    '15-May-1999'      [         1.1862]    [         5.1284]

    '16-May-1999'      [         3.8376]    [         0.4952]

    '17-May-1999'      [         6.9329]    [         2.2417]

    '18-May-1999'      [         2.0987]    [         0.3579]

    '19-May-1999'      [         2.2524]    [         3.6492]

    '20-May-1999'      [         0.8669]    [         1.0150]

    '21-May-1999'      [         0.9050]    [         1.2445]

    '22-May-1999'      [         0.4493]    [         5.5466]

    '23-May-1999'      [         1.6376]    [         0.1251]

    '24-May-1999'      [         3.4472]    [         1.1195]

    '25-May-1999'      [         3.6545]    [         0.3374]...

There are more dates in the object; only the first few lines are shown here.

Note The actual data in your series1 and series2 differs from the above because of
the use of random numbers.

Now create another object with only the values for series2:

srs2 = myfts.series2
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srs2 = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (101)'    'series2:  (101)'

    '11-May-1999'      [         0.9323]

    '12-May-1999'      [         0.5608]

    '13-May-1999'      [         1.5989]

    '14-May-1999'      [         3.6682]

    '15-May-1999'      [         5.1284]

    '16-May-1999'      [         0.4952]

    '17-May-1999'      [         2.2417]

    '18-May-1999'      [         0.3579]

    '19-May-1999'      [         3.6492]

    '20-May-1999'      [         1.0150]

    '21-May-1999'      [         1.2445]

    '22-May-1999'      [         5.5466]

    '23-May-1999'      [         0.1251]

    '24-May-1999'      [         1.1195]

    '25-May-1999'      [         0.3374]...

The new object srs2 contains all the dates in myfts, but the only data series is
series2. The name of the data series retains its name from the original object, myfts.

Note The output from referencing a data series field or indexing a financial time series
object is always another financial time series object. The exceptions are referencing the
description, frequency indicator, and dates fields, and indexing into the dates field.

Object-to-Matrix Conversion

The function fts2mat extracts the dates and/or the data series values from an object and
places them into a vector or a matrix. The default behavior extracts just the values into a
vector or a matrix. Look at the next example:

srs2_vec = fts2mat(myfts.series2)

srs2_vec =

    0.9323

    0.5608

    1.5989

    3.6682

    5.1284

    0.4952

    2.2417
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    0.3579

    3.6492

    1.0150

    1.2445

    5.5466

    0.1251

    1.1195

    0.3374...

If you want to include the dates in the output matrix, provide a second input argument
and set it to 1. This results in a matrix whose first column is a vector of serial date
numbers:

format long g

srs2_mtx = fts2mat(myfts.series2, 1)

srs2_mtx =

            730251      0.932251754559576

            730252      0.560845677519876

            730253      1.59888712183914

            730254      3.6681500883527

            730255      5.12842215360269

            730256      0.49519254119977

            730257      2.24174134286213

            730258      0.357918065917634

            730259      3.64915665824198

            730260      1.01504236943148

            730261      1.24446420606078

            730262      5.54661849025711

            730263      0.12507959735904

            730264      1.11953883096805

            730265      0.337398214166607

The vector srs2_vec contains series2 values. The matrix srs2_mtx contains dates in
the first column and the values of the series2 data series in the second. Dates in the
first column are in serial date format. Serial date format is a representation of the date
character vector format (for example, serial date = 1 is equivalent to 01-Jan-0000). (The
serial date vector can include time-of-day information.)

The long g display format displays the numbers without exponentiation. (To revert
to the default display format, use format short. (See the format command in the
MATLAB documentation for a description of MATLAB display formats.) Remember that
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both the vector and the matrix have 101 rows of data as in the original object myfts but
are shown truncated here.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Using the Financial Time Series App” on page 13-12
• “Using Time Series to Predict Equity Return” on page 12-25
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Financial Time Series Operations

Several MATLAB functions have been overloaded to work with financial time series
objects. The overloaded functions include basic arithmetic functions such as addition,
subtraction, multiplication, and division and other functions such as arithmetic average,
filter, and difference. Also, specific methods have been designed to work with the
financial time series object. For a list of functions grouped by type, enter

help ftseries

at the MATLAB command prompt.

Basic Arithmetic

Financial time series objects permit you to do addition, subtraction, multiplication,
and division, either on the entire object or on specific object fields. This is a feature
that MATLAB structures do not allow. You cannot do arithmetic operations on entire
MATLAB structures, only on specific fields of a structure.

You can perform arithmetic operations on two financial time series objects as long as
they are compatible. (All contents are the same except for the description and the values
associated with the data series.)

Note Compatible time series are not the same as equal time series. Two time series
objects are equal when everything but the description fields are the same.

Here are some examples of arithmetic operations on financial time series objects.

Load a MAT-file that contains some sample financial time series objects:

load dji30short

One of the objects in dji30short is called myfts1:
myfts1 = 

desc:  DJI30MAR94.dat

freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
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'04-Mar-1994'  [ 3830.90]   [ 3868.04]  [ 3800.50]   [ 3832.30]

'07-Mar-1994'  [ 3851.72]   [ 3882.40]  [ 3824.71]   [ 3856.22]

'08-Mar-1994'  [ 3858.48]   [ 3881.55]  [ 3822.45]   [ 3851.72]

'09-Mar-1994'  [ 3853.97]   [ 3874.52]  [ 3817.95]   [ 3853.41]

'10-Mar-1994'  [ 3852.57]   [ 3865.51]  [ 3801.63]   [ 3830.62]...

Create another financial time series object that is identical to myfts1:

newfts = fints(myfts1.dates, fts2mat(myfts1)/100,... 

{'Open','High','Low', 'Close'}, 1, 'New FTS')

newfts = 

desc:  New FTS

freq:  Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close:(20)'

'04-Mar-1994'  [ 38.31]     [ 38.68]     [ 38.01]    [ 38.32]

'07-Mar-1994'  [ 38.52]     [ 38.82]     [ 38.25]    [ 38.56]

'08-Mar-1994'  [ 38.58]     [ 38.82]     [ 38.22]    [ 38.52]

'09-Mar-1994'  [ 38.54]     [ 38.75]     [ 38.18]    [ 38.53]

'10-Mar-1994'  [ 38.53]     [ 38.66]     [ 38.02]    [ 38.31]...

Perform an addition operation on both time series objects:
addup = myfts1 + newfts

addup = 

desc:  DJI30MAR94.dat

freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994'  [ 3869.21]   [ 3906.72]   [ 3838.51]  [ 3870.62]

'07-Mar-1994'  [ 3890.24]   [ 3921.22]   [ 3862.96]  [ 3894.78]

'08-Mar-1994'  [ 3897.06]   [ 3920.37]   [ 3860.67]  [ 3890.24]

'09-Mar-1994'  [ 3892.51]   [ 3913.27]   [ 3856.13]  [ 3891.94]

'10-Mar-1994'  [ 3891.10]   [ 3904.17]   [ 3839.65]  [ 3868.93]...

Now, perform a subtraction operation on both time series objects:
subout = myfts1 - newfts

subout = 

desc:  DJI30MAR94.dat

freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994'  [ 3792.59]   [ 3829.36]   [ 3762.49]  [ 3793.98]

'07-Mar-1994'  [ 3813.20]   [ 3843.58]   [ 3786.46]  [ 3817.66]

'08-Mar-1994'  [ 3819.90]   [ 3842.73]   [ 3784.23]  [ 3813.20]

'09-Mar-1994'  [ 3815.43]   [ 3835.77]   [ 3779.77]  [ 3814.88]

'10-Mar-1994'  [ 3814.04]   [ 3826.85]   [ 3763.61]  [ 3792.31]...
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Operations with Objects and Matrices

You can also perform operations involving a financial time series object and a matrix or
scalar:
addscalar = myfts1 + 10000

addscalar = 

desc:  DJI30MAR94.dat

freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994'  [ 13830.90]  [ 13868.04]  [ 13800.50] [ 13832.30]

'07-Mar-1994'  [ 13851.72]  [ 13882.40]  [ 13824.71] [ 13856.22]

'08-Mar-1994'  [ 13858.48]  [ 13881.55]  [ 13822.45] [ 13851.72]

'09-Mar-1994'  [ 13853.97]  [ 13874.52]  [ 13817.95] [ 13853.41]

'10-Mar-1994'  [ 13852.57]  [ 13865.51]  [ 13801.63] [ 13862.70]...

For operations with both an object and a matrix, the size of the matrix must match the
size of the object. For example, a matrix to be subtracted from myfts1 must be 20-by-4,
since myfts1 has 20 dates and 4 data series:
submtx = myfts1 - randn(20, 4)

submtx = 

desc:  DJI30MAR94.dat

freq:  Daily (1)

'dates: (20)'  'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'

'04-Mar-1994'  [ 3831.33]   [ 3867.75]   [ 3802.10]  [ 3832.63]

'07-Mar-1994'  [ 3853.39]   [ 3883.74]   [ 3824.45]  [ 3857.06]

'08-Mar-1994'  [ 3858.35]   [ 3880.84]   [ 3823.51]  [ 3851.22]

'09-Mar-1994'  [ 3853.68]   [ 3872.90]   [ 3816.53]  [ 3851.92]

'10-Mar-1994'  [ 3853.72]   [ 3866.20]   [ 3802.44]  [ 3831.17]...

Arithmetic Operations with Differing Data Series Names

Arithmetic operations on two objects that have the same size but contain different data
series names require the function fts2mat. This function extracts the values in an object
and puts them into a matrix or vector, whichever is appropriate.

To see an example, create another financial time series object the same size as myfts1
but with different values and data series names:

newfts2 = fints(myfts1.dates, fts2mat(myfts1/10000),... 

{'Rat1','Rat2', 'Rat3','Rat4'}, 1, 'New FTS')
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If you attempt to add (or subtract, and so on) this new object to myfts1, an error
indicates that the objects are not identical. Although they contain the same dates,
number of dates, number of data series, and frequency, the two time series objects do not
have the same data series names. Use fts2mat to bypass this problem:

addother = myfts1 + fts2mat(newfts2);

This operation adds the matrix that contains the contents of the data series in the
object newfts2 to myfts1. You should carefully consider the effects on your data before
deciding to combine financial time series objects in this manner.

Other Arithmetic Operations

In addition to the basic arithmetic operations, several other mathematical functions
operate directly on financial time series objects. These functions include exponential
(exp), natural logarithm (log), common logarithm (log10), and many more.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Using the Financial Time Series App” on page 13-12
• “Using Time Series to Predict Equity Return” on page 12-25
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Data Transformation and Frequency Conversion

The data transformation and the frequency conversion functions convert a data series
into a different format.

Data Transformation Functions

Function Purpose

boxcox Box-Cox transformation
diff Differencing
fillts Fill missing values
filter Filter
lagts Lag time series object
leadts Lead time series object
peravg Periodic average
smoothts Smooth data
tsmovavg Moving average

Frequency Conversion Functions

Function New Frequency

convertto As specified
resamplets As specified
toannual Annual
todaily Daily
tomonthly Monthly
toquarterly Quarterly
tosemi Semiannually
toweekly Weekly

As an example look at boxcox, the Box-Cox transformation function. This function
transforms the data series contained in a financial time series object into another set of
data series with relatively normal distributions.

First create a financial time series object from the supplied whirlpool.dat data file.
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whrl = ascii2fts('whirlpool.dat', 1, 2, []);

Fill any missing values denoted with NaNs in whrl with values calculated using the
linear method:

f_whrl = fillts(whrl);

Transform the nonnormally distributed filled data series f_whrl into a normally
distributed one using Box-Cox transformation:

bc_whrl = boxcox(f_whrl);

Compare the result of the Close data series with a normal (Gaussian) probability
distribution function and the nonnormally distributed f_whrl:

subplot(2, 1, 1);

hist(f_whrl.Close);

grid; title('Nonnormally Distributed Data');

subplot(2, 1, 2);

hist(bc_whrl.Close);

grid; title('Box-Cox Transformed Data');
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Box-Cox Transformation

The bar chart on the top represents the probability distribution function of the filled
data series, f_whrl, which is the original data series whrl with the missing values
interpolated using the linear method. The distribution is skewed toward the left (not
normally distributed). The bar chart on the bottom is less skewed to the left. If you plot
a Gaussian probability distribution function (PDF) with similar mean and standard
deviation, the distribution of the transformed data is very close to normal (Gaussian).

When you examine the contents of the resulting object bc_whrl, you find an identical
object to the original object whrl but the contents are the transformed data series. If you
have the Statistics and Machine Learning Toolbox software, you can generate a Gaussian
PDF with mean and standard deviation equal to those of the transformed data series and
plot it as an overlay to the second bar chart. In the next figure, you can see that it is an
approximately normal distribution.
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Overlay of Gaussian PDF

The next example uses the smoothts function to smooth a time series.

To begin, transform ibm9599.dat, a supplied data file, into a financial time series
object:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Fill the missing data for holidays with data interpolated using the fillts function and
the Spline fill method:

f_ibm = fillts(ibm, 'Spline');

Smooth the filled data series using the default Box (rectangular window) method:

sm_ibm = smoothts(f_ibm);

Now, plot the original and smoothed closing price series for IBM stock:

plot(f_ibm.CLOSE('11/01/97::02/28/98'), 'r')

datetick('x', 'mmmyy')

hold on

plot(sm_ibm.CLOSE('11/01/97::02/28/98'), 'b')

hold off

datetick('x', 'mmmyy')

legend('Filled', 'Smoothed')

title('Filled IBM Close Price vs. Smoothed Series')
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Smoothed Data Series

These examples give you an idea of what you can do with a financial time series object.
This toolbox provides some MATLAB functions that have been overloaded to work
directly with these objects. The overloaded functions are those most commonly needed to
work with time series data.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Using the Financial Time Series App” on page 13-12

12-16



 Data Transformation and Frequency Conversion

• “Using Time Series to Predict Equity Return” on page 12-25
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Indexing a Financial Time Series Object

You can also index into the object as with any other MATLAB variable or structure.
A financial time series object lets you use a date character vector, a cell array of date
character vectors, a date character vector range, or normal integer indexing. You cannot,
however, index into the object using serial dates. If you have serial dates, you must first
use the MATLAB datestr command to convert them into date character vectors.

When indexing by date character vector, note that

• Each date character vector must contain the day, month, and year. Valid formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

• All data falls at the end of the indicated time period, that is, weekly data falls on
Fridays, monthly data falls on the end of each month, and so on, whenever the data
has gone through a frequency conversion.

Indexing with Date Character Vectors

With date character vector indexing, you get the values in a financial time series object
for a specific date using a date character vector as the index into the object. Similarly, if
you want values for multiple dates in the object, you can put those date character vectors
into a cell array of character vectors and use the cell array as the index to the object.
Here are some examples.

This example extracts all values for May 11, 1999 from myfts:

format short

myfts('05/11/99')

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (1)'    'series1:  (1)'    'series2:  (1)'

    '11-May-1999'    [       2.8108]    [       0.9323]

The next example extracts only series2 values for May 11, 1999 from myfts:
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myfts.series2('05/11/99')

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (1)'    'series2:  (1)'

    '11-May-1999'    [       0.9323]

The third example extracts all values for three different dates:

myfts({'05/11/99', '05/21/99', '05/31/99'})

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (3)'    'series1:  (3)'    'series2:  (3)'

    '11-May-1999'    [       2.8108]    [       0.9323]

    '21-May-1999'    [       0.9050]    [       1.2445]

    '31-May-1999'    [       1.4266]    [       0.6470]

The next example extracts only series2 values for the same three dates:

myfts.series2({'05/11/99', '05/21/99', '05/31/99'})

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (3)'    'series2:  (3)'

    '11-May-1999'    [       0.9323]

    '21-May-1999'    [       1.2445]

    '31-May-1999'    [       0.6470]

Indexing with Date Character Vector Range

A financial time series is unique because it allows you to index into the object using
a date character vector range. A date character vector range consists of two date
character vector separated by two colons (::). In MATLAB this separator is called
the double-colon operator. An example of a MATLAB date character vector range is
'05/11/99::05/31/99'. The operator gives you all data points available between those
dates, including the start and end dates.
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Here are some date character vector range examples:

myfts ('05/11/99::05/15/99')

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (5)'    'series1:  (5)'    'series2:  (5)'

    '11-May-1999'    [       2.8108]    [       0.9323]

    '12-May-1999'    [       0.2454]    [       0.5608]

    '13-May-1999'    [       0.3568]    [       1.5989]

    '14-May-1999'    [       0.5255]    [       3.6682]

    '15-May-1999'    [       1.1862]    [       5.1284]

myfts.series2('05/11/99::05/15/99')

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (5)'    'series2:  (5)'

    '11-May-1999'    [       0.9323]

    '12-May-1999'    [       0.5608]

    '13-May-1999'    [       1.5989]

    '14-May-1999'    [       3.6682]

    '15-May-1999'    [       5.1284]

As with any other MATLAB variable or structure, you can assign the output to another
object variable:

nfts = myfts.series2('05/11/99::05/20/99');

nfts is the same as ans in the second example.

If one of the dates does not exist in the object, an error message indicates that one or
both date indexes are out of the range of the available dates in the object. You can either
display the contents of the object or use the command ftsbound to determine the first
and last dates in the object.

Indexing with Integers

Integer indexing is the normal form of indexing in MATLAB. Indexing starts at 1 (not
0); index = 1 corresponds to the first element, index = 2 to the second element, index =

12-20



 Indexing a Financial Time Series Object

3 to the third element, and so on. Here are some examples with and without data series
reference.

Get the first item in series2:

myfts.series2(1)

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (1)'    'series2:  (1)'

    '11-May-1999'    [       0.9323]

Get the first, third, and fifth items in series2:

myfts.series2([1, 3, 5])

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (3)'    'series2:  (3)'

    '11-May-1999'    [       0.9323]

    '13-May-1999'    [       1.5989]

    '15-May-1999'    [       5.1284]

Get items 16 through 20 in series2:

myfts.series2(16:20)

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (5)'    'series2:  (5)'

    '26-May-1999'    [       0.2105]

    '27-May-1999'    [       1.8916]

    '28-May-1999'    [       0.6673]

    '29-May-1999'    [       0.6681]

    '30-May-1999'    [       1.0877] 

Get items 16 through 20 in the financial time series object myfts:
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myfts(16:20)

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (5)'    'series1:  (5)'    'series2:  (5)'

    '26-May-1999'    [       0.7571]    [       0.2105]

    '27-May-1999'    [       1.2425]    [       1.8916]

    '28-May-1999'    [       1.8790]    [       0.6673]

    '29-May-1999'    [       0.5778]    [       0.6681]

    '30-May-1999'    [       1.2581]    [       1.0877] 

Get the last item in myfts:

myfts(end)

ans = 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (1)'    'series1:  (1)'    'series2:  (1)'

    '19-Aug-1999'    [       1.4692]    [       3.4238]

This example uses the MATLAB special variable end, which points to the last element of
the object when used as an index. The example returns an object whose contents are the
values in the object myfts on the last date entry.

Indexing When Time-of-Day Data Is Present

Both integer and date character vector indexing are permitted when time-of-day
information is present in the financial time series object. You can index into the object
with both date and time specifications, but not with time of day alone. To show how
indexing works with time-of-day data present, create a financial time series object called
timeday containing a time specification:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

                       times]);

timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday = 

 

    desc:  My first FINTS

    freq:  Daily (1)
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    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

Use integer indexing to extract the second and third data items from timeday:

timeday(2:3)

ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'

    '01-Jan-2001'    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

For date character vector indexing, enclose the date and time character vectors in one
pair of quotation marks. If there is one date with multiple times, indexing with only the
date returns the data for all the times for that specific date. For example, the command
timeday('01-Jan-2001') returns the data for all times on January 1, 2001:

ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

You can also indicate a specific date and time:

timeday('01-Jan-2001 12:00')

ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'

    '01-Jan-2001'    '12:00'          [          2]

Use the double-colon operator :: to specify a range of dates and times:
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timeday('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'

    '01-Jan-2001'    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

Treat timeday as a MATLAB structure if you want to obtain the contents of a specific
field. For example, to find the times of day included in this object, enter

datestr(timeday.times)

ans =

11:00 AM

12:00 PM

11:00 AM

12:00 PM

11:00 AM

12:00 PM

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Using the Financial Time Series App” on page 13-12
• “Using Time Series to Predict Equity Return” on page 12-25
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Using Time Series to Predict Equity Return

This example shows a practical use of financial time series objects, predicting the return
of a stock from a given set of data. The data is a series of closing stock prices, a series
of dividend payments from the stock, and an explanatory series (in this case a market
index). Additionally, the example calculates the dividend rate from the stock data
provided.

Step 1. Load the data.

The data for this demonstration is found in the MAT-file predict_ret_data.mat. The
MAT-file contains six vectors:

• Dates corresponding to the closing stock prices, sdates
• Closing stock prices, sdata
• Dividend dates, divdates
• Dividend paid, divdata
• Dates corresponding to the metric data, expdates
• Metric data, expdata

load predict_ret_data.mat

Step 2. Create Financial Time Series objects.

It is useful to work with financial time series objects rather than with the vectors now
in the workspace. By using objects, you can easily keep track of the dates. Also, you can
manipulate the data series based on dates because a time series object keeps track of the
administration of a time series for you. Use the object constructor fints to construct
three financial time series objects.

t0 = fints(sdates, sdata, {'Close'}, 'd', 'Inc');

d0 = fints(divdates, divdata, {'Dividends'}, 'u', 'Inc');

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index');

The variables t0, d0, and x0 are financial time series objects containing the stock closing
prices, dividend payments, and the explanatory data, respectively.

Step 3. Create closing prices adjustment series.

The price of a stock is affected by the dividend payment. On the day before the dividend
payment date, the stock price reflects the amount of dividend to be paid the next day. On
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the dividend payment date, the stock price is decreased by the amount of dividend paid.
Create a time series (dadj1) that reflects this adjustment factor. Then create the series
(dadj2) that adjusts the prices at the day of dividend payment; this is an adjustment of
0. You also need to add the previous dividend payment date since the stock price data
reflect the period subsequent to that day; the previous dividend date was December 31,
1998. Combining the two objects (dadj1 and dadj2) gives the data needed to adjust the
prices. However, since the stock price data is daily data and the effect of the dividend is
linearly divided during the period, use the fillts function to make a daily time series
(dadj3) from the adjustment data. Use the dates from the stock price data to make the
dates of the adjustment the same.

dadj1       = d0;

dadj1.dates = dadj1.dates-1;

dadj2             = d0;

dadj2.Dividends   = 0;

dadj2             = fillts(dadj2,'linear','12/31/98');

dadj2('12/31/98') = 0;

dadj3 = [dadj1; dadj2];

dadj3 = fillts(dadj3, 'linear', t0.dates);

Step 4. Adjust closing prices and make them spot prices.

The stock price recorded already reflects the dividend effect. To obtain the “correct” price,
subtract the dividend amount from the closing prices. Put the result inside the same
object t0 with the data series name Spot. To make sure that adjustments correspond,
index into the adjustment series using the dates from the stock price series t0. Use the
datestr command because t0.dates returns the dates in serial date format. Also,
since the data series name in the adjustment series dadj3 does not match the one in t0,
use the function fts2mat.

t0.Spot = t0.Close - fts2mat(dadj3(datestr(t0.dates)));

Step 5. Create return series.

Calculate the return series from the stock price data. A stock return is calculated by
dividing the difference between the current closing price and the previous closing price by
the previous closing price.

tret = (t0.Spot - lagts(t0.Spot, 1)) ./ lagts(t0.Spot, 1);

tret = chfield(tret, 'Spot', 'Return');
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Ignore any warnings you receive during this sequence. Since the operation on the first
line above preserves the data series name Spot, it has to be changed with the chfield
command to reflect the contents correctly.

Step 6. Regress return series against metric data.

The explanatory (metric) data set is a weekly data set while the stock price data is a
daily data set. The frequency needs to be the same. Use todaily to convert the weekly
series into a daily series. The constant needs to be included here to get the constant
factor from the regression. Get all the dates common to the return series calculated and
the explanatory (metric) data and then combine the contents of the two series that have
dates in common into a new time series (regts0). Remove the contents of the new time
series that are not finite to create time series (regts1).

Place the data to be regressed into a matrix using the function fts2mat. The first
column of the matrix corresponds to the values of the first data series in the object,
the second column to the second data series, and so on. In this case, the first column
is regressed against the second and third column. Using the regression coefficients,
calculate the predicted return from the stock price data. Put the result into the return
time series tret as the data series PredReturn.

x1 = todaily(x0);

x1.Const = 1;

dcommon = intersect(tret.dates, x1.dates);

regts0  = [tret(datestr(dcommon)), x1(datestr(dcommon))];

finite_regts0 = find(all(isfinite( fts2mat(regts0)), 2));

regts1        = regts0( finite_regts0 );

DataMatrix = fts2mat(regts1);

XCoeff     = DataMatrix(:, 2:3) \ DataMatrix(:, 1);

RetPred = DataMatrix(:,2:3) * XCoeff;

tret.PredReturn(datestr(regts1.dates)) = RetPred;

Step 7. Plot the results.

Plot the results in a single window. The top plot in the window has the actual closing
stock prices and the dividend-adjusted stock prices (spot prices). The bottom plot shows
the actual return of the stock and the predicted stock return through regression.

subplot(2, 1, 1);
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plot(t0);

title('Spot and Closing Prices of Stock');

subplot(2, 1, 2);

plot(tret);

title('Actual and Predicted Return of Stock');

Step 8. Calculate the dividend rate.

Calculate the dividend rate from the stock price data by dividing the dividend payments
by the corresponding closing stock prices. Stock price data for October 2, 1999 does
not exist. The fillts function can overcome this situation; fillts allows you to
insert a date and interpolate a value for the date from the existing values in the series.
There are a number of interpolation methods. Use fillts to create a new time series
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(t1) containing the missing date from the original data series. Then set the frequency
indicator to daily.

datestr(d0.dates, 2)

t1 = fillts(t0,'nearest',d0.dates);

t1.freq = 'd';

tdr = d0./fts2mat(t1.Close(datestr(d0.dates)))   % Calculate the dividend rate

ans =

04/15/99

06/30/99

10/02/99

12/30/99

 

tdr = 

 

    desc:  Inc

    freq:  Unknown (0)

    'dates:  (4)'    'Dividends:  (4)'

    '15-Apr-1999'    [         0.0193]

    '30-Jun-1999'    [         0.0305]

    '02-Oct-1999'    [         0.0166]

    '30-Dec-1999'    [         0.0134]

You can find a file for this example program in the folder matlabroot /toolbox/
finance/findemos on your MATLAB® path. The file is predict_ret.m.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
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• “Working with Financial Time Series Objects” on page 12-3
• “Using the Financial Time Series App” on page 13-12
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• “What Is the Financial Time Series App?” on page 13-2
• “Getting Started with the Financial Time Series App ” on page 13-4
• “Loading Data with the Financial Time Series App” on page 13-7
• “Using the Financial Time Series App” on page 13-12
• “Using the Financial Time Series App with GUIs” on page 13-20
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What Is the Financial Time Series App?
The Financial Time Series app enables you to create and manage financial time series
(fints) objects. The Financial Time Series app interoperates with the Financial Time
Series Graphical User Interface (ftsgui) and Interactive Chart (chartfts). In addition,
you can use Datafeed Toolbox™ or Database Toolbox™ software to connect to external
data sources.

A financial time series object minimally consists of:

• Desc, which is the description field.
• Freq, which is a frequency indicator field.
• Dates, which is a date vector field. If the date vector incorporates time-of-day

information, the object contains an additional field named times.
• In addition, you can have at least one data series vector. You can specify names for

any data series vectors. If you do not specify names, the object uses the default names
series1, series2, series3, and so on.

In general, the workflow for using the Financial Time Series app is:

1 Acquire data.
2 Create a variable.
3 Convert the variable to fints.
4 Convert fints to a MATLAB double object.

To obtain the data for the Financial Time Series app, you need to use a MATLAB double
object or a financial time series (fints) object. You can use previously stored internal
data on your computer or you can connect to external data sources using Datafeed
Toolbox or Database Toolbox software.

Note: You must obtain a license for these products from MathWorks before you can use
either of these toolboxes.

After creating a financial time series object, you can use the Financial Time Series app
to change the characteristics of the time series object, including merging with other
financial time series objects, removing rows or columns, and changing the frequency. You
can also use the Financial Time Series app to generate various forms of plotted output
and you can reconvert a fints object to a MATLAB double-precision matrix.
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See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “Getting Started with the Financial Time Series App ” on page 13-4
• “Loading Data with the Financial Time Series App” on page 13-7
• “Using the Financial Time Series App” on page 13-12
• “Using the Financial Time Series App with GUIs” on page 13-20
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Working with Financial Time Series Objects” on page 12-3
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Getting Started with the Financial Time Series App

To start the Financial Time Series app:

1 On the MATLAB desktop toolstrip, click the Apps tab and in the apps gallery, under
Computational Finance, click Financial Time Series.

The Financial Time Series app opens. For an overview of the Financial Time Series
app, see “What Is the Financial Time Series App?” on page 13-2.

2 To load data with the Financial Time Series app, see “Loading Data with the
Financial Time Series App” on page 13-7.

If you plan to load data from Database Toolbox or Datafeed Toolbox software, ensure
that you have a license. For more information on using these toolboxes, see the
Database Toolbox and Datafeed Toolbox documentation.

3 For more information on the tasks supported by the Financial Time Series app, see
“Using the Financial Time Series App” on page 13-12 and “Using the Financial
Time Series App with GUIs” on page 13-20.
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See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “What Is the Financial Time Series App?” on page 13-2
• “Loading Data with the Financial Time Series App” on page 13-7
• “Using the Financial Time Series App” on page 13-12
• “Using the Financial Time Series App with GUIs” on page 13-20
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
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• “Working with Financial Time Series Objects” on page 12-3
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Loading Data with the Financial Time Series App

In this section...

“Overview” on page 13-7
“Obtaining External Data” on page 13-7
“Obtaining Internal Data” on page 13-8
“Viewing the MATLAB Workspace” on page 13-10

Overview

The Data source pane in the Financial Time Series app lets you do the following:

• Obtain live data from Yahoo!®, Interactive Data™, or Bloomberg® external data
servers using the dftool interface from Datafeed Toolbox software.

• Obtain live data from Database Toolbox.
• Load data you previously obtained and stored in a file.
• View data contained within the MATLAB workspace.

Obtaining External Data

You can obtain external data using Datafeed Toolbox or Database Toolbox software.
Datafeed Toolbox lets you obtain data from Bloomberg, Interactive Data, and Yahoo!
data servers. Except for Yahoo!, these data servers require that you obtain a license from
the vendor before you can access their data. Except for Federal Reserve Economic Data
(FRED®) and Yahoo!, these data servers require that you obtain a license from the vendor
before you can access their data.

Tip If you open Datafeed Toolbox or Database Toolbox before starting the Financial Time
Series app, the Financial Time Series app is unable to recognize the toolboxes. When
working with the Financial Time Series app, select File > Load to open these toolboxes.

Obtaining External Data with Datafeed Toolbox Software

1 From the Financial Time Series app, select File > Load > Datafeed Toolbox to
open the toolbox.
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2 Click the Connection tab in Datafeed Toolbox software to select Yahoo!, Interactive
Data, or Bloomberg as the data source you want to load into the Financial Time
Series app.

3 Click the Data tab in Datafeed Toolbox software to select the security and the
associated data that you want to load into the Financial Time Series app.

4 After using Datafeed Toolbox software to define the connection, security, data, and
MATLAB variable name, click Get Data and then, using the Financial Time
Series app, click Refresh variable list. The Data source field in the Financial
Time Series app displays the name of the security you selected from the Data tab
in Datafeed Toolbox software. The Financial Time Series app Active variable field
indicates the name of the MATLAB workspace variable you chose for this security.

5 Click Close to exit Datafeed Toolbox software. The Financial Time Series app clears
the Data source and Active variable fields.

Obtaining External Data with Database Toolbox Software

1 From the Financial Time Series app, select File > Load > Database Toolbox to
open the toolbox.

2 From the Visual Query Builder window, select the data you want to load into the
Financial Time Series app.

3 After using Database Toolbox software to select data and name the MATLAB
workspace variable, click Execute and then, using the Financial Time Series app,
click Refresh variable list. The Data source field in the Financial Time Series
app displays the name of the highlighted data source that you selected from the
Data list box in the Visual Query Builder window. The Financial Time Series app
Active variable field indicates the name of the MATLAB workspace variable you
chose for the security in the Visual Query Builder window.

4 From the Database Toolbox software, select Query > Close Visual Query Builder,
the Financial Time Series app clears the Data source and Active variable fields.

Obtaining Internal Data

You can use the Financial Time Series app to load data from files previously stored on
your computer. The types of data files you can load are as follows:

• MATLAB .mat files, with or without fints objects
• ASCII text files (.dat or .txt suffixes)
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• Excel .xls files

To obtain internal data:

1 From the Financial Time Series app, select File > Load > File to open the Load a
MAT, ASCII, .XLS File dialog box.

2 Select the data you want to load into the Financial Time Series app.

• If you load a MATLAB MAT-file, the variables in the file are placed into the
MATLAB workspace. The MATLAB Workspace Variables list box shows the
variables that have been added to the workspace. For example, if you load the file
disney.mat, which is distributed with the toolbox, the MATLAB Workspace
Variables list box displays the variables in that MAT-file.

Note: The Financial Time Series app automatically generates a line plot for each
workspace variable unless you disable this feature by resetting the default action
under File > Preferences > Generate line plot on load.

• If you load a .dat or an ASCII .txt file, the ASCII File Parameters dialog box
opens. Use this dialog box to transform a text data file into a MATLAB financial
time series fints object. The format for the ascii data must be:

• Dates must be in a valid date character vector format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
• 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Time information must be in 'hh:mm' format.
• Each column must be separated either by spaces or a tab.

For more information on converting ascii data to a fints object, see ascii2fts.
• If you load an Excel .xls file, the Excel File Parameters dialog box opens. Use

this dialog box to transform Excel worksheet data into a MATLAB financial time
series (fints) object.

3 From the Financial Time Series app, select File > Save to save the data you loaded
from an internal file.
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Viewing the MATLAB Workspace

The MATLAB Workspace Variables list box displays all existing MATLAB workspace
variables. Double-click any variable to display the data in the Data Table. You can only
display financial time series (fints) objects, MATLAB doubles, and cell arrays of double
data in the Data Table.

In addition, you can click Refresh variable list to refresh the MATLAB Workspace
Variables list box. You need to refresh this list periodically because it is refreshed
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automatically only for operations performed with the Financial Time Series app, not for
operations performed within MATLAB itself.

Click Remove variable(s) to remove variable from the MATLAB Workspace
Variables list and from the MATLAB workspace.

See Also
ascii2fts | boxcox | convertto | datestr | dftool | diff | fillts | filter |
fints | fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts
| toannual | todaily | tomonthly | toquarterly | tosemi | toweekly |
tsmovavg

Related Examples
• “What Is the Financial Time Series App?” on page 13-2
• “Getting Started with the Financial Time Series App ” on page 13-4
• “Using the Financial Time Series App” on page 13-12
• “Using the Financial Time Series App with GUIs” on page 13-20
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Working with Financial Time Series Objects” on page 12-3
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Using the Financial Time Series App

In this section...

“Creating a Financial Time Series Object” on page 13-12
“Merge Financial Time Series Objects” on page 13-13
“Converting a Financial Time Series Object to a MATLAB Double-Precision Matrix” on
page 13-13
“Plotting the Output in Several Formats” on page 13-14
“Viewing Data for a Financial Time Series Object in the Data Table” on page 13-15
“Modifying Data for a Financial Time Series Object in the Data Table” on page 13-16
“Viewing and Modifying the Properties for a FINTS Object” on page 13-18

Creating a Financial Time Series Object

Using the Create tab in the FINTS Objects and Outputs pane for the Financial
Time Series app, you can create a financial time series (fints) object from one or more
selected variables.

Note: When you first start the Financial Time Series app, the Create tab appears on
top, unless you reset the default using File > Preferences > Show Create tab when
ftstool starts.

To create a financial time series (fints) object from one or more selected variables:

1 Load data into the Financial Time Series app from either an external data source
using Datafeed Toolbox or Database Toolbox software or an internal data source
using File > Load > File.

2 Select one or more variables from the MATLAB Workspace Variables list.
3 Click the Create tab and then click Active variable.

When combining multiple variables, you can type a new variable name for the
combined variables in the MATLAB workspace variable box. The new variable
name is added to the MATLAB Workspace Variables list. (If you do not choose a
name for the MATLAB workspace variable, the Financial Time Series app uses
the default name myFts.)
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4 Click Create FINTS object to display the result in the Data Table.

Merge Financial Time Series Objects

Using the Create tab in the FINTS Objects and Outputs pane for the Financial
Time Series app, you can create a new financial time series object by merging (joining)
multiple existing financial time series objects.

Note: When you first start the Financial Time Series app, the Create tab appears on top,
unless you reset the default using File > Preferences.

To create a financial time series (fints) object by merging multiple existing financial
time series objects:

1 Load data into the Financial Time Series app from either an external data source
using Datafeed Toolbox or Database Toolbox software or an internal data source
using File > Load > File.

2 To merge multiple existing financial time series objects, click the Create tab, click
Components, and then select a value for the Time vector source and one or more
items from the Data sources list.

Note: You can merge at once multiple financial time series objects. For more
information on merging fints objects, see merge.

3 Click Create FINTS object to display the result in the Data Table.

Converting a Financial Time Series Object to a MATLAB Double-Precision
Matrix

Using the Convert tab in the FINTS Objects and Outputs pane for the Financial
Time Series app, you can convert a financial time series (fints) object to a MATLAB
double-precision matrix.

To create a financial time series object from one or more selected variables:

1 Load data into the Financial Time Series app from either an external data source
using Datafeed Toolbox or Database Toolbox software or an internal data source
using File > Load > File.
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2 Select a variable from the MATLAB Workspace Variables list box.
3 Click the Convert tab and then determine whether to include or exclude dates in

the conversion by clicking Include dates or Exclude dates.
4 Type a variable name in the Output variable name box. (If you do not choose a

variable name, the Financial Time Series app uses the default name myDbl.)
5 Click Convert FINTS to double matrix. (This operation is equivalent to

performing fts2mat on a financial time series object.)

Plotting the Output in Several Formats

Using the Plot tab in the FINTS Objects and Outputs pane for the Financial Time
Series app, you can create several forms of plotted output by using a selection list. You
can create four types of bar charts, candle plots, high-low plots, line plots, and interactive
charts (the latter is created by using the interoperation of the Financial Time Series app
with the function chartfts).

The set of plots supported by the Financial Time Series app are identical to the set
provided by the Graphs menu of the Financial Time Series GUI. (See “Graphs Menu”
on page 14-14.) You can find more detailed information for the supported plots by
consulting the reference page for each individual type of plot.

To create a plotted output:

1 Load data into the Financial Time Series app from either an external data source
using Datafeed Toolbox or Database Toolbox software or an internal data source
using File > Load > File.

2 Select a variable from the MATLAB Workspace Variables list box or select data
from the Data Table.

3 Click the Plot tab and indicate whether you are plotting based on a workspace
variable or data from the Data Table.

4 From the Type drop-down list, select the type of plot.
5 Click Plot. The plot is displayed.

Note: If the selected workspace variable that you are plotting is not a fints object,
a fints object is created when you click Plot. The new fints object uses the name
designated by the MATLAB workspace variable box on the Create tab.
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Viewing Data for a Financial Time Series Object in the Data Table

Once a financial time series (fints) object is created, the Financial Time Series app
Data Table displays user-designated data, including financial time series objects,
MATLAB double-precision variables, and cell arrays of doubles. (Cell arrays of doubles
are often the resulting format when using Database Toolbox software.)

When displaying double variables (or a cell array of doubles) in the Data Table, the
column headings for a double variable or cell array of doubles displayed in the Data
Table are labeled A, B, C, and so on.

Overwriting Data in the Data Table Display

If you use the command line to overwrite data previously retrieved using Datafeed
Toolbox or Database Toolbox software, two events could occur:

• If the new data contains the same number of columns as before, the headers remain
unchanged when you attempt to create a financial time series (fints) object using
the modified data.

• If the data contains a different number of columns, a warning dialog box appears.

For example, assume that you use Datafeed Toolbox software to obtain Close, Date,
High, Low, Open, and Volume data for the equity GOOG. You store the data in the
MATLAB workspace with the variable name cur1. From the command line, if you
redefine the variable cur1, eliminating the second column (Close)

cur1(:,2) = [ ]

and then return to the Financial Time Series app and attempt to create a financial time
series object, a warning dialog box appears.
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Modifying Data for a Financial Time Series Object in the Data Table

The Financial Time Series app lets you update your data displayed in the Data Table by
adding or removing rows or columns.

Note: Modifying data in the Data Table will not update the MATLAB workspace
variable. To update the workspace variable after modifying the Data Table, click
Update workspace variable.

Adding and Removing Rows

To add a row of data displayed in the Data Table:

1 Select a row from the Data Table display where you want to add a row. Click
Additional options to open the Data Table Options dialog box.

2 Click Add row. The default is to add up the row. To add a row down, select
Insertion option and then click Add down. In addition, you can select the
Insertion option of Date to designate a specific date. (If a date is not specified, the
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added row contains a date that is chronologically in order with respect to the initial
row.)

When you add rows, the Data Table display is immediately updated.

To remove a row of data from the Data Table:

1 Select one or more rows in the Data Table display that you want to remove. Click
Additional options to open the Data Table Options dialog box.

2 Click Remove row(s). The default is to remove the selected rows. In addition, to
remove selected rows, select Removal options and then select other options for row
removal from the Remove rows list box. You can specify a Start and End date or
you can click the Non-uniform range setting option to designate a range.

When you remove rows, the Data Table display is updated immediately.

Adding and Removing Columns

To add a column of data displayed in the Data Table:

1 Select a column from the Data Table display where you want to add a column. Click
Additional options to open the Data Table Options dialog box.

2 Click Add column. The default is to add the column to the left of the selected
column.

Note: For time series objects, you cannot add a column to the left of the Date/Times
column; there is no restriction for double data.

To add a column to the right, select Insertion option and then click Add right. In
addition, you can use the Insertion option of New Column Name to designate a
specific column name. (If a New Column Name is not specified, an added column
contains a column name of series1, series2, and so on.)

When you add columns, the Data Table display is updated immediately.

To remove a column of data displayed in the Data Table:

1 Select one or more columns in the Data Table display that you want to remove.
Click Additional options to open the Data Table Options dialog box.
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2 Click Remove column(s). The default is to remove the selected rows. In addition,
to remove selected columns, select Removal options and then select columns for
removal from the Remove columns list box.

When you remove columns, the Data Table display is updated immediately.

Viewing and Modifying the Properties for a FINTS Object

The FINTS Object Properties pane in the Financial Time Series app lets you modify
financial time series (fints) object properties. This area becomes active whenever the
Data Table displays a financial time series object.

To modify the properties for a fints object:

1 After you create a fints object, double-click the object name in the MATLAB
Workspace Variables list box to open the Data Table and display the fints
object properties.

2 Click to modify the Description, Frequency, or Series Names fields.

The Frequency drop-down list supports the following conversion functions:

Function New Frequency

toannual Annual
todaily Daily
tomonthy Monthly
toquarterly Quarterly
tosemi Semiannually
toweekly Weekly

3 Click Update properties to save the changes. This action also updates the
associated workspace variable.

See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg
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Related Examples
• “What Is the Financial Time Series App?” on page 13-2
• “Getting Started with the Financial Time Series App ” on page 13-4
• “Using the Financial Time Series App with GUIs” on page 13-20
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Working with Financial Time Series Objects” on page 12-3
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Using the Financial Time Series App with GUIs

The Financial Time Series app works with Datafeed Toolbox and Database Toolbox
software to load data. In addition, the Financial Time Series app interoperates with
chartfts to display an interactive plot and ftsgui to perform further time series data
analysis.

The workflow for using the Financial Time Series app with chartfts is:

1 After loading data from either Datafeed Toolbox or Database Toolbox software or an
internal file, select a variable from the MATLAB Workspace Variables list box.

2 Click the Plot tab, click Type, and then select Interactive Chart.
3 Click Plot. The interactive plot is displayed in chartfts. You can then use

chartfts menu items for further display options.

For more information on chartfts, select Help > Graphics Help.

The workflow for using the Financial Time Series app with the Financial Time Series
GUI (ftsgui) is:

1 After loading data from either Datafeed Toolbox or Database Toolbox software or an
internal file, select a variable from the MATLAB Workspace Variables list box.

2 Select Tools > FTSGUI to open the Financial Time Series GUI window.
3 Select a variable from the MATLAB Workspace Variables list box. Click the Plot

tab and then select one of the following from the Type drop-down list: Line Plot,
High-Low Plot, or Candlestick Plot.

4 Click Plot. The plot is displayed in a MATLAB graphic window. In addition, the
Financial Time Series GUI window displays an entry for the plotted fints object.
You can then use the menu items in the Financial Time Series GUI window to
perform further analysis.

For more information on ftsgui, select Help > Help on Financial Time Series
GUI.

Note: If the selected workspace variable that you are plotting is not a fints object,
a fints object is created when you click Plot. The new fints object uses the name
designated by the MATLAB workspace variable box on the Create tab.
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See Also
ascii2fts | boxcox | convertto | datestr | diff | fillts | filter | fints
| fts2mat | ftsbound | lagts | leadts | peravg | resamplets | smoothts |
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly | tsmovavg

Related Examples
• “What Is the Financial Time Series App?” on page 13-2
• “Getting Started with the Financial Time Series App ” on page 13-4
• “Using the Financial Time Series App” on page 13-12
• “Creating Financial Time Series Objects” on page 11-3
• “Visualizing Financial Time Series Objects” on page 11-16
• “Working with Financial Time Series Objects” on page 12-3
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Financial Time Series User Interface

Use the Financial Time Series User Interface to analyze your time series data and
display the results graphically without resorting to the command line. The Financial
Time Series User Interface lets you visualize the data and the results at the same time.

“Using the Financial Time Series GUI” on page 14-7 discusses how to use this user
interface.

Main Window

Start the Financial Time Series User Interface with the command

ftsgui

The Financial Time Series GUI window opens.

The title bar acts as an active time series object indicator (indicates the currently active
financial time series object). For example, if you load the file disney.mat and want
to use the time series data in the file dis, the title bar on the main GUI would read as
shown.

The menu bar consists of six menu items: File, Data, Analysis, Graphs, Window, and
Help. Under the menu bar is a status box that displays the steps you are doing.
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File Menu

The File menu contains the commands for input and output. You can read and save
(Load, Save, and Save As) MATLAB MAT-files, ASCII (text) data files. To load
MATLAB MAT-files, the MAT-file must contain a fints object. You can also import
(Import) Excel XLS files.

The File menu also contains the printing suite (Page Setup, Print Preview, and
Print). Lastly, from this menu you can close the GUI itself (Close FTS GUI) and quit
MATLAB (Exit MATLAB).

Data Menu

The Data menu provides a collection of data manipulation functions and data conversion
functions.
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To use any of the functions here, make sure that the correct financial time series object is
displayed in the title bar of the main GUI window.

Analysis Menu

The Analysis menu provides

• A set of exponentiation and logarithmic functions.
• Statistical tools (Basic Statistics), which calculate and display the minimum,

maximum, average (mean), standard deviation, and variance of the current (active)
time series object; these basic statistics numbers are displayed in a dialog box.

• Data difference (Difference) and periodic average (Periodic Average) calculations.
Data difference generates a vector of data that is the difference between the first
data point and the second, the second, and the third, and so on. The periodic average
function calculates the average per defined length period, for example, averages of
every five days.

• Technical analysis functions. See “Chart Technical Indicators” for a list of the
technical analysis functions.

As with the Data menu, to use any of the Analysis menu functions, make sure that the
correct financial time series object is displayed in the title bar of the main GUI window.
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Graphs Menu

The Graphs menu contains functions that graphically display the current (active)
financial time series object. You can also start up the interactive charting function
(chartfts) from this menu.

Window Menu

The Window menu lists open windows under the current MATLAB session.

Help Menu
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The Help menu provides a standard set of Help menu links.

See Also
ftsgui | ftstool

Related Examples
• “Using the Financial Time Series GUI” on page 14-7
• “Working with Financial Time Series Objects” on page 12-3
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Using the Financial Time Series GUI

In this section...

“Getting Started” on page 14-7
“Data Menu” on page 14-9
“Analysis Menu” on page 14-13
“Graphs Menu” on page 14-14
“Saving Time Series Data” on page 14-18

Getting Started

To use the Financial Time Series GUI, start the financial time series user interface with
the command ftsgui. Then load (or import) the time series data.

For example, if your data is in a MATLAB MAT-file, select Load from the File menu.
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For illustration purposes, choose the file ftsdata.mat from the dialog box presented.

If you do not see the MAT-file, look in the folder matlabroot\toolbox\finance
\findemos, where matlabroot is the MATLAB root folder (the folder where MATLAB
is installed).

Note Data loaded through the Financial Time Series GUI is not available in the
MATLAB workspace. You can access this data only through the GUI itself, not with any
MATLAB command-line functions.

Each financial time series object inside the MAT-file is presented as a line plot in a
separate window. The status window is updated accordingly.
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Whirlpool (WHR) is the last plot displayed, as indicated on the title bar of the main
window.

Data Menu

The Data menu provides functions that manipulate time series data.

Here are some example tasks that illustrate the use of the functions on this menu.

Fill Missing Data

First, look at filling missing data. The Fill Missing Data item uses the toolbox function
fillts. With the data loaded from the file ftsdata, you have three time series: IBM
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Corp. (IBM), Walt Disney Co. (DIS), and Whirlpool (WHR). Click the window that shows
the time series data for Walt Disney Co. (DIS).

To view any missing data in this time series data set, zoom into the plot using the Zoom
tool (the magnifying glass icon with the plus sign) from the toolbar and select a region.
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The gaps represent the missing data in the series. To fill these gaps, select Data > Fill
Missing Data. This selection automatically fills the gaps and generates a new plot that
displays the filled time series data.

You cannot see the filled gaps when you display the entire data set. However, when
you zoom into the plot, you see that the gaps have been eliminated. The title bar has
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changed; the title has been prefixed with the word Filled to reflect the filled time series
data.

Frequency Conversion

The Data menu also provides access to frequency conversion functions.

This example changes the DIS time series data frequency from daily to monthly. Close
the Filled Walt Disney Company (DIS) window, and click the Walt Disney Company
(DIS) window to make it active (current) again. Then, from the Data menu, select
Convert Data Frequency To and To Monthly.

A new figure window displays the result of this conversion.
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The title reflects that the data displayed had its frequency changed to monthly.

Analysis Menu

The Analysis menu provides functions that analyze time series data, including the
technical analysis functions. (See “Chart Technical Indicators” for a complete list of the
technical analysis functions and several usage examples.)

For example, you can use the Analysis menu to calculate the natural logarithm (log)
of the data contained within the data set ftsdata.mat. This data file provides time
series data for IBM (IBM), Walt Disney (DIS), and Whirlpool (WHR). Click the window
displaying the data for IBM Corporation (IBM) to make it active (current). Then select
the Analysis menu, followed by Log( ... ). The result appears in its own window.

Close the above window and click again on the IBM data window to make it active
(current).

Note Before proceeding with any time series analysis, make certain that the title bar
confirms that the active data series is the correct one.
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From the Analysis menu on the main window, select Technical Analysis and MACD.
The result, again, is displayed in its own window.

Other analysis functions work similarly.

Graphs Menu

The Graphs menu displays time series data using the provided graphics functions.
Included in the Graphs menu are several types of bar charts (bar, barh and bar3,
bar3h), line plot (plot), candle plot (candle), and High-Low plot (highlow). The
Graphs menu also provides access to the interactive charting function, chartfts.

Candle Plot

For example, you can display the candle plot of a set of time series data and start up the
interactive chart on the same data set.

Load the ftsdata.mat data set, and click the window that displays the Whirlpool
(WHR) time series data to make it active (current). From the main window, select the
Graphs menu and then Candle Plot.
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The result is shown below.
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This does not look much like a candle plot because there are too many data points in the
data set. All the candles are too compressed for effective viewing. However, when you
zoom into a region of this plot, the candles become apparent.

Interactive Chart

To create an interactive chart (chartfts) on the Whirlpool data, click the window that
displays the Whirlpool (WHR) data to make it active (current). Then, go to the Graphs
menu and select Interactive Chart.
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The chart that results is shown below.

14-17



14 Financial Time Series User Interface

You can use this interactive chart as if you had invoked it with the chartfts command
from the MATLAB command line. For a tutorial on the use of chartfts, see “Visualizing
Financial Time Series Objects” on page 11-16.

Saving Time Series Data

The Save and Save As items on the main window File menu let you save the time series
data that results from your analyses and computations. These items save all time series
data that has been loaded or processed during the current session, even if the window
displaying the results of a computation has previously been dismissed.

Note The Save and Save As items on the File menu of the individual plot windows will
not save the time series data, but will save the actual plot.

You can save your time series data in two ways:
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• Into the latest MAT-file loaded (Save)
• Into a MAT-file chosen (or named) from the window (Save As)

To illustrate this, start by loading the data file testftsdata.mat (located in
matlabroot/toolbox/finance/findemos). Then, convert the Disney (DIS) data
from daily (the original frequency) to monthly data. Next, run the MACD analysis on the
Whirlpool (WHR) data. You now have a set of five open figure windows.

Saving into the Original File (Save)

To save the data back into the original file (testftsdata.mat), select Save from the
File menu.

A confirmation window appears. It confirms that the data has been saved in the latest
MAT-file loaded (testftsdata.mat in this example).
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Saving into a New File (Save As)

To save the data in a different file, choose Save As from the File menu.

The dialog box that appears lets you choose an existing MAT-file from a list or type in the
name of a new MAT-file you want to create.

After you click the Save button, another confirmation window appears.
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This confirmation window indicates that the data has been saved in a new file named
myftstestdata.mat.

See Also
ftsgui | ftstool

Related Examples
• “Working with Financial Time Series Objects” on page 12-3

More About
• “Financial Time Series User Interface” on page 14-2
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Trading Calendars User Interface

Use the createholidays function to open the Trading Calendars user interface.

The createholidays function supports http://www.FinancialCalendar.com
trading calendars. This function can be used from the command line or from
the Trading Calendars user interface. To use createholidays or the Trading
Calendars user interface, you must obtain data, codes, and info files from http://
www.FinancialCalendar.com trading calendars. For more information on using
the command line to programmatically generate the market-specific holidays.m files
without displaying the interface, see createholidays.

To use the Trading Calendars user interface:

1 From the command line, type the following command to open the Trading Calendars
user interface.

createholidays
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2 Click Choose data file to select the data file.
3 Click Choose codes file to select the codes file.
4 Click Choose info file to select the info file.
5 Click Choose directory for writing holiday files to select the output folder.
6 Select Include weekends to include weekends in the holiday list and click Prompt

for target directory to be prompted for the file location for each holidays.m file
that is created.

7 Click Create holiday files to convert FinancialCalendar.com financial center
holiday data into market-specific holidays.m files.

The market-specific holidays.m files can be used in place of the standard
holidays.m that ships with Financial Toolbox software.

See Also
createholidays | holidays | nyseclosures

Related Examples
• “Handle and Convert Dates” on page 2-4
• “UICalendar User Interface” on page 15-4
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UICalendar User Interface

In this section...

“Using UICalendar in Standalone Mode” on page 15-4
“Using UICalendar with an Application” on page 15-4

Using UICalendar in Standalone Mode

You can use the UICalendar user interface in standalone mode to look up any date. To
use the standalone mode:

1 Type the following command to open the UICalendar GUI:

uicalendar

The UICalendar interface is displayed:

2 Click the date and year controls to locate any date.

Using UICalendar with an Application

You can use the UICalendar user interface with an application to look up any date. To
use the UICalendar graphical interface with an application, use the following command:
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uicalendar('PARAM1', VALUE1, 'PARAM2', VALUE2', ...)

For more information, see uicalendar.

Example of Using UICalendar with an Application

The UICalendar example creates a function that displays a user interface that lets you
select a date from the UICalendar user interface and fill in a text field with that date.

1 Create a figure.

function uicalendarGUIExample

f = figure('Name', 'uicalendarGUIExample');

2 Add a text control field.

dateTextHandle = uicontrol(f, 'Style', 'Text', ...

'String', 'Date:', ...

'Horizontalalignment', 'left', ...

'Position', [100 200 50 20]);

3 Add an uicontrol editable text field to display the selected date.

dateEditBoxHandle = uicontrol(f, 'Style', 'Edit', ...  

'Position', [140 200 100 20], ...  

'BackgroundColor', 'w');

4 Create a push button that startups the UICalendar.

calendarButtonHandle = uicontrol(f, 'Style', 'PushButton', ...  

'String', 'Select a single date', ...  

'Position', [275 200 200 20], ...  

'callback', @pushbutton_cb);

5 To start up UICalendar, create a nested function (callback function) for the push
button.

function pushbutton_cb(hcbo, eventStruct)  

% Create a UICALENDAR with the following properties:  

% 1) Highlight weekend dates.  

% 2) Only allow a single date to be selected at a time.  

% 3) Send the selected date to the edit box uicontrol.  

uicalendar('Weekend', [1 0 0 0 0 0 1], ...  

'SelectionType', 1, ...  

'DestinationUI', dateEditBoxHandle);

end  

end

6 Run the function uicalendarGUIExample to display the application interface:

15-5



15 Trading Date Utilities

7 Click Select a single date to display the UICalendar user interface:
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8 Select a date and click OK to display the date in the text field:
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See Also
createholidays | holidays | nyseclosures

Related Examples
• “Trading Calendars User Interface” on page 15-2
• “Handle and Convert Dates” on page 2-4
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Technical Indicators

Technical analysis (or charting) is used by some investment managers to help manage
portfolios. Technical analysis relies heavily on the availability of historical data.
Investment managers calculate different indicators from available data and plot them
as charts. Observations of price, direction, and volume on the charts assist managers in
making decisions on their investment portfolios.

The technical analysis functions in Financial Toolbox are tools to help analyze your
investments. The functions in themselves will not make any suggestions or perform any
qualitative analysis of your investment.

Technical Analysis: Oscillators

Function Type

adosc Accumulation/distribution oscillator
chaikosc Chaikin oscillator
macd Moving Average Convergence/Divergence
stochosc Stochastic oscillator
tsaccel Acceleration
tsmom Momentum

Technical Analysis: Stochastics

Function Type

chaikvolat Chaikin volatility
fpctkd Fast stochastics
spctkd Slow stochastics
willpctr Williams %R

Technical Analysis: Indexes

Function Type

negvolidx Negative volume index
posvolidx Positive volume index
rsindex Relative strength index
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Technical Analysis: Indicators

Function Type

adline Accumulation/distribution line
bollinger Bollinger band
hhigh Highest high
llow Lowest low
medprice Median price
onbalvol On balance volume
prcroc Price rate of change
pvtrend Price-volume trend
typprice Typical price
volroc Volume rate of change
wclose Weighted close
willad Williams accumulation/distribution

See Also
adline | adosc | bollinger | chaikosc | chaikvolat | fpctkd | hhigh | llow
| macd | medprice | negvolidx | onbalvol | posvolidx | prcroc | pvtrend |
rsindex | spctkd | stochosc | tsaccel | tsmom | typprice | volroc | wclose |
willad | willpctr

Related Examples
• “Technical Analysis Examples” on page 16-4
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Technical Analysis Examples

In this section...

“Overview” on page 16-4
“Moving Average Convergence/Divergence (MACD)” on page 16-4
“Williams %R” on page 16-6
“Relative Strength Index (RSI)” on page 16-8
“On-Balance Volume (OBV)” on page 16-10

Overview

To illustrate some of the technical analysis functions, this section uses the IBM stock
price data contained in the supplied file ibm9599.dat. First create a financial time
series object from the data using ascii2fts:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

The time series data contains the open, close, high, and low prices, and the volume
traded on each day. The time series dates start on January 3, 1995, and end on April 1,
1999, with some values missing for weekday holidays; weekend dates are not included.

Moving Average Convergence/Divergence (MACD)

Moving Average Convergence/Divergence (MACD) is an oscillator function used by
technical analysts to spot overbought and oversold conditions. Use the IBM® stock price
data contained in the supplied file ibm9599.dat. First, create a financial time series
object from the data using ascii2fts. Look at the portion of the time series covering the
3-month period between October 1, 1995 and December 31, 1995. At the same time fill
any missing values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Calculate the MACD, which when plotted produces two lines; the first line is the MACD
line itself and the second is the nine-period moving average line:

macd_ibm = macd(part_ibm);
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When you call macd without giving it a second input argument to specify a particular
data series name, it searches for a closing price series named Close (in all combinations
of letter cases).

Plot the MACD lines and the High-Low plot of the IBM stock prices in two separate plots
in one window.

subplot(2, 1, 1);

plot(macd_ibm);

title('MACD of IBM Close Stock Prices, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');

subplot(2, 1, 2);

highlow(part_ibm);

title('IBM Stock Prices, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy')
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Williams %R

Williams %R is an indicator that measures overbought and oversold levels. The function
willpctr is from the stochastics category. All the technical analysis functions can
accept a different name for a required data series. If, for example, a function needs the
high, low, and closing price series but your time series object does not have the data
series names exactly as High, Low, and Close, you can specify the correct names as
follows:

wpr =

willpctr(tsobj,14,'HighName','Hi','LowName','Lo','CloseName','Closing').
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The function willpctr now assumes that your high price series is named Hi, low price
series is named Lo, and closing price series is named Closing. Use the IBM® stock price
data contained in the supplied file ibm9599.dat. First, create a financial time series
object from the data using ascii2fts. Look at the portion of the time series covering the
3-month period between October 1, 1995 and December 31, 1995. At the same time fill
any missing values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Since the time series object part_ibm has its data series names identical to the required
names, name adjustments are not needed. The input argument to the function is only the
name of the time series object itself.

Calculate and plot the Williams %R indicator for IBM stock along with the price range
using these commands:

wpctr_ibm = willpctr(part_ibm);

subplot(2, 1, 1);

plot(wpctr_ibm);

title('Williams %R of IBM stock, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');

hold on;

plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)),...

'color', [0.5 0 0], 'linewidth', 2)

plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)),...

'color', [0 0.5 0], 'linewidth', 2)

subplot(2, 1, 2);

highlow(part_ibm);

title('IBM Stock Prices, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');
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The top plot has the Williams %R line plus two lines at -20% and -80%. The bottom plot
is the High-Low plot of the IBM stock price for the corresponding time period.

Relative Strength Index (RSI)

The Relative Strength Index (RSI) is a momentum indicator that measures an equity's
price relative to itself and its past performance. The function name is rsindex. The
rsindex function needs a series that contains the closing price of a stock. The default
period length for the RSI calculation is 14 periods. This length can be changed by
providing a second input argument to the function. First, create a financial time series
object from the data using ascii2fts. Look at the portion of the time series covering the
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3-month period between October 1, 1995 and December 31, 1995. At the same time fill
any missing values due to holidays within the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Calculate and plot the RSI for IBM® stock along with the price range using these
commands:

rsi_ibm = rsindex(part_ibm);

subplot(2, 1, 1);

plot(rsi_ibm);

title('RSI of IBM stock, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');

hold on;

wpctr_ibm = willpctr(part_ibm);

plot(rsi_ibm.dates, 30*ones(1, length(wpctr_ibm)),...

'color', [0.5 0 0], 'linewidth', 2)

plot(rsi_ibm.dates, 70*ones(1, length(wpctr_ibm)),...

'color',[0 0.5 0], 'linewidth', 2)

subplot(2, 1, 2);

highlow(part_ibm);

title('IBM Stock Prices, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');

16-9



16 Technical Analysis

On-Balance Volume (OBV)

On-Balance Volume (OBV) relates volume to price change. The function onbalvol
requires you to have the closing price (Close) series and the volume traded (Volume)
series. First, create a financial time series object from the data using ascii2fts. Look
at the portion of the time series covering the 3-month period between October 1, 1995
and December 31, 1995. At the same time fill any missing values due to holidays within
the time period specified:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

part_ibm = fillts(ibm('10/01/95::12/31/95'));
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Calculate and plot the OBV for IBM® stock along with the price range using these
commands:

obv_ibm = onbalvol(part_ibm);

subplot(2, 1, 1);

plot(obv_ibm);

title('On-Balance Volume of IBM Stock, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');

subplot(2, 1, 2);

highlow(part_ibm);

title('IBM Stock Prices, 10/01/95-12/31/95');

datetick('x', 'mm/dd/yy');
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See Also
adline | adosc | bollinger | chaikosc | chaikvolat | fpctkd | hhigh | llow
| macd | medprice | negvolidx | onbalvol | posvolidx | prcroc | pvtrend |
rsindex | spctkd | stochosc | tsaccel | tsmom | typprice | volroc | wclose |
willad | willpctr

Related Examples
• “Technical Indicators” on page 16-2
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SDEs

In this section...

“SDE Modeling” on page 17-2
“Trials vs. Paths” on page 17-3
“NTRIALS, NPERIODS, and NSTEPS” on page 17-3

SDE Modeling

Financial Toolbox enables you to model dependent financial and economic variables, such
as interest rates and equity prices, by performing Monte Carlo simulation of stochastic
differential equations (SDEs). The flexible architecture of the SDE engine provides
efficient simulation methods that allow you to create new simulation and derivative
pricing methods.

The following table lists tasks you can perform using the SDE functionality.

To perform this task ... Use these types of models ...

“Simulating Equity Prices” on page
17-34

• Geometric Brownian Motion (GBM)
• Constant Elasticity of Variance (CEV)
• Stochastic Differential Equation (SDE)
• Stochastic Differential Equations from

Drift and Diffusion Objects (SDEDDO)
• Stochastic Differential Equations from

Linear Drift (SDELD)
• Heston Stochastic Volatility (Heston)

“Simulating Interest Rates” on page
17-61

• Hull-White-Vasicek (HWV)
• Cox-Ingersoll-Ross (CIR)
• Stochastic Differential Equation (SDE)
• Stochastic Differential Equations from

Drift and Diffusion Objects (SDEDDO)
• Stochastic Differential Equations from

Mean-Reverting Drift (SDEMRD)
Models

17-2



 SDEs

To perform this task ... Use these types of models ...

“Pricing Equity Options” on page 17-56 Geometric Brownian Motion (GBM)
“Stratified Sampling” on page 17-73 All supported models
“Performance Considerations” on page
17-79

All supported models

Trials vs. Paths

Monte Carlo simulation literature often uses different terminology for the evolution of
the simulated variables of interest, such as trials and paths. The following sections use
the terms trial and path interchangeably.

However, there are situations where you should distinguish between these terms.
Specifically, the term trial often implies the result of an independent random experiment
(for example, the evolution of the price of a single stock or portfolio of stocks). Such an
experiment computes the average or expected value of a variable of interest (for example,
the price of a derivative security) and its associated confidence interval.

By contrast, the term path implies the result of a random experiment that is different or
unique from other results, but that may or may not be independent.

The distinction between these terms is usually unimportant. It may, however, be useful
when applied to variance reduction techniques that attempt to increase the efficiency of
Monte Carlo simulation by inducing dependence across sample paths. A classic example
involves pairwise dependence induced by antithetic sampling, and applies to more
sophisticated variance reduction techniques, such as stratified sampling.

NTRIALS, NPERIODS, and NSTEPS

SDE methods in the Financial Toolbox software use the parameters NTRIALS,
NPERIODS, and NSTEPS as follows:

• The input argument NTRIALS specifies the number of simulated trials or sample
paths to generate. This argument always determines the size of the third dimension
(the number of pages) of the output three-dimensional time series array Paths.
Indeed, in a traditional Monte Carlo simulation of one or more variables, each sample
path is independent and represents an independent trial.

• The parameters NPERIODS and NSTEPS represent the number of simulation
periods and time steps, respectively. Both periods and time steps are related to
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time increments that determine the exact sequence of observed sample times. The
distinction between these terms applies only to issues of accuracy and memory
management. For more information, see “Optimizing Accuracy: About Solution
Precision and Error” on page 17-81 and “Managing Memory” on page 17-79.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDE Class Hierarchy” on page 17-5
• “SDE Models” on page 17-8
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SDE Class Hierarchy
TheFinancial Toolbox SDE class structure represents a generalization and specialization
hierarchy. The top-level class provides the most general model interface and offers the
default Monte Carlo simulation and interpolation methods. In turn, derived classes offer
restricted interfaces that simplify model creation and manipulation while providing
detail regarding model structure.

The following table lists the SDE classes. The introductory examples in “Available
Models” on page 17-14 show how to use these classes to create objects associated with
univariate models. Although the Financial Toolbox SDE engine supports multivariate
models, univariate models facilitate object creation and display, and allow you to easily
associate inputs with object parameters.

SDE Classes

Class Name For More Information, See ...

SDE sde and “Base SDE Models” on page 17-16
Drift, Diffusion drift, diffusion, and “Overview” on page

17-19
SDEDDO sdeddo and “Drift and Diffusion Models” on page

17-19
SDELD sdeld and “Linear Drift Models” on page

17-23
CEV cev and “Creating Constant Elasticity of

Variance (CEV) Models” on page 17-26
BM bm and “Creating Brownian Motion (BM)

Models” on page 17-25
SDEMRD sdemrd and “Creating Stochastic Differential

Equations from Mean-Reverting Drift
(SDEMRD) Models” on page 17-28

GBM gbm and “Creating Geometric Brownian Motion
(GBM) Models” on page 17-27

HWV hwv and “Creating Hull-White/Vasicek (HWV)
Gaussian Diffusion Models” on page 17-30

CIR cir and “Creating Cox-Ingersoll-Ross (CIR)
Square Root Diffusion Models” on page 17-29
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Class Name For More Information, See ...

Heston heston and “Creating Heston Stochastic
Volatility Models” on page 17-32

The following figure illustrates the inheritance relationships among SDE classes.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25
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More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
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SDE Models

In this section...

“Introduction” on page 17-8
“Creating SDE Objects” on page 17-8
“Drift and Diffusion” on page 17-13
“Available Models” on page 17-14
“SDE Methods” on page 17-15

Introduction

Most models and utilities available with Monte Carlo Simulation of SDEs are
represented as MATLAB objects. Therefore, this documentation often uses the terms
model and object interchangeably.

However, although all models are represented as objects, not all objects represent
models. In particular, drift and diffusion objects are used in model specification, but
neither of these types of objects in and of themselves makes up a complete model. In most
cases, you do not need to create drift and diffusion objects directly, so you do not
need to differentiate between objects and models. It is important, however, to understand
the distinction between these terms.

In many of the following examples, most model parameters are evaluated or invoked like
any MATLAB function. Although it is helpful to examine and access model parameters as
you would data structures, think of these parameters as functions that perform actions.

For more information about MATLAB objects, see “Class to Manage Writable Files” in
the MATLAB documentation.

Creating SDE Objects

• “Constructing Objects” on page 17-9
• “Displaying Objects” on page 17-9
• “Assigning and Referencing Object Parameters” on page 17-9
• “Constructing and Evaluating Models” on page 17-9
• “Specifying SDE Simulation Parameters” on page 17-10
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Constructing Objects

You use constructors to create SDE objects.

For examples and more information, see:

• “Available Models” on page 17-14
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61

Displaying Objects

• Objects display like traditional MATLAB data structures.
• Displayed object parameters appear as nouns that begin with capital letters. In

contrast, parameters such as simulate and interpolate appear as verbs that
begin with lowercase letters, which indicate tasks to perform.

Assigning and Referencing Object Parameters

• Objects support referencing similar to data structures. For example, statements like
the following are generally valid:

A = obj.A 

• Objects support complete parameter assignment similar to data structures. For
example, statements like the following are generally valid:

obj.A = 3

• Objects do not support partial parameter assignment as data structures do. Therefore,
statements like the following are generally invalid:

obj.A(i,j) = 0.3   

Constructing and Evaluating Models

• You can construct objects of any model class only if enough information is available
to determine unambiguously the dimensionality of the model. Because various
class constructors offer unique input interfaces, some models require additional
information to resolve model dimensionality.

• You need only enter required input parameters in placeholder format, where a given
input argument is associated with a specific position in an argument list. You can
enter optional inputs in any order as parameter name-value pairs, where the name of
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a given parameter appears in single quotation marks and precedes its corresponding
value.

• Association of dynamic (time-variable) behavior with function evaluation, where time
and state (t,Xt) are passed to a common, published interface, is pervasive throughout
the SDE class system. You can use this function evaluation approach to model or
construct powerful analytics. For a simple example, see “Example: Univariate GBM
Models” on page 17-28.

Specifying SDE Simulation Parameters

The SDE engine allows the simulation of generalized multivariate stochastic processes,
and provides a flexible and powerful simulation architecture. The framework also
provides you with utilities and model classes that offer various parametric specifications
and interfaces. The architecture is fully multidimensional in both the state vector and
the Brownian motion, and offers both linear and mean-reverting drift-rate specifications.

You can specify most parameters as MATLAB arrays or as functions accessible by a
common interface, that supports general dynamic/nonlinear relationships common in
SDE simulation. Specifically, you can simulate correlated paths of any number of state
variables driven by a vector-valued Brownian motion of arbitrary dimensionality. This
simulation approximates the underlying multivariate continuous-time process using a
vector-valued stochastic difference equation.

Consider the following general stochastic differential equation:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• X is an NVARS-by-1 state vector of process variables (for example, short rates or
equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

The drift and diffusion rates, F and G, respectively, are general functions of a real-valued
scalar sample time t and state vector Xt. Also, static (non-time-variable) coefficients are
simply a special case of the more general dynamic (time-variable) situation, just as a
function can be a trivial constant; for example, f(t,Xt) = 4. The SDE in Equation 17-1 is
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useful in implementing derived classes that impose additional structure on the drift and
diffusion-rate functions.
Specifying User-Defined Functions as Model Parameters

Several examples in this documentation emphasize the evaluation of object parameters
as functions accessible by a common interface. In fact, you can evaluate object
parameters by passing to them time and state, regardless of whether the underlying
user-specified parameter is a function. However, it is helpful to compare the behavior of
object parameters that are specified as functions to that of user-specified noise and end-
of-period processing functions.

Model parameters that are specified as functions are evaluated in the same way as
user-specified random number (noise) generation functions. (For more information, see
“Evaluating Different Types of Functions” on page 17-12.) Model parameters that are
specified as functions are inputs to remove object constructors. User-specified noise and
processing functions are optional inputs to simulation methods.

Because class constructors offer unique interfaces, and simulation methods of any given
model have different implementation details, models often call parameter functions for
validation purposes a different number of times, or in a different order, during object
creation, simulation, and interpolation.

Therefore, although parameter functions, user-specified noise generation functions, and
end-of-period processing functions all share the same interface and are validated at
the same initial time and state (obj.StartTime  and obj.StartState), parameter
functions are not guaranteed to be invoked only once before simulation as noise
generation and end-of-period processing functions are. In fact, parameter functions might
not even be invoked the same number of times during a given Monte Carlo simulation
process.

In most applications in which you specify parameters as functions, they are simple,
deterministic functions of time and/or state. There is no need to count periods, count
trials, or otherwise accumulate information or synchronize time.

However, if parameter functions require more sophisticated bookkeeping, the correct way
to determine when a simulation has begun (or equivalently, to determine when model
validation is complete) is to determine when the input time and/or state differs from the
initial time and state (obj.StartTime  and obj.StartState, respectively). Because
the input time is a known scalar, detecting a change from the initial time is likely the
best choice in most situations. This is a general mechanism that you can apply to any
type of user-defined function.
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Evaluating Different Types of Functions

It is useful to compare the evaluation rules of user-specified noise generation functions
to those of end-of-period processing functions. These functions have the following in
common:

• They both share the same general interface, returning a column vector of appropriate
length when evaluated at the current time and state:

X f t Xt t= ( , )

z Z t X
t t

= ( , )

• Before simulation, the simulation method itself calls each function once to
validate the size of the output at the initial time and state, obj.StartTime, and
obj.StartState, respectively.

• During simulation, the simulation method calls each function the same number of
times: NPERIODS * NSTEPS.

However, there is an important distinction regarding the timing between these two types
of functions. It is most clearly drawn directly from the generic SDE model:

dX F t X dt G t X dWt t t t= +( , ) ( , )

This equation is expressed in continuous time, but the simulation methods approximate
the model in discrete time as:

X X F t X t G t X tZ t Xt t t t t t+
= + +

D
D D( , ) ( , ) ( , )

where Δt > 0 is a small (and not necessarily equal) period or time increment into the
future. This equation is often referred to as a Euler approximation. All functions on the
right-hand side are evaluated at the current time and state (t, Xt).

In other words, over the next small time increment, the simulation evolves the state
vector based only on information available at the current time and state. In this sense,
you can think of the noise function as a beginning-of-period function, or as a function
evaluated from the left. This is also true for any user-supplied drift or diffusion function.

In contrast, user-specified end-of-period processing functions are applied only at the
end of each simulation period or time increment. For more information about processing
functions, see “Pricing Equity Options” on page 17-56.
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Therefore, all simulation methods evaluate noise generation functions as:

z Z t X
t t

= ( , )

for t = t0, t0 + Δt, t0 + 2Δt, ..., T – Δt.

Yet simulation methods evaluate end-of-period processing functions as:

X f t Xt t= ( , )

for t = t0 + Δt, t0 + 2Δt, ..., T.

where t0 and T are the initial time (taken from the object) and the terminal time (derived
from inputs to the simulation method), respectively. These evaluations occur on all
sample paths. Therefore, during simulation, noise functions are never evaluated at the
final (terminal) time, and end-of-period processing functions are never evaluated at the
initial (starting) time.

Drift and Diffusion

For example, an SDE with a linear drift rate has the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where A is an NVARS-by-1 vector-valued function and B is an NVARS-by-NVARS
matrix-valued function.

As an alternative, consider a drift-rate specification expressed in mean-reverting form:

F t X S t L t Xt t( , ) ( )[ ( ) ]= -

where S is an NVARS-by-NVARS matrix-valued function of mean reversion speeds (that
is, rates of mean reversion), and L is an NVARS-by-1 vector-valued function of mean
reversion levels (that is, long run average level).

Similarly, consider the following diffusion-rate specification:

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a
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where D is an NVARS-by-NVARS diagonal matrix-valued function. Each diagonal
element of D is the corresponding element of the state vector raised to the corresponding
element of an exponent Alpha, which is also an NVARS-by-1 vector-valued function. V
is an NVARS-by-NBROWNS matrix-valued function of instantaneous volatility rates.
Each row of V corresponds to a particular state variable, and each column corresponds to
a particular Brownian source of uncertainty. V associates the exposure of state variables
with sources of risk.

The parametric specifications for the drift and diffusion-rate functions associate
parametric restrictions with familiar models derived from the general SDE class, and
provide coverage for many models.

The class system and hierarchy of the SDE engine use industry-standard terminology to
provide simplified interfaces for many models by placing user-transparent restrictions
on drift and diffusion specifications. This design allows you to mix and match existing
models, and customize drift-rate or diffusion-rate functions.

Available Models

For example, the following models are special cases of the general SDE model.

SDE Models

Model Name Specification

Brownian Motion (BM) dX A t dt V t dWt t= +( ) ( )

Geometric Brownian Motion (GBM) dX B t X dt V t X dW
t t t t

= +( ) ( )

Constant Elasticity of Variance (CEV)
dX B t X dt V t X dW

t t t

t

t
= +( ) ( )

( )a

Cox-Ingersoll-Ross (CIR)
dX S t L t X dt V t X dWt t t t= - +( )( ( ) ) ( )

1

2

Hull-White/Vasicek (HWV) dX S t L t X dt V t dWt t t= - +( )( ( ) ) ( )

Heston
dX B t X dt X X dW

t t t t t1 1 2 1 1= +( )

dX S t L t X dt V t X dWt t t t2 2 2 2= - +( )[ ( ) ] ( )
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SDE Methods

The sde class provides default simulation and interpolation methods for all derived
classes:

• simulate: High-level wrapper around the user-specified simulation method stored in
the Simulation property

• simByEuler: Default Euler approximation simulation method
• interpolate: Stochastic interpolation method (that is, Brownian bridge)

The gbm and hwv classes feature an additional method, simBySolution for a gbm object
and simBySolution for an hwv object, that simulates approximate solutions of diagonal-
drift processes.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Class Hierarchy” on page 17-5
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Base SDE Models

In this section...

“Overview” on page 17-16
“Example: Base SDE Models” on page 17-16

Overview

The base sde class:

dX F t X dt G t X dWt t t t= +( , ) ( , )

represents the most general model.

Tip The sde class is not an abstract class. You can instantiate sde objects directly to
extend the set of core models.

Constructing an sde object using the sde constructor requires the following inputs:

• A drift-rate function F. This function returns an NVARS-by-1 drift-rate vector when
run with the following inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

• A diffusion-rate function G. This function returns an NVARS-by-NBROWNS diffusion-
rate matrix when run with the inputs t and Xt.

Evaluating object parameters by passing (t, Xt) to a common, published interface allows
most parameters to be referenced by a common input argument list that reinforces
common method programming. You can use this simple function evaluation approach to
model or construct powerful analytics, as in the following example.

Example: Base SDE Models

Construct an sde object obj using the sde constructor to represent a univariate
geometric Brownian Motion model of the form:
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dX X dt X dW
t t t t

= +0 1 0 3. .

1 Create drift and diffusion functions that are accessible by the common (t,Xt)
interface:

F = @(t,X) 0.1 * X;

G = @(t,X) 0.3 * X;

2 Pass the functions to thesde constructor to create an object obj of class sde:

obj = sde(F, G)    % dX = F(t,X)dt + G(t,X)dW

obj = 

   Class SDE: Stochastic Differential Equation

   -------------------------------------------

     Dimensions: State = 1, Brownian = 1

   -------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

obj displays like a MATLAB structure, with the following information:

• The object's class
• A brief description of the object
• A summary of the dimensionality of the model

The object's displayed parameters are as follows:

• StartTime: The initial observation time (real-valued scalar)
• StartState: The initial state vector (NVARS-by-1 column vector)
• Correlation: The correlation structure between Brownian process
• Drift: The drift-rate function F(t,Xt)
• Diffusion: The diffusion-rate function G(t,Xt)
• Simulation: The simulation method or function.

Of these displayed parameters, only Drift and Diffusion are required inputs.
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17 Stochastic Differential Equations

The only exception to the (t, Xt) evaluation interface is Correlation. Specifically, when
you enter Correlation as a function, the SDE engine assumes that it is a deterministic
function of time, C(t). This restriction on Correlation as a deterministic function of
time allows Cholesky factors to be computed and stored before the formal simulation.
This inconsistency dramatically improves run-time performance for dynamic correlation
structures. If Correlation is stochastic, you can also include it within the simulation
architecture as part of a more general random number generation function.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Drift and Diffusion Models

In this section...

“Overview” on page 17-19
“Example: Drift and Diffusion Rates” on page 17-20
“Example: SDEDDO Models” on page 17-21

Overview

Because base-level SDE objects accept drift and diffusion objects in lieu of functions
accessible by (t, Xt), you can create SDE objects with combinations of customized drift or
diffusion functions and objects. The drift anddiffusion rate classes encapsulate the details
of input parameters to optimize run-time efficiency for any given combination of input
parameters.

Although drift and diffusion objects differ in the details of their representation, they
are identical in their basic implementation and interface. They look, feel like, and are
evaluated as functions:

• The drift class allows you to create drift-rate objects of the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt)

interface.
• Similarly, the diffusion class allows you to create diffusion-rate objects:

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
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• Each diagonal element of D is the corresponding element of the state vector raised
to the corresponding element of an exponent Alpha, which is an NVARS-by-1
vector-valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays
of appropriate dimension.

Example: Drift and Diffusion Rates

In this example, you create drift and diffusion rate objects using the drift and
diffusion constructors to create the same model as in “Example: Base SDE Models” on
page 17-16.

Create a drift-rate function F and a diffusion-rate function G:

F = drift(0, 0.1)      % Drift rate function F(t,X)

G = diffusion(1, 0.3)  % Diffusion rate function G(t,X)

F = 

   Class DRIFT: Drift Rate Specification  

   -------------------------------------  

      Rate: drift rate function F(t,X(t)) 

         A: 0

         B: 0.1

G = 

   Class DIFFUSION: Diffusion Rate Specification 

   --------------------------------------------- 

       Rate: diffusion rate function G(t,X(t))  

      Alpha: 1

      Sigma: 0.3

Each object displays like a MATLAB structure and contains supplemental information,
namely, the object's class and a brief description. However, in contrast to the SDE
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representation, a summary of the dimensionality of the model does not appear, because
drift and diffusion classes create model components rather than models. Neither F nor G
contains enough information to characterize the dimensionality of a problem.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Again, Alpha and Sigma enable you to query the original inputs. (The combined effect of
the individual Alpha and Sigma parameters is fully encapsulated by the function stored
in Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Example: SDEDDO Models

The sdeddo class derives from the basesde class. To use this class, you must pass drift
and diffusion-rate objects to the sdeddo constructor.

1 Create drift and diffusion rate objects using the drift and diffusion constructors:

F = drift(0, 0.1);      % Drift rate function F(t,X)

G = diffusion(1, 0.3);  % Diffusion rate function G(t,X)

2 Pass these objects to the sdeddo constructor:

obj = sdeddo(F, G)      % dX = F(t,X)dt + G(t,X)dW

obj = 
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   Class SDEDDO: SDE from Drift and Diffusion Objects

   --------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   --------------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 0

              B: 0.1

          Alpha: 1

          Sigma: 0.3

In this example, the object displays the additional parameters associated with input
drift and diffusion objects.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Linear Drift Models

In this section...

“Overview” on page 17-23
“Example: SDELD Models” on page 17-23

Overview

The sdeld class derives from the sdeddo class. These objects allow you to simulate
correlated paths of NVARS state variables expressed in linear drift-rate form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )a

sdeld objects provide a parametric alternative to the mean-reverting drift form, as
discussed in “Example: SDEMRD Models” on page 17-29. They also provide an
alternative interface to the sdeddo parent class, because you can create an object without
first having to create its drift and diffusion-rate components.

Example: SDELD Models

Create the same model as in “Example: Base SDE Models” on page 17-16 using the
sdeld constructor:

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)

obj = 

   Class SDELD: SDE with Linear Drift

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 0
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              B: 0.1

          Alpha: 1

          Sigma: 0.3

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Parametric Models

In this section...

“Creating Brownian Motion (BM) Models” on page 17-25
“Example: BM Models” on page 17-25
“Creating Constant Elasticity of Variance (CEV) Models” on page 17-26
“Creating Geometric Brownian Motion (GBM) Models” on page 17-27
“Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD)
Models” on page 17-28
“Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models” on page 17-29
“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 17-30
“Creating Heston Stochastic Volatility Models” on page 17-32

Creating Brownian Motion (BM) Models

The Brownian Motion (BM) model (bm) derives directly from the linear drift (sdeld) class:

dX t dt V t dW
t t

= +m( ) ( )

Example: BM Models

Create a univariate Brownian motion (bm) object to represent the model using the bm
constructor:

dX dW
t t

= 0 3. .

obj = bm(0, 0.3) % (A = Mu, Sigma)

obj = 

   Class BM: Brownian Motion

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0
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     StartState: 0

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

             Mu: 0

          Sigma: 0.3

bm objects display the parameter A as the more familiar Mu.

Thebm class also provides an overloaded Euler simulation method that improves run-
time performance in certain common situations. This specialized method is invoked
automatically only if all the following conditions are met:

• The expected drift, or trend, rate Mu is a column vector.
• The volatility rate, Sigma, is a matrix.
• No end-of-period adjustments and/or processes are made.
• If specified, the random noise process Z is a three-dimensional array.
• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.

Creating Constant Elasticity of Variance (CEV) Models

The Constant Elasticity of Variance (CEV) model (cev) also derives directly from the
linear drift (sdeld) class:

dX t X dt D t X V t dW
t t t

t

t
= +m

a( ) ( , ) ( )( )

The cev class constrains A to an NVARS-by-1 vector of zeros. D is a diagonal matrix whose
elements are the corresponding element of the state vector X, raised to an exponent α(t).

Example: Univariate CEV Models

Create a univariate cev object to represent the model using the cev constructor:

dX X X dW
t t t t

= +0 25 0 3

1

2. . .

obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)
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obj = 

   Class CEV: Constant Elasticity of Variance

   ------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.25

          Alpha: 0.5

          Sigma: 0.3

cev and gbm objects display the parameter B as the more familiar Return.

Creating Geometric Brownian Motion (GBM) Models

The Geometric Brownian Motion (GBM) model (gbm) derives directly from the CEV (cev)
model:

dX t X dt D t X V t dW
t t t t

= +m( ) ( , ) ( )

Compared to the cev object, a gbm object constrains all elements of the alpha exponent
vector to one such that D is now a diagonal matrix with the state vector X along the main
diagonal.

The gbm class also provides two simulation methods that can be used by separable
models:

• An overloaded Euler simulation method that improves run-time performance in
certain common situations. This specialized method is invoked automatically only if
all the following conditions are true:

• The expected rate of return (Return) is a diagonal matrix.
• The volatility rate (Sigma) is a matrix.
• No end-of-period adjustments/processes are made.
• If specified, the random noise process Z is a three-dimensional array.
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• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.
• An approximate analytic solution (simBySolution) obtained by applying a Euler

approach to the transformed (using Ito's formula) logarithmic process. In general, this
is not the exact solution to this GBM model, as the probability distributions of the
simulated and true state vectors are identical only for piecewise constant parameters.
If the model parameters are piecewise constant over each observation period, the
state vector Xt is lognormally distributed and the simulated process is exact for the
observation times at which Xt is sampled.

Example: Univariate GBM Models

Create a univariate gbm object to represent the model using the gbm constructor:

dX X dt X dW
t t t t

= +0 25 0 3. .

obj = gbm(0.25, 0.3)  % (B = Return, Sigma)

obj = 

   Class GBM: Generalized Geometric Brownian Motion

   ------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.25

          Sigma: 0.3

Creating Stochastic Differential Equations from Mean-Reverting Drift
(SDEMRD) Models

The sdemrd class derives directly from the sdeddo class. It provides an interface in which
the drift-rate function is expressed in mean-reverting drift form:

dX S t L t X dt D t X V t dWt t t
t

t= - +( )[ ( ) ] ( , ) ( )( )a
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sdemrd objects provide a parametric alternative to the linear drift form by
reparameterizing the general linear drift such that:

A t S t L t B t S t( ) ( ) ( ), ( ) ( )= = -

Example: SDEMRD Models

Create an sdemrd object using the sdemrd constructor with a square root exponent to
represent the model:

dX X dt X dW
t t t t

= - +0 2 0 1 0 05

1

2. ( . ) . .

obj = sdemrd(0.2, 0.1, 0.5, 0.05)

    % (Speed, Level, Alpha, Sigma)

obj = 

   Class SDEMRD: SDE with Mean-Reverting Drift

   -------------------------------------------

     Dimensions: State = 1, Brownian = 1

   -------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Alpha: 0.5

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

sdemrd objects display the familiar Speed and Level parameters instead of A and B.

Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models

The Cox-Ingersoll-Ross (CIR) short rate class, cir, derives directly from the SDE with
mean-reverting drift (sdemrd) class:
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dX S t L t X dt D t X V t dWt t t t= - +( )[ ( ) ] ( , ) ( )

1

2

where D is a diagonal matrix whose elements are the square root of the corresponding
element of the state vector.

Example: CIR Models

Create a cir object using the cir constructor to represent the same model as in
“Example: SDEMRD Models” on page 17-29:

obj = cir(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 

   Class CIR: Cox-Ingersoll-Ross

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

Although the last two objects are of different classes, they represent the same
mathematical model. They differ in that you create the cir object by specifying only
three input arguments. This distinction is reinforced by the fact that the Alpha
parameter does not display – it is defined to be 1/2.

Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models

The Hull-White/Vasicek (HWV) short rate class, hwv, derives directly from SDE with
mean-reverting drift (sdemrd) class:

dX S t L t X dt V t dWt t t= - +( )[ ( ) ] ( )
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Example: HWV Models

Using the same parameters as in the previous example, create an hwv object using the
hwv constructor to represent the model:

dX X dt dW
t t t

= - +0 2 0 1 0 05. ( . ) . .

obj = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 

   Class HWV: Hull-White/Vasicek

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

cir and hwv constructors share the same interface and display methods. The only
distinction is that cir and hwv model objects constrain Alpha exponents to 1/2 and
0, respectively. Furthermore, thehwv class also provides an additional method that
simulates approximate analytic solutions (simBySolution) of separable models. This
method simulates the state vector Xt using an approximation of the closed-form solution
of diagonal drift HWV models. Each element of the state vector Xt is expressed as the sum
of NBROWNS correlated Gaussian random draws added to a deterministic time-variable
drift.

When evaluating expressions, all model parameters are assumed piecewise constant
over each simulation period. In general, this is not the exact solution to this hwv model,
because the probability distributions of the simulated and true state vectors are identical
only for piecewise constant parameters. If S(t,Xt), L(t,Xt), and V(t,Xt) are piecewise
constant over each observation period, the state vector Xt is normally distributed, and the
simulated process is exact for the observation times at which Xt is sampled.
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Hull-White vs. Vasicek Models

Many references differentiate between Vasicek models and Hull-White models. Where
such distinctions are made, Vasicek parameters are constrained to be constants, while
Hull-White parameters vary deterministically with time. Think of Vasicek models in
this context as constant-coefficient Hull-White models and equivalently, Hull-White
models as time-varying Vasicek models. However, from an architectural perspective, the
distinction between static and dynamic parameters is trivial. Since both models share
the same general parametric specification as previously described, a singlehwv class
encompasses the models.

Creating Heston Stochastic Volatility Models

The Heston (heston) class derives directly from SDE from Drift and Diffusion (sdeddo)
class. Each Heston model is a bivariate composite model, consisting of two coupled
univariate models:

dX B t X dt X X dW
t t t t t1 1 2 1 1= +( )

dX S t L t X dt V t X dWt t t t2 2 2 2= - +( )[ ( ) ] ( )

Equation 17-5 is typically associated with a price process. Equation 17-6 represents the
evolution of the price process' variance. Models of type heston are typically used to price
equity options.

Example: Heston Models

Create a heston object using the heston constructor to represent the model:

dX X dt X X dW

dX X dt X dW

t t t t t

t t t t

1 1 2 1 1

2 2 2 2

0 1

0 2 0 1 0 05

= +

= - +

.

. [ . ] .

obj = heston (0.1, 0.2, 0.1, 0.05)

obj = 

   Class HESTON: Heston Bivariate Stochastic Volatility

   ----------------------------------------------------
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     Dimensions: State = 2, Brownian = 2

   ----------------------------------------------------

      StartTime: 0

     StartState: 1 (2x1 double array) 

    Correlation: 2x2 diagonal double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.1

          Speed: 0.2

          Level: 0.1

     Volatility: 0.05

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Simulating Equity Prices

In this section...

“Simulating Multidimensional Market Models” on page 17-34
“Inducing Dependence and Correlation” on page 17-48
“Dynamic Behavior of Market Parameters” on page 17-51
“Pricing Equity Options” on page 17-56

Simulating Multidimensional Market Models

This example compares alternative implementations of a separable multivariate
geometric Brownian motion process that is often referred to as a multidimensional
market model. It simulates sample paths of an equity index portfolio using sde, sdeddo,
sdeld, cev, and gbm objects.

The market model to simulate is:

dX X dt D X dW
t t t t

= +m s( )

where:

• μ is a diagonal matrix of expected index returns.
• D is a diagonal matrix with Xt along the diagonal.
• σ is a diagonal matrix of standard deviations of index returns.

Representing Market Models Using SDE Objects

Create an sde object using the sde constructor to represent the equity market model.

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:

returns =  tick2ret(prices);
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3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

4 Create simple anonymous drift and diffusion functions accessible by (t, Xt):

F = @(t,X) diag(expReturn) * X;

G = @(t,X) diag(X) * diag(sigma);

5 Use these functions with the sde constructor to create an sde object to represent the
market model in Equation 17-7:

SDE = sde(F, G, 'Correlation', correlation, 'StartState', X)

SDE = 

   Class SDE: Stochastic Differential Equation

   -------------------------------------------

     Dimensions: State = 6, Brownian = 6

   -------------------------------------------

      StartTime: 0

     StartState: 100 (6x1 double array) 

    Correlation: 6x6 double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

The sde constructor requires additional information to determine the dimensionality
of the model, because the functions passed to thesde constructor are known only by
their (t, Xt) interface. In other words, thesde constructor requires only two inputs:
a drift-rate function and a diffusion-rate function, both accessible by passing the
sample time and the corresponding state vector (t, Xt).

In this case, this information is insufficient to determine unambiguously
the dimensionality of the state vector and Brownian motion. You resolve the
dimensionality by specifying an initial state vector, StartState. The SDE engine
has assigned the default simulation method, simByEuler, to the Simulation
parameter.
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Representing Market Models Using SDEDDO Objects

Create an sdeddo object using the sdeddo constructor to represent the market model in
Equation 17-7:

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:

returns =  tick2ret(prices);

3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

4 Create drift and diffusion objects using thedrift and diffusion constructors:

F = drift(zeros(nVariables,1), diag(expReturn))

G = diffusion(ones(nVariables,1), diag(sigma))

F = 

   Class DRIFT: Drift Rate Specification  

   -------------------------------------  

      Rate: drift rate function F(t,X(t)) 

         A: 6x1 double array

         B: 6x6 diagonal double array

G = 

   Class DIFFUSION: Diffusion Rate Specification 

   --------------------------------------------- 

       Rate: diffusion rate function G(t,X(t))  

      Alpha: 6x1 double array

      Sigma: 6x6 diagonal double array

5 Pass the drift and diffusion objects to the sdeddo constructor:

SDEDDO = sdeddo(F, G, 'Correlation', correlation, ...

'StartState', 100)
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SDEDDO = 

   Class SDEDDO: SDE from Drift and Diffusion Objects

   --------------------------------------------------

     Dimensions: State = 6, Brownian = 6

   --------------------------------------------------

      StartTime: 0

     StartState: 100 (6x1 double array) 

    Correlation: 6x6 double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 6x1 double array

              B: 6x6 diagonal double array

          Alpha: 6x1 double array

          Sigma: 6x6 diagonal double array

The sdeddo constructor requires two input objects that provide more information
than the two functions from step 4 of “Representing Market Models Using SDE
Objects” on page 17-34. Thus, the dimensionality is more easily resolved. In fact,
the initial price of each index is as a scalar (StartState = 100). This is in contrast
to thesde constructor, which required an explicit state vector to uniquely determine
the dimensionality of the problem.

Once again, the class of each object is clearly identified, and parameters display like
fields of a structure. In particular, the Rate parameter of drift and diffusion objects
is identified as a callable function of time and state, F(t,Xt) and G(t,Xt), respectively.
The additional parameters, A, B, Alpha, and Sigma, are arrays of appropriate
dimension, indicating static (non-time-varying) parameters. In other words, A(t,Xt),
B(t,Xt), Alpha(t,Xt), and Sigma(t,Xt) are constant functions of time and state.

Representing Market Models Using SDELD, CEV, and GBM Objects

Create sdeld, cev, andgbm objects to represent the market model in Equation 17-7.

1 Load the Data_GlobalIdx2 data set:

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert daily prices to returns:
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returns =  tick2ret(prices);

3 Compute data statistics to input to simulation methods:

nVariables  = size(returns, 2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

4 Create an sdeld object using the sdeld constructor:

SDELD = sdeld(zeros(nVariables,1), diag(expReturn), ...

    ones(nVariables,1), diag(sigma),'Correlation', ...

    correlation, 'StartState', X)

SDELD = 

   Class SDELD: SDE with Linear Drift

   ----------------------------------------

     Dimensions: State = 6, Brownian = 6

   ----------------------------------------

      StartTime: 0

     StartState: 100 (6x1 double array) 

    Correlation: 6x6 double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 6x1 double array

              B: 6x6 diagonal double array

          Alpha: 6x1 double array

          Sigma: 6x6 diagonal double array

5 Create a cev object using the cev constructor:

CEV = cev(diag(expReturn), ones(nVariables,1), ...

    diag(sigma), 'Correlation', correlation, ...

    'StartState', X)

CEV = 

   Class CEV: Constant Elasticity of Variance
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   ------------------------------------------

     Dimensions: State = 6, Brownian = 6

   ------------------------------------------

      StartTime: 0

     StartState: 100 (6x1 double array) 

    Correlation: 6x6 double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 6x6 diagonal double array

          Alpha: 6x1 double array

          Sigma: 6x6 diagonal double array

6 Create a gbm object using the gbm constructor:

GBM = gbm(diag(expReturn), diag(sigma), 'Correlation', ...

    correlation, 'StartState', X)

GBM = 

   Class GBM: Generalized Geometric Brownian Motion

   ------------------------------------------------

     Dimensions: State = 6, Brownian = 6

   ------------------------------------------------

      StartTime: 0

     StartState: 100 (6x1 double array) 

    Correlation: 6x6 double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 6x6 diagonal double array

          Sigma: 6x6 diagonal double array

Note the succession of interface restrictions:

• sdeld objects require you to specify A, B, Alpha, and Sigma.
• cev objects require you to specify Return, Alpha, and Sigma.
• gbm objects require you to specify only Return and Sigma.

However, all three objects represent the same multidimensional market model.

Also, cev and gbm objects display the underlying parameter B derived from the sdeld
class as Return. This is an intuitive name commonly associated with equity models.
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Simulating Equity Markets Using the Default Simulate Method

1 Load the Data_GlobalIdx2 data set and use the sde constructor to specify the SDE
model as in “Representing Market Models Using SDE Objects” on page 17-34.

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;

G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...

    correlation, 'StartState', X);

2 Simulate a single path of correlated equity index prices over one calendar year
(defined as approximately 250 trading days) using the defaultsimulate method:

nPeriods = 249;      % # of simulated observations

dt       =   1;      % time increment = 1 day

rng(142857,'twister')

[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt);

whos S

  Name        Size            Bytes  Class     Attributes

  S         250x6             12000  double              

The output array S is a 250-by-6 = (NPERIODS + 1-by-nVariables-by-1) array with
the same initial value, 100, for all indices. Each row of S is an observation of the
state vector Xt at time t.

3 Plot the simulated paths.
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plot(T, S), xlabel('Trading Day'), ylabel('Price')

title('Single Path of Multi-Dimensional Market Model')

legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'}, ...

    'Location', 'Best')

Simulating Equity Markets Using the SimByEuler Method

Because simByEuler is a valid simulation method, you can call it directly, overriding the
Simulation parameter's current method or function (which in this case is simByEuler).
The following statements produce the same price paths as generated in “Simulating
Equity Markets Using the Default Simulate Method” on page 17-40:
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1 Load the Data_GlobalIdx2 data set and use the sde constructor to specify the SDE
model as in “Representing Market Models Using SDE Objects” on page 17-34.

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;

G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...

    correlation, 'StartState', X);

2 Simulate a single path using simByEuler.

nPeriods = 249;      % # of simulated observations

dt       =   1;      % time increment = 1 day

rng(142857,'twister')

[S,T] = simByEuler(SDE, nPeriods, 'DeltaTime', dt);

3 Simulate 10 trials with the same initial conditions, and examine S:

rng(142857,'twister')

[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);

whos S

  Name        Size               Bytes  Class     Attributes

  S         250x6x10            120000  double              

Now the output array S is an NPERIODS + 1-by-nVariables-by-nTrials time
series array.

4 Plot the first paths.
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plot(T, S(:,:,1)), xlabel('Trading Day'), ylabel('Price')

title('First Path of Multi-Dimensional Market Model')

legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'},...

    'Location', 'Best')

The first realization of S is identical to the paths in the plot.

Simulating Equity Markets Using GBM Simulation Methods

Finally, consider simulation using GBM simulation methods. Separable GBM models have
two specific simulation methods:
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• An overloaded Euler simulation method, simByEuler, designed for optimal
performance

• A method, simBySolution, provides an approximate solution of the underlying
stochastic differential equation, designed for accuracy

1 Load the Data_GlobalIdx2 data set and use the sde constructor to specify the SDE
model as in “Representing Market Models Using SDE Objects” on page 17-34,
and the GBM model as in “Representing Market Models Using SDELD, CEV, and
GBM Objects” on page 17-37.

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;

G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...

    correlation, 'StartState', X);

GBM = gbm(diag(expReturn),diag(sigma), 'Correlation', ...

    correlation, 'StartState', X);

2 To illustrate the performance benefit of the overloaded Euler approximation method,
increase the number of trials to 10000.

nPeriods = 249;      % # of simulated observations

dt       =   1;      % time increment = 1 day

rng(142857,'twister')

[X,T] = simulate(GBM, nPeriods, 'DeltaTime', dt, ...

    'nTrials', 10000);

whos X
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  Name        Size                     Bytes  Class     Attributes

  X         250x6x10000            120000000  double              

The output X is a much larger time series array.
3 Using this sample size, examine the terminal distribution of Canada's TSX

Composite to verify qualitatively the lognormal character of the data.

histogram(squeeze(X(end,1,:)), 30), xlabel('Price'), ylabel('Frequency')

title('Histogram of Prices after One Year: Canada (TSX Composite)')

4 Simulate 10 trials of the solution and plot the first trial:
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rng(142857,'twister')

[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);

rng(142857,'twister')

[X,T] = simBySolution(GBM, nPeriods,...

    'DeltaTime', dt, 'nTrials', 10);

subplot(2,1,1)

plot(T, S(:,:,1)), xlabel('Trading Day'),ylabel('Price')

title('1st Path of Multi-Dim Market Model:Euler Approximation')

subplot(2,1,2)

plot(T, X(:,:,1)), xlabel('Trading Day'),ylabel('Price')

title('1st Path of Multi-Dim Market Model:Analytic Solution')
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In this example, all parameters are constants, and simBySolution does indeed
sample the exact solution. The details of a single index for any given trial show that
the price paths of the Euler approximation and the exact solution are close, but not
identical.

5 The following plot illustrates the difference between the two methods:

subplot(1,1,1)

plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')

xlabel('Trading Day'), ylabel('Price Difference')

title('Euler Approx Minus Exact Solution:Canada(TSX Composite)')
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The simByEuler Euler approximation literally evaluates the stochastic differential
equation directly from the equation of motion, for some suitable value of the dt time
increment. This simple approximation suffers from discretization error. This error can be
attributed to the discrepancy between the choice of the dt time increment and what in
theory is a continuous-time parameter.

The discrete-time approximation improves as DeltaTime approaches zero. The Euler
method is often the least accurate and most general method available. All models
shipped in the simulation suite have this method.

In contrast, thesimBySolution method provides a more accurate description of the
underlying model. This method simulates the price paths by an approximation of the
closed-form solution of separable models. Specifically, it applies a Euler approach to a
transformed process, which in general is not the exact solution to this GBM model. This is
because the probability distributions of the simulated and true state vectors are identical
only for piecewise constant parameters.

When all model parameters are piecewise constant over each observation period, the
simulated process is exact for the observation times at which the state vector is sampled.
Since all parameters are constants in this example,simBySolution does indeed sample
the exact solution.

For an example of how to use simBySolution to optimize the accuracy of solutions, see
“Optimizing Accuracy: About Solution Precision and Error” on page 17-81.

Inducing Dependence and Correlation

This example illustrates two techniques that induce dependence between individual
elements of a state vector. It also illustrates the interaction between Sigma and
Correlation.

The first technique generates correlated Gaussian variates to form a Brownian motion
process with dependent components. These components are then weighted by a diagonal
volatility or exposure matrix Sigma.

The second technique generates independent Gaussian variates to form a standard
Brownian motion process, which is then weighted by the lower Cholesky factor of the
desired covariance matrix. Although these techniques can be used on many models, the
relationship between them is most easily illustrated by working with a separable GBM
model (see Simulating Equity Prices Using GBM Simulation Methods). The market
model to simulate is:
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dX X dt X dW
t t t t

= +m s

where μ is a diagonal matrix.

1 Load the data set:

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

2 Convert the daily prices to returns:

returns =  tick2ret(prices);

3 Specify Sigma and Correlation using the first technique:

a Using the first technique, specify Sigma as a diagonal matrix of asset return
standard deviations:

expReturn   = diag(mean(returns));  % expected return vector

sigma       = diag(std(returns));   % volatility of returns

b Specify Correlation as the sample correlation matrix of those returns. In this
case, the components of the Brownian motion are dependent:

correlation = corrcoef(returns);

GBM1        = gbm(expReturn,sigma,'Correlation',...

                  correlation);

4 Specify Sigma and Correlation using the second technique:

a Using the second technique, specify Sigma as the lower Cholesky factor of the
asset return covariance matrix:

covariance = cov(returns);

sigma      = cholcov(covariance)';

b Set Correlation to an identity matrix:

GBM2       = gbm(expReturn,sigma);

Here, sigma captures both the correlation and magnitude of the asset return
uncertainty. In contrast to the first technique, the components of the Brownian
motion are independent. Also, this technique accepts the default assignment of
an identity matrix to Correlation, and is more straightforward.
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5 Simulate a single trial of 1000 observations (roughly four years of daily data) using
both techniques. By default, all state variables start at 1:

rng(22814,'twister')

[X1,T] = simByEuler(GBM1,1000);  % correlated Brownian motion

rng(22814,'twister')

[X2,T] = simByEuler(GBM2,1000);  % standard Brownian motion

When based on the same initial random number state, each technique generates
identical asset price paths:

subplot(2,1,1)

plot(T, X1)

title('Sample Paths from Correlated Brownian Motion')

ylabel('Asset Price')

subplot(2,1,2)

plot(T, X2)

title('Sample Paths from Standard Brownian Motion')

xlabel('Trading Day')

ylabel('Asset Price')

17-50



 Simulating Equity Prices

Dynamic Behavior of Market Parameters

As discussed in “Creating SDE Objects” on page 17-8, object parameters may be
evaluated as if they are MATLAB functions accessible by a common interface. This
accessibility provides the impression of dynamic behavior regardless of whether the
underlying parameters are truly time-varying. Furthermore, because parameters
are accessible by a common interface, seemingly simple linear constructs may in fact
represent complex, nonlinear designs.

For example, consider a univariate geometric Brownian motion (GBM) model of the form:

dX t X dt t X dW
t t t t

= +m s( ) ( )
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In this model, the return, μ(t), and volatility, σ(t), are generally dynamic parameters of
time alone. However, when creating a gbm object to represent the underlying model, such
dynamic behavior must be accessible by the common (t, Xt) interface. This reflects the
fact that GBM models (and others) are restricted parameterizations that derive from the
general SDE class.

As a convenience, you can specify parameters of restricted models, such as GBM models,
as traditional MATLAB arrays of appropriate dimension. In this case, such arrays
represent a static special case of the more general dynamic situation accessible by the (t,
Xt) interface.

Moreover, when you enter parameters as functions, object constructors can verify that
they return arrays of correct size by evaluating them at the initial time and state.
Otherwise, object constructors have no knowledge of any particular functional form.

The following example illustrates a technique that includes dynamic behavior by
mapping a traditional MATLAB time series array to a callable function with a (t, Xt)
interface. It also compares the function with an otherwise identical model with constant
parameters.

Because time series arrays represent dynamic behavior that must be captured by
functions accessible by the (t, Xt) interface, you need utilities to convert traditional time
series arrays into callable functions of time and state. The following example shows how
to do this using the conversion function ts2func (time series to function).

1 Load the data. Load a daily historical data set containing 3-month Euribor rates
and closing index levels of France's CAC 40 spanning the time interval February 7,
2001 to April 24, 2006:

load Data_GlobalIdx2

2 Simulate risk-neutral sample paths. Simulate risk-neutral sample paths of the
CAC 40 index using a geometric Brownian motion (GBM) model:

dX r t X dt X dW
t t t t

= +( ) s

where r(t) represents evolution of the risk-free rate of return.

Furthermore, assume that you need to annualize the relevant information derived
from the daily data (annualizing the data is optional, but is useful for comparison to
other examples), and that each calendar year comprises 250 trading days:
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dt      = 1/250;

returns = tick2ret(Dataset.CAC);

sigma   = std(returns)*sqrt(250);

yields  = Dataset.EB3M;

yields  = 360*log(1 + yields);

3 Compare the sample paths from two risk-neutral historical simulation
approaches. Compare the resulting sample paths obtained from two risk-neutral
historical simulation approaches, where the daily Euribor yields serve as a proxy for
the risk-free rate of return.

a The first approach specifies the risk-neutral return as the sample average of
Euribor yields, and therefore assumes a constant (non-dynamic) risk-free return:

nPeriods = length(yields);  % Simulated observations

rng(5713,'twister')

obj    = gbm(mean(yields),diag(sigma),'StartState',100)

[X1,T] = simulate(obj,nPeriods,'DeltaTime',dt);

obj = 

   Class GBM: Generalized Geometric Brownian Motion

   ------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------------

      StartTime: 0

     StartState: 100

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.0278117

          Sigma: 0.231906

b In contrast, the second approach specifies the risk-neutral return as the
historical time series of Euribor yields. It therefore assumes a dynamic, yet
deterministic, rate of return; this example does not illustrate stochastic interest
rates. To illustrate this dynamic effect, use the ts2func utility:

r = ts2func(yields,'Times',(0:nPeriods - 1)');

ts2func packages a specified time series array inside a callable function of time
and state, and synchronizes it with an optional time vector. For instance:
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r(0,100)

ans =

    0.0470

evaluates the function at (t = 0, X t = 100) and returns the first observed Euribor
yield. However, you can also evaluate the resulting function at any intermediate
time t and state Xt:

r(7.5,200)

ans =

    0.0472

Furthermore, the following command produces the same result when called with
time alone:

r(7.5)

ans =

    0.0472

The equivalence of these last two commands highlights some important features.

When you specify parameters as functions, they must evaluate properly when
passed a scalar, real-valued sample time (t), and an NVARS-by-1 state vector
(Xt). They must also generate an array of appropriate dimensions, which in
the first case is a scalar constant, and in the second case is a scalar, piecewise
constant function of time alone.

You are not required to use either time (t) or state (Xt). In the current example,
the function evaluates properly when passed time followed by state, thereby
satisfying the minimal requirements. The fact that it also evaluates correctly
when passed only time simply indicates that the function does not require the
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state vector Xt. The important point to make is that it works when you pass it (t,
Xt).

Furthermore, the ts2func function performs a zero-order-hold (ZOH) piecewise
constant interpolation. The notion of piecewise constant parameters is pervasive
throughout the SDE architecture, and is discussed in more detail in “Optimizing
Accuracy: About Solution Precision and Error” on page 17-81.

4 Perform a second simulation using the same initial random number state.
Complete the comparison by performing the second simulation using the same initial
random number state:

rng(5713,'twister')

obj = gbm(r, diag(sigma),'StartState',100)

X2  = simulate(obj,nPeriods,'DeltaTime',dt);

obj = 

   Class GBM: Generalized Geometric Brownian Motion

   ------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------------

      StartTime: 0

     StartState: 100

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: function ts2func/vector2Function

          Sigma: 0.231906

5 Compare the two simulation trials. Plot the series of risk-free reference rates to
compare the two simulation trials:

subplot(2,1,1)

plot(dates,100*yields)

datetick('x')

xlabel('Date')

ylabel('Annualized Yield (%)')

title('Risk Free Rate(3-Mo Euribor Continuously-Compounded)')

subplot(2,1,2)

plot(T,X1,'red',T,X2,'blue')

xlabel('Time (Years)')

ylabel('Index Level')
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title('Constant vs. Dynamic Rate of Return: CAC 40')

legend({'Constant Interest Rates' 'Dynamic Interest Rates'},...

    'Location', 'Best')

The paths are close but not exact. The blue line in the last plot uses all the historical
Euribor data, and illustrates a single trial of a historical simulation.

Pricing Equity Options

As discussed in “Ensuring Positive Interest Rates” on page 17-68, all simulation and
interpolation methods allow you to specify one or more functions of the form:

X f t Xt t= ( , )
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to evaluate at the end of every sample time.

The related example illustrates a simple, common end-of-period processing function to
ensure nonnegative interest rates. This example illustrates a processing function that
allows you to avoid simulation outputs altogether.

Consider pricing European stock options by Monte Carlo simulation within a Black-
Scholes-Merton framework. Assume that the stock has the following characteristics:

• The stock currently trades at 100.
• The stock pays no dividends.
• The stock's volatility is 50% per annum.
• The option strike price is 95.
• The option expires in three months.
• The risk-free rate is constant at 10% per annum.

To solve this problem, model the evolution of the underlying stock by a univariate
geometric Brownian motion (GBM) model with constant parameters:

dX X dt X dW
t t t t

= +0 1 0 5. .

Furthermore, assume that the stock price is simulated daily, and that each calendar
month comprises 21 trading days:

strike   = 95;

rate     = 0.1;

sigma    = 0.5;

dt       = 1/252;

nPeriods = 63;

T        = nPeriods*dt;

obj = gbm(rate,sigma,'StartState',100);

The goal is to simulate independent paths of daily stock prices, and calculate the price of
European options as the risk-neutral sample average of the discounted terminal option
payoff at expiration 63 days from now. This example calculates option prices by two
approaches:

• A Monte Carlo simulation that explicitly requests the simulated stock paths as an
output. The output paths are then used to price the options.
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• An end-of-period processing function, accessible by time and state, that records the
terminal stock price of each sample path. This processing function is implemented
as a nested function with access to shared information. For more information, see
Example_BlackScholes.m.

1 Before simulation, invoke the example file to access the end-of-period processing
function:

nTrials = 10000; % Number of independent trials (i.e., paths)

f = Example_BlackScholes(nPeriods,nTrials)

f = 

  struct with fields:

    BlackScholes: @Example_BlackScholes/saveTerminalStockPrice

       CallPrice: @Example_BlackScholes/getCallPrice

        PutPrice: @Example_BlackScholes/getPutPrice

2 Simulate 10000 independent trials (sample paths). Request the simulated stock price
paths as an output, and specify an end-of-period processing function:

rng(88161,'twister')

X = simBySolution(obj,nPeriods,'DeltaTime',dt,...

    'nTrials',nTrials,'Processes',f.BlackScholes);

3 Calculate the option prices directly from the simulated stock price paths. Because
these are European options, ignore all intermediate stock prices:

call = mean(exp(-rate*T)*max(squeeze(X(end,:,:)) - strike, 0))

put  = mean(exp(-rate*T)*max(strike - squeeze(X(end,:,:)), 0))

call =

   13.9342

put =

    6.4166

4 Price the options indirectly by invoking the nested functions:
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f.CallPrice(strike,rate)

f.PutPrice(strike,rate)

ans =

   13.9342

ans =

    6.4166

For reference, the theoretical call and put prices computed from the Black-Scholes
option formulas are 13.6953 and 6.3497, respectively.

5 Although steps 3 and 4 produce the same option prices, the latter approach works
directly with the terminal stock prices of each sample path. Therefore, it is much
more memory efficient. In this example, there is no compelling reason to request an
output.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation”
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on

page 17-110
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25
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More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Simulating Interest Rates

In this section...

“Simulating Interest Rates” on page 17-61
“Ensuring Positive Interest Rates” on page 17-68

Simulating Interest Rates

All simulation methods require that you specify a time grid by specifying the number of
periods (NPERIODS). You can also optionally specify a scalar or vector of strictly positive
time increments (DeltaTime) and intermediate time steps (NSTEPS). These parameters,
along with an initial sample time associated with the object (StartTime), uniquely
determine the sequence of times at which the state vector is sampled. Thus, simulation
methods allow you to traverse the time grid from beginning to end (that is, from left to
right).

In contrast, interpolation methods allow you to traverse the time grid in any order,
allowing both forward and backward movements in time. They allow you to specify a
vector of interpolation times whose elements do not have to be unique.

Many references define the Brownian Bridge as a conditional simulation combined
with a scheme for traversing the time grid, effectively merging two distinct algorithms.
In contrast, the interpolation method offered here provides additional flexibility by
intentionally separating the algorithms. In this method for moving about a time grid,
you perform an initial Monte Carlo simulation to sample the state at the terminal
time, and then successively sample intermediate states by stochastic interpolation.
The first few samples determine the overall behavior of the paths, while later samples
progressively refine the structure. Such algorithms are often called variance reduction
techniques. This algorithm is simple when the number of interpolation times is a power
of 2. In this case, each interpolation falls midway between two known states, refining
the interpolation using a method like bisection. This example highlights the flexibility of
refined interpolation by implementing this power-of-two algorithm.

1 Load the data. Load a historical data set of three-month Euribor rates, observed
daily, and corresponding trading dates spanning the time interval from February 7,
2001 through April 24, 2006:

load Data_GlobalIdx2

plot(dates, 100 * Dataset.EB3M)
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datetick('x'), xlabel('Date'), ylabel('Daily Yield (%)')

title('3-Month Euribor as a Daily Effective Yield')

2 Fit a model to the data. Now fit a simple univariate Vasicek model to the daily
equivalent yields of the three-month Euribor data:

dX S L X dt dWt t t= - +( ) s

Given initial conditions, the distribution of the short rate at some time T in the
future is Gaussian with mean:

E X X e L eT
ST ST

( ) ( )= + -
- -

0 1
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and variance:

Var X e ST
ST

( ) ( ) /= -
-

s
2

1 2

To calibrate this simple short rate model, rewrite it in more familiar regression
format:

y xt t t= + +a b e

where:

y dX SLdt Sdtt t= = = -, ,a b

perform an ordinary linear regression where the model volatility is proportional to
the standard error of the residuals:

s e= Var dt
t

( ) /

yields     = Dataset.EB3M;

regressors = [ones(length(yields) - 1, 1) yields(1:end-1)];

[coefficients, intervals, residuals] = ...

   regress(diff(yields), regressors);

dt    = 1;  % time increment = 1 day

speed = -coefficients(2)/dt;

level = -coefficients(1)/coefficients(2);

sigma =  std(residuals)/sqrt(dt);

3 Create an object and set its initial StartState. Create an hwv object using the
constructor hwv with StartState set to the most recently observed short rate:

obj = hwv(speed, level, sigma, 'StartState', yields(end))

obj = 

   Class HWV: Hull-White/Vasicek

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0
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     StartState: 7.70408e-05

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 4.77637e-07

          Level: 6.00424e-05

          Speed: 0.00228854

4 Simulate the fitted model. Assume, for example, that you simulate the fitted
model over 64 (26) trading days, using a refined Brownian bridge with the power-
of-two algorithm instead of the usual beginning-to-end Monte Carlo simulation
approach. Furthermore, assume that the initial time and state coincide with those
of the last available observation of the historical data, and that the terminal state
is the expected value of the Vasicek model 64 days into the future. In this case, you
can assess the behavior of various paths that all share the same initial and terminal
states, perhaps to support pricing path-dependent interest rate options over a three-
month interval.

Create a vector of interpolation times to traverse the time grid by moving both
forward and backward in time. Specifically, the first interpolation time is set to the
most recent short rate observation time, the second interpolation time is set to the
terminal time, and subsequent interpolation times successively sample intermediate
states:

T      = 64;

times  = (1:T)';

t      = NaN(length(times) + 1, 1);

t(1)   = obj.StartTime;

t(2)   = T;

delta  = T;

jMax   = 1;

iCount = 3;

for k = 1:log2(T)

    i = delta / 2;

    for j = 1:jMax

        t(iCount) = times(i);

        i         = i + delta;

        iCount    = iCount + 1;

    end

    jMax  = 2 * jMax;

    delta = delta / 2;
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end

5 Plot the interpolation times. Examine the sequence of interpolation times
generated by this algorithm:

stem(1:length(t), t, 'filled')

xlabel('Index'), ylabel('Interpolation Time (Days)')

title ('Sampling Scheme for the Power-of-Two Algorithm')

The first few samples are widely separated in time and determine the course
structure of the paths. Later samples are closely spaced and progressively refine the
detailed structure.

6 Initialize the time series grid. Now that you have generated the sequence of
interpolation times, initialize a course time series grid to begin the interpolation.
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The sampling process begins at the last observed time and state taken from the
historical short rate series, and ends 64 days into the future at the expected value of
the Vasicek model derived from the calibrated parameters:

average = obj.StartState * exp(-speed * T) + level * ...

(1 - exp(-speed * T));

X       = [obj.StartState ; average];

7 Generate five sample paths. Generate five sample paths, setting the Refine
input flag to TRUE to insert each new interpolated state into the time series grid as it
becomes available. Perform interpolation on a trial-by-trial basis. Because the input
time series X has five trials (where each page of the three-dimensional time series
represents an independent trial), the interpolated output series Y also has five pages:

nTrials = 5;

rng(63349,'twister')

Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), ...

'Times',[obj.StartTime  T], 'Refine', true);

8 Plot the resulting sample paths. Because the interpolation times do not
monotonically increase, sort the times and reorder the corresponding short rates:

[t,i] = sort(t);

Y     = squeeze(Y);

Y     = Y(i,:);

plot(t, 100 * Y), hold('on')

plot(t([1 end]), 100 * Y([1 end],1),'. black','MarkerSize',20)

xlabel('Interpolation Time (Days into the Future)')

ylabel('Yield (%)'), hold('off')

title ('Euribor Yields from Brownian Bridge Interpolation')
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The short rates in this plot represent alternative sample paths that share the same
initial and terminal values. They illustrate a special, though simplistic, case of a
broader sampling technique known as stratified sampling. For a more sophisticated
example of stratified sampling, see “Stratified Sampling” on page 17-73.

Although this simple example simulated a univariate Vasicek interest rate model,
it applies to problems of any dimensionality.

Tip Brownian-bridge methods also apply more general variance-reduction techniques.
For more information, see “Stratified Sampling” on page 17-73.
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Ensuring Positive Interest Rates

All simulation and interpolation methods allow you to specify a sequence of functions,
or background processes, to evaluate at the end of every sample time period. This
period includes any intermediate time steps determined by the optional NSTEPS input,
as discussed in “Optimizing Accuracy: About Solution Precision and Error” on page
17-81. These functions are specified as callable functions of time and state, and must
return an updated state vector Xt:

X f t Xt t= ( , )

You must specify multiple processing functions as a cell array of functions. These
functions are invoked in the order in which they appear in the cell array.

Processing functions are not required to use time (t) or state (Xt). They are also not
required to update or change the input state vector. In fact, simulation and interpolation
methods have no knowledge of any implementation details, and in this respect, they only
adhere to a published interface.

Such processing functions provide a powerful modeling tool that can solve various
problems. Such functions allow you to, for example, specify boundary conditions,
accumulate statistics, plot graphs, and price path-dependent options.

Except for Brownian motion (BM) models, the individual components of the simulated
state vector typically represent variables whose real-world counterparts are inherently
positive quantities, such as asset prices or interest rates. However, by default, most
of the simulation and interpolation methods provided here model the transition
between successive sample times as a scaled (possibly multivariate) Gaussian draw.
So, when approximating a continuous-time process in discrete time, the state vector
may not remain positive. The only exception is simBySolution for gbm objects and
simBySolution for hwv objects, a logarithmic transform of separable geometric
Brownian motion models. Moreover, by default, none of the simulation and interpolation
methods make adjustments to the state vector. Therefore, you are responsible for
ensuring that all components of the state vector remain positive as appropriate.

Fortunately, specifying nonnegative states ensures a simple end-of-period processing
adjustment. Although this adjustment is widely applicable, it is revealing when applied
to a univariate cir square-root diffusion model:

dX X dt X dW S L X dt X dWt t t t t t t= - + = - +0 25 0 1 0 2

1

2

1

2. ( . ) . ( ) s
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Perhaps the primary appeal of univariate cir models where:

2
2

SL ≥ s

is that the short rate remains positive. However, the positivity of short rates only holds
for the underlying continuous-time model.

1 Simulate daily short rates of the cir model. To illustrate the latter statement,
simulate daily short rates of the cir model, using the cir constructor, over one
calendar year (approximately 250 trading days):

rng(14151617,'twister')

obj   = cir(0.25,@(t,X)0.1,0.2,'StartState',0.02);

[X,T] = simByEuler(obj,250,'DeltaTime',1/250,'nTrials',5);

sprintf('%0.4f\t%0.4f+i%0.4f\n',[T(195:205)';...

    real(X(195:205,1,4))'; imag(X(195:205,1,4))'])

ans =

0.7760 0.0003+i0.0000

0.7800 0.0004+i0.0000

0.7840 0.0002+i0.0000

0.7880 -0.0000+i0.0000

0.7920 0.0001+i0.0000

0.7960 0.0002+i0.0000

0.8000 0.0002+i0.0000

0.8040 0.0008+i0.0001

0.8080 0.0004+i0.0001

0.8120 0.0008+i0.0001

0.8160 0.0008+i0.0001

Interest rates can become negative if the resulting paths are simulated in discrete
time. Moreover, since cir models incorporate a square root diffusion term, the short
rates might even become complex.

2 Repeat the simulation with a processing function. Repeat the simulation, this
time specifying a processing function that takes the absolute magnitude of the short
rate at the end of each period. You can access the processing function by time and
state (t, Xt), but it only uses the state vector of short rates Xt:

rng(14151617,'twister')
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[Y,T] = simByEuler(obj,250,'DeltaTime',1/250,...

    'nTrials',5,'Processes',@(t,X)abs(X));

3 Compare the adjusted and non-adjusted paths. Graphically compare the
magnitude of the unadjusted path (with negative and complex numbers!) to the
corresponding path kept positive by using an end-of-period processing function over
the time span of interest:

clf

plot(T,100*abs(X(:,1,4)),'red',T,100*Y(:,1,4),'blue')

axis([0.75 1 0 0.4])

xlabel('Time (Years)'), ylabel('Short Rate (%)')

title('Univariate CIR Short Rates')

legend({'Negative/Complex Rates' 'Positive Rates'}, ...

    'Location', 'Best')
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Tip You can use this method to obtain more accurate SDE solutions. For more
information, see “Performance Considerations” on page 17-79.

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func
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Related Examples
• “Simulating Equity Prices” on page 17-34
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation”
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on

page 17-110
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Stratified Sampling

Simulation methods allow you to specify a noise process directly, as a callable function of
time and state:

z Z t X
t t

= ( , )

Stratified sampling is a variance reduction technique that constrains a proportion of
sample paths to specific subsets (or strata) of the sample space.

This example specifies a noise function to stratify the terminal value of a univariate
equity price series. Starting from known initial conditions, the function first stratifies
the terminal value of a standard Brownian motion, and then samples the process from
beginning to end by drawing conditional Gaussian samples using a Brownian bridge.

The stratification process assumes that each path is associated with a single stratified
terminal value such that the number of paths is equal to the number of strata. This
technique is called proportional sampling. This example is similar to, yet more
sophisticated than, the one discussed in “Simulating Interest Rates” on page 17-61.
Since stratified sampling requires knowledge of the future, it also requires more
sophisticated time synchronization; specifically, the function in this example requires
knowledge of the entire sequence of sample times. For more information, see the example
stratifiedExample.m.

The function implements proportional sampling by partitioning the unit interval into
bins of equal probability by first drawing a random number uniformly distributed in
each bin. The inverse cumulative distribution function of a standard N(0,1) Gaussian
distribution then transforms these stratified uniform draws. Finally, the resulting
stratified Gaussian draws are scaled by the square root of the terminal time to stratify
the terminal value of the Brownian motion.

The noise function does not return the actual Brownian paths, but rather the Gaussian
draws Z(t,Xt) that drive it.

This example first stratifies the terminal value of a univariate, zero-drift, unit-variance-
rate Brownian motion (bm) model:

dX dW
t t

=
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1 Assume that 10 paths of the process are simulated daily over a three-month period.
Also assume that each calendar month and year consist of 21 and 252 trading days,
respectively:

rng(10203,'twister')

dt       = 1 / 252;        % 1 day = 1/252 years

nPeriods = 63;             % 3 months = 63 trading days

T        = nPeriods * dt;  % 3 months = 0.25 years

nPaths   = 10;            % # of simulated paths

obj      = bm(0, 1, 'StartState', 0);

sampleTimes = cumsum([obj.StartTime; ...

    dt(ones(nPeriods,1))]);

z        = Example_StratifiedRNG(nPaths, sampleTimes);

2 Simulate the standard Brownian paths by explicitly passing the stratified sampling
function to the simulation method:

X = obj.simulate(nPeriods, 'DeltaTime', dt, ...

    'nTrials', nPaths, 'Z', z);

3 For convenience, reorder the output sample paths by reordering the three-
dimensional output to a 2-dimensional equivalent array:

X = squeeze(X);

4 Verify the stratification:

a Recreate the uniform draws with proportional sampling:

rng(10203,'twister')

U  = ((1:nPaths)' - 1 + rand(nPaths,1))/nPaths;

b Transform them to obtain the terminal values of standard Brownian motion:

WT = norminv(U) * sqrt(T);  % Stratified Brownian motion.

c Plot the terminal values and output paths on the same figure:

plot(sampleTimes, X), hold('on')

xlabel('Time (Years)'), ylabel('Brownian State')

title('Terminal Stratification: Standard Brownian Motion')

plot(T, WT, '. black', T, WT, 'o black')

hold('off')
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The last value of each sample path (the last row of the output array X) coincides with
the corresponding element of the stratified terminal value of the Brownian motion. This
occurs because the simulated model and the noise generation function both represent the
same standard Brownian motion.

However, you can use the same stratified sampling function to stratify the terminal
price of constant-parameter geometric Brownian motion models. In fact, you can
use the stratified sampling function to stratify the terminal value of any constant-
parameter model driven by Brownian motion if the model's terminal value is a monotonic
transformation of the terminal value of the Brownian motion.
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To illustrate this, load the data set and simulate risk-neutral sample paths of the FTSE
100 index using a geometric Brownian motion (GBM) model with constant parameters:

dX rX dt X dW
t t t t

= +s

where the average Euribor yield represents the risk-free rate of return.

1 Assume that the relevant information derived from the daily data is annualized, and
that each calendar year comprises 252 trading days:

load Data_GlobalIdx2

returns = tick2ret(Dataset.FTSE);

sigma   = std(returns) * sqrt(252);

rate    = Dataset.EB3M;

rate    = mean(360 * log(1 + rate));

2 Create the GBM model using the gbm constructor, assuming the FTSE 100 starts at
100:

obj = gbm(rate, sigma, 'StartState', 100);

3 Determine the sample time and simulate the price paths.

In what follows, NSTEPS specifies the number of intermediate time steps within
each time increment DeltaTime. Each increment DeltaTime is partitioned
into NSTEPS subintervals of length DeltaTime/nSteps each, refining the
simulation by evaluating the simulated state vector at NSTEPS–1 intermediate
points. This refinement improves accuracy by allowing the simulation to more
closely approximate the underlying continuous-time process without storing the
intermediate information:

nSteps      = 1;

sampleTimes = cumsum([obj.StartTime ; ...

dt(ones(nPeriods * nSteps,1))/nSteps]);

z           = Example_StratifiedRNG(nPaths, sampleTimes);

rng(10203,'twister')

[Y, Times]  = obj.simBySolution(nPeriods, 'nTrials', nPaths,...

'DeltaTime', dt, 'nSteps', nSteps,  'Z', z);

Y = squeeze(Y);   % Reorder to a 2-D array

plot(Times, Y)

xlabel('Time (Years)'), ylabel('Index Level')

title('FTSE 100 Terminal Stratification:Geometric Brownian Motion')
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Although the terminal value of the Brownian motion shown in the latter plot is normally
distributed, and the terminal price in the previous plot is lognormally distributed, the
corresponding paths of each graph are similar.

Tip For another example of variance reduction techniques, see “Simulating Interest
Rates” on page 17-61.
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See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Pricing American Basket Options by Monte Carlo Simulation”
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on

page 17-110
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Performance Considerations

In this section...

“Managing Memory” on page 17-79
“Enhancing Performance” on page 17-80
“Optimizing Accuracy: About Solution Precision and Error” on page 17-81

Managing Memory

There are two general approaches for managing memory when solving most problems
supported by the SDE engine:

• “Managing Memory with Outputs” on page 17-79
• “Managing Memory Using End-of-Period Processing Functions” on page 17-80

Managing Memory with Outputs

Perform a traditional simulation to simulate the underlying variables of interest,
specifically requesting and then manipulating the output arrays.

This approach is straightforward and the best choice for small or medium-sized problems.
Since its outputs are arrays, it is convenient to manipulate simulated results in the
MATLAB matrix-based language. However, as the scale of the problem increases, the
benefit of this approach decreases, because the output arrays must store large quantities
of possibly extraneous information.

For example, consider pricing a European option in which the terminal price of the
underlying asset is the only value of interest. To ease the memory burden of the
traditional approach, reduce the number of simulated periods specified by the required
input NPERIODS and specify the optional input NSTEPS. This enables you to manage
memory without sacrificing accuracy (see “Optimizing Accuracy: About Solution Precision
and Error” on page 17-81).

In addition, simulation methods can determine the number of output arguments and
allocate memory accordingly. Specifically, all simulation methods support the same
output argument list:

[Paths,Times,Z]

where Paths and Z can be large, three-dimensional time series arrays. However, the
underlying noise array is typically unnecessary, and is only stored if requested as an
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output. In other words, Z is stored only at your request; do not request it if you do not
need it.

If you need the output noise array Z, but do not need the Paths time series array, then
you can avoid storing Paths two ways:

• It is best practice to use the ~ output argument placeholder. For example, use the
following output argument list to store Z and Times, but not Paths:

[~,Times,Z]

• Use the optional input flag StorePaths, which all simulation methods support. By
default, Paths is stored (StorePaths = true). However, setting StorePaths to
false returns Paths as an empty matrix.

Managing Memory Using End-of-Period Processing Functions

Specify one or more end-of-period processing functions to manage and store only the
information of interest, avoiding simulation outputs altogether.

This approach requires you to specify one or more end-of-period processing functions,
and is often the preferred approach for large-scale problems. This approach allows
you to avoid simulation outputs altogether. Since no outputs are requested, the three-
dimensional time series arrays Paths and Z are not stored.

This approach often requires more effort, but is far more elegant and allows you to
customize tasks and dramatically reduce memory usage. See “Pricing Equity Options” on
page 17-56.

Enhancing Performance

The following approaches improve performance when solving SDE problems:

• Specifying model parameters as traditional MATLAB arrays and functions,
in various combinations. This provides a flexible interface that can support
virtually any general nonlinear relationship. However, while functions offer a
convenient and elegant solution for many problems, simulations typically run faster
when you specify parameters as double-precision vectors or matrices. Thus, it is a
good practice to specify model parameters as arrays when possible.

• Use models that have overloaded Euler simulation methods, when possible.
Using Brownian motion (BM) and geometric Brownian motion (GBM) models that

17-80



 Performance Considerations

provide overloaded Euler simulation methods take advantage of separable, constant-
parameter models. These specialized methods are exceptionally fast, but are only
available to models with constant parameters that are simulated without specifying
end-of-period processing and noise generation functions.

• Replace the simulation of a constant-parameter, univariate model derived
from the SDEDDO class with that of a diagonal multivariate model. Treat
the multivariate model as a portfolio of univariate models. This increases the
dimensionality of the model and enhances performance by decreasing the effective
number of simulation trials.

Note: This technique is applicable only to constant-parameter univariate models
without specifying end-of-period processing and noise generation functions.

• Take advantage of the fact that simulation methods are designed to detect
the presence of NaN (not a number) conditions returned from end-of-period
processing functions. A NaN represents the result of an undefined numerical
calculation, and any subsequent calculation based on a NaN produces another
NaN. This helps improve performance in certain situations. For example, consider
simulating paths of the underlier of a knock-out barrier option (that is, an option that
becomes worthless when the price of the underlying asset crosses some prescribed
barrier). Your end-of-period function could detect a barrier crossing and return a NaN
to signal early termination of the current trial.

Optimizing Accuracy: About Solution Precision and Error

The simulation architecture does not, in general, simulate exact solutions to any SDE.
Instead, the simulation architecture provides a discrete-time approximation of the
underlying continuous-time process, a simulation technique often known as a Euler
approximation.

In the most general case, a given simulation derives directly from an SDE. Therefore,
the simulated discrete-time process approaches the underlying continuous-time process
only in the limit as the time increment dt approaches zero. In other words, the simulation
architecture places more importance on ensuring that the probability distributions of the
discrete-time and continuous-time processes are close, than on the pathwise proximity of
the processes.

Before illustrating techniques to improve the approximation of solutions, it is helpful to
understand the source of error. Throughout this architecture, all simulation methods
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assume that model parameters are piecewise constant over any time interval of length
dt. In fact, the methods even evaluate dynamic parameters at the beginning of each time
interval and hold them fixed for the duration of the interval. This sampling approach
introduces discretization error.

However, there are certain models for which the piecewise constant approach provides
exact solutions:

• “Creating Brownian Motion (BM) Models” on page 17-25 with constant parameters,
simulated by Euler approximation (simByEuler).

• “Creating Geometric Brownian Motion (GBM) Models” on page 17-27 with constant
parameters, simulated by closed-form solution (simBySolution).

• “Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 17-30 with
constant parameters, simulated by closed-form solution (simBySolution)

More generally, you can simulate the exact solutions for these models even if the
parameters vary with time, if they vary in a piecewise constant way such that parameter
changes coincide with the specified sampling times. However, such exact coincidence is
unlikely; therefore, the previously discussed constant parameter condition is commonly
used in practice.

One obvious way to improve accuracy involves sampling the discrete-time process more
frequently. This decreases the time increment (dt), causing the sampled process to more
closely approximate the underlying continuous-time process. Although decreasing the
time increment is universally applicable, however, there is a tradeoff among accuracy,
run-time performance, and memory usage.

To manage this tradeoff, specify an optional input argument, NSTEPS, for all simulation
methods. NSTEPS indicates the number of intermediate time steps within each time
increment dt, at which the process is sampled but not reported.

It is important and convenient at this point to emphasize the relationship of the inputs
NSTEPS, NPERIODS, and DeltaTime to the output vector Times, which represents the
actual observation times at which the simulated paths are reported.

• NPERIODS, a required input, indicates the number of simulation periods of length
DeltaTime, and determines the number of rows in the simulated three-dimensional
Paths time series array (if an output is requested).

• DeltaTime is optional, and indicates the corresponding NPERIODS-length vector of
positive time increments between successive samples. It represents the familiar dt
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found in stochastic differential equations. If DeltaTime is unspecified, the default
value of 1 is used.

• NSTEPS is also optional, and is only loosely related to NPERIODS and DeltaTime.
NSTEPS specifies the number of intermediate time steps within each time increment
DeltaTime.

Specifically, each time increment DeltaTime is partitioned into NSTEPS subintervals
of length DeltaTime/NSTEPS each, and refines the simulation by evaluating the
simulated state vector at (NSTEPS - 1) intermediate times. Although the output
state vector (if requested) is not reported at these intermediate times, this refinement
improves accuracy by causing the simulation to more closely approximate the
underlying continuous-time process. If NSTEPS is unspecified, the default is 1 (to
indicate no intermediate evaluation).

• The output Times is an NPERIODS + 1-length column vector of observation times
associated with the simulated paths. Each element of Times is associated with a
corresponding row of Paths.

The following example illustrates this intermediate sampling by comparing the difference
between a closed-form solution and a sequence of Euler approximations derived from
various values of NSTEPS.

Example: Improving Solution Accuracy

Consider a univariate geometric Brownian motion (GBM) model using the gbm constructor
with constant parameters:

dX X dt X dW
t t t t

= +0 1 0 4. . .

Assume that the expected rate of return and volatility parameters are annualized, and
that a calendar year comprises 250 trading days.

1 Simulate approximately four years of univariate prices for both the exact solution
and the Euler approximation for various values of NSTEPS:

nPeriods = 1000;

dt       = 1/250;

obj      = gbm(0.1,0.4,'StartState',100);

rng(575,'twister')

[X1,T1]    = simBySolution(obj,nPeriods,'DeltaTime',dt);
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rng(575,'twister')

[Y1,T1]    = simByEuler(obj,nPeriods,'DeltaTime',dt);

rng(575,'twister')

[X2,T2]    = simBySolution(obj,nPeriods,'DeltaTime',...

    dt,'nSteps',2);

rng(575,'twister')

[Y2,T2]    = simByEuler(obj,nPeriods,'DeltaTime',...

    dt,'nSteps',2);

rng(575,'twister')

[X3,T3]    = simBySolution(obj,nPeriods, 'DeltaTime',...

    dt,'nSteps',10);

rng(575,'twister')

[Y3,T3]    = simByEuler(obj,nPeriods,'DeltaTime',...

    dt,'nSteps',10);

rng(575,'twister')

[X4,T4]    = simBySolution(obj,nPeriods,'DeltaTime',...

    dt,'nSteps',100);

rng(575,'twister')

[Y4,T4]    = simByEuler(obj,nPeriods,'DeltaTime',...

    dt,'nSteps',100);

2 Compare the error (the difference between the exact solution and the Euler
approximation) graphically:

clf;

plot(T1,X1 - Y1,'red')

hold on;

plot(T2,X2 - Y2,'blue')

plot(T3,X3 - Y3,'green')

plot(T4,X4 - Y4,'black')

hold off

xlabel('Time (Years)')

ylabel('Price Difference')

title('Exact Solution Minus Euler Approximation')

legend({'# of Steps = 1'  '# of Steps = 2' ...

    '# of Steps = 10' '# of Steps = 100'},...

    'Location', 'Best')

hold off

whos T X Y
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As expected, the simulation error decreases as the number of intermediate time steps
increases. Because the intermediate states are not reported, all simulated time series
have the same number of observations regardless of the actual value of NSTEPS.

Furthermore, since the previously simulated exact solutions are correct for any number
of intermediate time steps, additional computations are not needed for this example.
In fact, this assessment is generally correct. The exact solutions are sampled at
intermediate times to ensure that the simulation uses the same sequence of Gaussian
random variates in the same order. Without this assurance, there is no way to compare
simulated prices on a pathwise basis. However, there might be valid reasons for sampling
exact solutions at closely spaced intervals, such as pricing path-dependent options.
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See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func

Related Examples
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Pricing American Basket Options by Monte Carlo Simulation”
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on

page 17-110
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Pricing American Basket Options by Monte Carlo Simulation

This example shows how to model the fat-tailed behavior of asset returns and assess
the impact of alternative joint distributions on basket option prices. Using various
implementations of a separable multivariate Geometric Brownian Motion (GBM) process,
often referred to as a multi-dimensional market model, the example simulates risk-
neutral sample paths of an equity index portfolio and prices basket put options using the
technique of Longstaff & Schwartz.

In addition, this example also illustrates salient features of the Stochastic Differential
Equation (SDE) architecture, including

• Customized random number generation functions that compare Brownian motion and
Brownian copulas

• End-of-period processing functions that form an equity index basket and price
American options on the underlying basket based on the least squares method of
Longstaff & Schwartz

• Piecewise probability distributions and Extreme Value Theory (EVT)

This example also highlights important issues of volatility and interest rate scaling. It
illustrates how equivalent results can be achieved by working with daily or annualized
data. For more information about EVT and copulas, see “Using Extreme Value Theory
and Copulas to Evaluate Market Risk”.

Overview of the Modeling Framework

The ultimate objective of this example is to compare basket option prices derived from
different noise processes. The first noise process is a traditional Brownian motion model
whose index portfolio price process is driven by correlated Gaussian random draws. As
alternatives, the Brownian motion benchmark is compared to noise processes driven by
Gaussian and Student's t copulas, referred to collectively as a Brownian copula.

A copula is a multivariate cumulative distribution function (CDF) with uniformly-
distributed margins. Although the theoretical foundations were established decades
ago, copulas have experienced a tremendous surge in popularity over the last few years,
primarily as a technique for modeling non-Gaussian portfolio risks.

Although numerous families exist, all copulas represent a statistical device for modeling
the dependence structure between 2 or more random variables. In addition, important
statistics, such as rank correlation and tail dependence, are properties of a given copula
and are unchanged by monotonic transforms of its margins.
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These copula draws produce dependent random variables, which are subsequently
transformed to individual variables (margins). This transformation is achieved with a
semi-parametric probability distribution with generalized Pareto tails.

The risk-neutral market model to simulate is

where the risk-free rate, r, is assumed constant over the life of the option. Because this
is a separable multivariate model, the risk-free return is a diagonal matrix in which the
same riskless return is applied to all indices. Dividend yields are ignored to simplify the
model its associated data collection.

In contrast, the specification of the exposure matrix, sigma, depends on how the driving
source of uncertainty is modeled. You can model it directly as a Brownian motion
(correlated Gaussian random numbers implicitly mapped to Gaussian margins) or model
it as a Brownian copula (correlated Gaussian or t random numbers explicitly mapped to
semi-parametric margins).

Because the CDF and inverse CDF (quantile function) of univariate distributions are
both monotonic transforms, a copula provides a convenient way to simulate dependent
random variables whose margins are dissimilar and arbitrarily distributed. Moreover,
because a copula defines a given dependence structure regardless of its margins, copula
parameter calibration is typically easier than estimation of the joint distribution
function.

Once you have simulated sample paths, options are priced by the least squares
regression method of Longstaff & Schwartz (see Valuing American Options by
Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, Spring
2001). This approach uses least squares to estimate the expected payoff of an option if it
is not immediately exercised. It does so by regressing the discounted option cash flows
received in the future on the current price of the underlier associated with all in-the-
money sample paths. The continuation function is estimated by a simple third-order
polynomial, in which all cash flows and prices in the regression are normalized by the
option strike price, improving numerical stability.

Import the Supporting Historical Dataset

Load a daily historical dataset of 3-month Euribor, the trading dates spanning the
interval 07-Feb-2001 to 24-Apr-2006, and the closing index levels of the following
representative large-cap equity indices:
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• TSX Composite (Canada)
• CAC 40 (France)
• DAX (Germany)
• Nikkei 225 (Japan)
• FTSE 100 (UK)
• S&P 500 (US)

clear

load Data_GlobalIdx2

The following plots illustrate this data. Specifically, the plots show the relative price
movements of each index and the Euribor risk-free rate proxy. The initial level of each
index has been normalized to unity to facilitate the comparison of relative performance
over the historical record.

nIndices  = size(Data,2)-1;     % # of indices

prices = Data(:,1:end-1);

yields = Data(:,end);             % daily effective yields

yields = 360 * log(1 + yields);   % continuously-compounded, annualized yield

plot(dates, ret2tick(tick2ret(prices,[],'continuous'),[],[],[],'continuous'))

datetick('x')

xlabel('Date')

ylabel('Index Value')

title ('Normalized Daily Index Closings')

legend(series{1:end-1}, 'Location', 'NorthWest')
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plot(dates, 100 * yields)

datetick('x')

xlabel('Date')

ylabel('Annualized Yield (%)')

title('Risk Free Rate (3-Month Euribor Continuously-Compounded)')
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Extreme Value Theory & Piecewise Probability Distributions

To prepare for copula modeling, characterize individually the distribution of returns
of each index. Although the distribution of each return series may be characterized
parametrically, it is useful to fit a semi-parametric model using a piecewise distribution
with generalized Pareto tails. This uses Extreme Value Theory to better characterize the
behavior in each tail.

The Statistics and Machine Learning Toolbox™ software currently supports two
univariate probability distributions related to EVT, a statistical tool for modeling the fat-
tailed behavior of financial data such as asset returns and insurance losses:

• Generalized Extreme Value (GEV) distribution, which uses a modeling technique
known as the block maxima or minima method. This approach, divides a historical
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dataset into a set of sub-intervals, or blocks, and the largest or smallest observation in
each block is recorded and fitted to a GEV distribution.

• Generalized Pareto (GP) distribution, uses a modeling technique known as the
distribution of exceedances or peaks over threshold method. This approach sorts a
historical dataset, and fits the amount by which those observations that exceed a
specified threshold to a GP distribution.

The following analysis highlights the Pareto distribution, which is more widely used in
risk management applications.

Suppose we wish to create a complete statistical description of the probability
distribution of daily asset returns of any one of the equity indices. Assume that
this description is provided by a piecewise semi-parametric distribution, where the
asymptotic behavior in each tail is characterized by a generalized Pareto distribution.

Ultimately, a copula will be used to generate random numbers to drive the simulations.
The CDF and inverse CDF transforms will capture the volatility of simulated returns as
part of the diffusion term of the SDE. The mean return of each index is governed by the
riskless rate and incorporated in the drift term of the SDE. The following code segment
centers the returns (that is, extracts the mean) of each index.

Because the following analysis uses extreme value theory to characterize the distribution
of each equity index return series, it is helpful to examine details for a particular
country:

returns = tick2ret(prices,[],'continuous');        % convert prices to returns

returns = bsxfun(@minus, returns, mean(returns));  % center the returns

index   = 3;                                       % Germany stored in column 3

plot(dates(2:end), returns(:,index))

datetick('x')

xlabel('Date')

ylabel('Return')

title(['Daily Logarithmic Centered Returns: ' series{index}])
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Note that this code segment can be changed to examine details for any country.

Using these centered returns, estimate the empirical, or non-parametric, CDF of each
index with a Gaussian kernel. This smoothes the CDF estimates, eliminating the
staircase pattern of unsmoothed sample CDFs. Although non-parametric kernel CDF
estimates are well-suited for the interior of the distribution, where most of the data is
found, they tend to perform poorly when applied to the upper and lower tails. To better
estimate the tails of the distribution, apply EVT to the returns that fall in each tail.

Specifically, find upper and lower thresholds such that 10% of the returns is reserved for
each tail. Then fit the amount by which the extreme returns in each tail fall beyond the
associated threshold to a Pareto distribution by maximum likelihood.
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The following code segment creates one object of type paretotails for each index
return series. These Pareto tail objects encapsulate the estimates of the parametric
Pareto lower tail, the non-parametric kernel-smoothed interior, and the parametric
Pareto upper tail to construct a composite semi-parametric CDF for each index.

tailFraction = 0.1;               % decimal fraction allocated to each tail

tails = cell(nIndices,1);  % cell array of Pareto tail objects

for i = 1:nIndices

    tails{i} = paretotails(returns(:,i), tailFraction, 1 - tailFraction, 'kernel');

end

The resulting piecewise distribution object allows interpolation within the interior of the
CDF and extrapolation (function evaluation) in each tail. Extrapolation allows estimation
of quantiles outside the historical record, which is invaluable for risk management
applications.

Pareto tail objects also provide methods to evaluate the CDF and inverse CDF (quantile
function), and to query the cumulative probabilities and quantiles of the boundaries
between each segment of the piecewise distribution.

Now that three distinct regions of the piecewise distribution have been estimated,
graphically concatenate and display the result.

The following code calls the CDF and inverse CDF methods of the Pareto tails object of
interest with data other than that upon which the fit is based. The referenced methods
have access to the fitted state. They are now invoked to select and analyze specific
regions of the probability curve, acting as a powerful data filtering mechanism.

For reference, the plot also includes a zero-mean Gaussian CDF of the same standard
deviation. To a degree, the variation in options prices reflect the extent to which the
distribution of each asset differs from this normal curve.

minProbability = cdf(tails{index}, (min(returns(:,index))));

maxProbability = cdf(tails{index}, (max(returns(:,index))));

pLowerTail = linspace(minProbability  , tailFraction    , 200); % lower tail

pUpperTail = linspace(1 - tailFraction, maxProbability  , 200); % upper tail

pInterior  = linspace(tailFraction    , 1 - tailFraction, 200); % interior

plot(icdf(tails{index}, pLowerTail), pLowerTail, 'red'  , 'LineWidth', 2)

hold on

grid on

plot(icdf(tails{index}, pInterior) , pInterior , 'black', 'LineWidth', 2)
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plot(icdf(tails{index}, pUpperTail), pUpperTail, 'blue' , 'LineWidth', 2)

limits = axis;

x = linspace(limits(1), limits(2));

plot(x, normcdf(x, 0, std(returns(:,index))), 'green', 'LineWidth', 2)

fig = gcf;

fig.Color = [1 1 1];

hold off

xlabel('Centered Return')

ylabel('Probability')

title (['Semi-Parametric/Piecewise CDF: ' series{index}])

legend({'Pareto Lower Tail' 'Kernel Smoothed Interior' ...

        'Pareto Upper Tail' 'Gaussian with Same \sigma'}, 'Location', 'NorthWest')
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The lower and upper tail regions, displayed in red and blue, respectively, are suitable for
extrapolation, while the kernel-smoothed interior, in black, is suitable for interpolation.

Copula Calibration

The Statistics and Machine Learning Toolbox software includes functionality that
calibrates and simulates Gaussian and t copulas.

Using the daily index returns, estimate the parameters of the Gaussian and t copulas
using the function copulafit. Since a t copula becomes a Gaussian copula as the scalar
degrees of freedom parameter (DoF) becomes infinitely large, the two copulas are really
of the same family, and therefore share a linear correlation matrix as a fundamental
parameter.

Although calibration of the linear correlation matrix of a Gaussian copula is
straightforward, the calibration of a t copula is not. For this reason, the Statistics and
Machine Learning Toolbox software offers two techniques to calibrate a t copula:

• The first technique performs maximum likelihood estimation (MLE) in a two-step
process. The inner step maximizes the log-likelihood with respect to the linear
correlation matrix, given a fixed value for the degrees of freedom. This conditional
maximization is placed within a 1-D maximization with respect to the degrees of
freedom, thus maximizing the log-likelihood over all parameters. The function being
maximized in this outer step is known as the profile log-likelihood for the degrees of
freedom.

• The second technique is derived by differentiating the log-likelihood function with
respect to the linear correlation matrix, assuming the degrees of freedom is a fixed
constant. The resulting expression is a non-linear equation that can be solved
iteratively for the correlation matrix. This technique approximates the profile log-
likelihood for the degrees of freedom parameter for large sample sizes. This technique
is usually significantly faster than the true maximum likelihood technique outlined
above; however, you should not use it with small or moderate sample sizes as the
estimates and confidence limits may not be accurate.

When the uniform variates are transformed by the empirical CDF of each margin,
the calibration method is often known as canonical maximum likelihood (CML). The
following code segment first transforms the daily centered returns to uniform variates
by the piecewise, semi-parametric CDFs derived above. It then fits the Gaussian and t
copulas to the transformed data:

U = zeros(size(returns));
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for i = 1:nIndices

    U(:,i) = cdf(tails{i}, returns(:,i));    % transform each margin to uniform

end

options     = statset('Display', 'off', 'TolX', 1e-4);

[rhoT, DoF] = copulafit('t', U, 'Method', 'ApproximateML', 'Options', options);

rhoG        = copulafit('Gaussian', U);

The estimated correlation matrices are quite similar but not identical.

corrcoef(returns)  % linear correlation matrix of daily returns

ans =

    1.0000    0.4813    0.5058    0.1854    0.4573    0.6526

    0.4813    1.0000    0.8485    0.2261    0.8575    0.5102

    0.5058    0.8485    1.0000    0.2001    0.7650    0.6136

    0.1854    0.2261    0.2001    1.0000    0.2295    0.1439

    0.4573    0.8575    0.7650    0.2295    1.0000    0.4617

    0.6526    0.5102    0.6136    0.1439    0.4617    1.0000

rhoG               % linear correlation matrix of the optimized Gaussian copula

rhoG =

    1.0000    0.4745    0.5018    0.1857    0.4721    0.6622

    0.4745    1.0000    0.8606    0.2393    0.8459    0.4912

    0.5018    0.8606    1.0000    0.2126    0.7608    0.5811

    0.1857    0.2393    0.2126    1.0000    0.2396    0.1494

    0.4721    0.8459    0.7608    0.2396    1.0000    0.4518

    0.6622    0.4912    0.5811    0.1494    0.4518    1.0000

rhoT               % linear correlation matrix of the optimized t copula

rhoT =

    1.0000    0.4671    0.4858    0.1907    0.4734    0.6521

    0.4671    1.0000    0.8871    0.2567    0.8500    0.5122

    0.4858    0.8871    1.0000    0.2326    0.7723    0.5877
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    0.1907    0.2567    0.2326    1.0000    0.2503    0.1539

    0.4734    0.8500    0.7723    0.2503    1.0000    0.4769

    0.6521    0.5122    0.5877    0.1539    0.4769    1.0000

Note the relatively low degrees of freedom parameter obtained from the t copula
calibration, indicating a significant departure from a Gaussian situation.

DoF                % scalar degrees of freedom parameter of the optimized t copula

DoF =

    4.8613

Copula Simulation

Now that the copula parameters have been estimated, simulate jointly-dependent
uniform variates using the function copularnd.

Then, by extrapolating the Pareto tails and interpolating the smoothed interior,
transform the uniform variates derived from copularnd to daily centered returns via
the inverse CDF of each index. These simulated centered returns are consistent with
those obtained from the historical dataset. The returns are assumed to be independent
in time, but at any point in time possess the dependence and rank correlation induced by
the given copula.

The following code segment illustrates the dependence structure by simulating centered
returns using the t copula. It then plots a 2-D scatter plot with marginal histograms for
the French CAC 40 and German DAX using the Statistics and Machine Learning Toolbox
scatterhist function. The French and German indices were chosen simply because
they have the highest correlation of the available data.

nPoints = 10000;                          % # of simulated observations

s = RandStream.getGlobalStream();

reset(s)

R = zeros(nPoints, nIndices);             % pre-allocate simulated returns array

U = copularnd('t', rhoT, DoF, nPoints);   % simulate U(0,1) from t copula

for j = 1:nIndices

    R(:,j) = icdf(tails{j}, U(:,j));
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end

h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1);

fig = gcf;

fig.Color = [1 1 1];

y1 = ylim(h(1));

y3 = ylim(h(3));

xlim(h(1), [-.1 .1])

ylim(h(1), [-.1 .1])

xlim(h(2), [-.1 .1])

ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])

xlabel('France')

ylabel('Germany')

title(['t Copula (\nu = ' num2str(DoF,2) ')'])
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Now simulate and plot centered returns using the Gaussian copula.

reset(s)

R = zeros(nPoints, nIndices);             % pre-allocate simulated returns array

U = copularnd('Gaussian', rhoG, nPoints); % simulate U(0,1) from Gaussian copula

for j = 1:nIndices

    R(:,j) = icdf(tails{j}, U(:,j));

end

h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1);

fig = gcf;

fig.Color = [1 1 1];

y1 = ylim(h(1));

y3 = ylim(h(3));

xlim(h(1), [-.1 .1])

ylim(h(1), [-.1 .1])

xlim(h(2), [-.1 .1])

ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])

xlabel('France')

ylabel('Germany')

title('Gaussian Copula')
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Examine these two figures. There is a strong similarity between the miniature
histograms on the corresponding axes of each figure. This similarity is not coincidental.

Both copulas simulate uniform random variables, which are then transformed to
daily centered returns by the inverse CDF of the piecewise distribution of each index.
Therefore, the simulated returns of any given index are identically distributed regardless
of the copula.

However, the scatter graph of each figure indicates the dependence structure associated
with the given copula, and in contrast to the univariate margins shown in the
histograms, the scatter graphs are distinct.
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Once again, the copula defines a dependence structure regardless of its margins, and
therefore offers many features not limited to calibration alone.

For reference, simulate and plot centered returns using the Gaussian distribution, which
underlies the traditional Brownian motion model.

reset(s)

R = mvnrnd(zeros(1,nIndices), cov(returns), nPoints);

h = scatterhist(R(:,2), R(:,3),'Color','r','Marker','.','MarkerSize',1);

fig = gcf;

fig.Color = [1 1 1];

y1 = ylim(h(1));

y3 = ylim(h(3));

xlim(h(1), [-.1 .1])

ylim(h(1), [-.1 .1])

xlim(h(2), [-.1 .1])

ylim(h(3), [(y3(1) + (-0.1 - y1(1)))  (y3(2) + (0.1 - y1(2)))])

xlabel('France')

ylabel('Germany')

title('Gaussian Distribution')
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American Option Pricing Using the Longstaff & Schwartz Approach

Now that the copulas have been calibrated, compare the prices of at-the-money American
basket options derived from various approaches. To simply the analysis, assume that:

• All indices begin at 100.
• The portfolio holds a single unit, or share, of each index such that the value of the

portfolio at any time is the sum of the values of the individual indices.
• The option expires in 3 months.
• The information derived from the daily data is annualized.
• Each calendar year is composed of 252 trading days.
• Index levels are simulated daily.
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• The option may be exercised at the end of every trading day and approximates the
American option as a Bermudan option.

Now compute the parameters common to all simulation methods:

dt       = 1 / 252;                  % time increment = 1 day = 1/252 years

yields   = Data(:,end);              % daily effective yields

yields   = 360 * log(1 + yields);    % continuously-compounded, annualized yields

r        = mean(yields);             % historical 3M Euribor average

X        = repmat(100, nIndices, 1); % initial state vector

strike   = sum(X);                   % initialize an at-the-money basket

nTrials  = 100;                      % # of independent trials

nPeriods = 63;   % # of simulation periods: 63/252 = 0.25 years = 3 months

Now create two separable multi-dimensional market models in which the riskless return
and volatility exposure matrices are both diagonal.

While both are diagonal GBM models with identical risk-neutral returns, the first
is driven by a correlated Brownian motion and explicitly specifies the sample linear
correlation matrix of centered returns. This correlated Brownian motion process is then
weighted by a diagonal matrix of annualized index volatilities or standard deviations.

As an alternative, the same model could be driven by an uncorrelated Brownian motion
(standard Brownian motion) by specifying correlation as an identity matrix, or by
simply accepting the default value. In this case, the exposure matrix sigma is specified
as the lower Cholesky factor of the index return covariance matrix. Because the copula-
based approaches simulate dependent random numbers, the diagonal exposure form is
chosen for consistency. For further details, see Alternatives for Inducing Dependence &
Correlation.

sigma       = std(returns) * sqrt(252);    % annualized volatility

correlation = corrcoef(returns);           % correlated Gaussian disturbances

GBM1        = gbm(diag(r(ones(1,nIndices))), diag(sigma), 'StartState', X, ...

                 'Correlation'             , correlation);

Now create the second model driven by the Brownian copula with an identity matrix
sigma.

GBM2 = gbm(diag(r(ones(1,nIndices))), eye(nIndices), 'StartState', X);

The newly created model may seem unusual, but it highlights the flexibility of the SDE
architecture.
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When working with copulas, it is often convenient to allow the random number generator
function Z(t,X) to induce dependence (of which the traditional notion of linear correlation
is a special case) with the copula, and to induce magnitude or scale of variation (similar
to volatility or standard deviation) with the semi-parametric CDF and inverse CDF
transforms. Since the CDF and inverse CDF transforms of each index inherit the
characteristics of historical returns, this also explains why the returns are now centered.

In the following sections, statements like:

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');

or

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');

fit the Gaussian and t copula dependence structures, respectively, and the semi-
parametric margins to the centered returns scaled by the square root of the number of
trading days per year (252). This scaling does not annualize the daily centered returns.
Instead, it scales them such that the volatility remains consistent with the diagonal
annualized exposure matrix sigma of the traditional Brownian motion model (GBM1)
created previously.

In this example, you also specify an end-of-period processing function that accepts time
followed by state (t,X), and records the sample times and value of the portfolio as the
single-unit weighted average of all indices. This function also shares this information
with other functions designed to price American options with a constant riskless rate
using the least squares regression approach of Longstaff & Schwartz.

f = Example_LongstaffSchwartz(nPeriods, nTrials)

f = 

  struct with fields:

    LongstaffSchwartz: @Example_LongstaffSchwartz/saveBasketPrices

            CallPrice: @Example_LongstaffSchwartz/getCallPrice

             PutPrice: @Example_LongstaffSchwartz/getPutPrice

               Prices: @Example_LongstaffSchwartz/getBasketPrices

Now simulate independent trials of equity index prices over 3 calendar months using the
default simByEuler method. No outputs are requested from the simulation methods;
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in fact the simulated prices of the individual indices which comprise the basket are
unnecessary. Call option prices are reported for convenience:

reset(s)

simByEuler(GBM1, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...

                          'Processes', f.LongstaffSchwartz);

BrownianMotionCallPrice = f.CallPrice(strike, r);

BrownianMotionPutPrice  = f.PutPrice (strike, r);

reset(s)

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 'Gaussian');

f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...

                          'Processes', f.LongstaffSchwartz, 'Z', z);

GaussianCopulaCallPrice = f.CallPrice(strike, r);

GaussianCopulaPutPrice  = f.PutPrice (strike, r);

Now repeat the copula simulation with the t copula dependence structure. You use
the same model object for both copulas; only the random number generator and option
pricing functions need to be re-initialized.

reset(s)

z = Example_CopulaRNG(returns * sqrt(252), nPeriods, 't');

f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', dt, ...

                          'Processes', f.LongstaffSchwartz, 'Z', z);

tCopulaCallPrice = f.CallPrice(strike, r);

tCopulaPutPrice  = f.PutPrice (strike, r);

Finally, compare the American put and call option prices obtained from all models.

disp(' ')

fprintf('                    # of Monte Carlo Trials: %8d\n'    , nTrials)

fprintf('                    # of Time Periods/Trial: %8d\n\n'  , nPeriods)

fprintf(' Brownian Motion American Call Basket Price: %8.4f\n'  , BrownianMotionCallPrice)

fprintf(' Brownian Motion American Put  Basket Price: %8.4f\n\n', BrownianMotionPutPrice)

fprintf(' Gaussian Copula American Call Basket Price: %8.4f\n'  , GaussianCopulaCallPrice)
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fprintf(' Gaussian Copula American Put  Basket Price: %8.4f\n\n', GaussianCopulaPutPrice)

fprintf('        t Copula American Call Basket Price: %8.4f\n'  , tCopulaCallPrice)

fprintf('        t Copula American Put  Basket Price: %8.4f\n'  , tCopulaPutPrice)

 

                    # of Monte Carlo Trials:      100

                    # of Time Periods/Trial:       63

 Brownian Motion American Call Basket Price:  25.9456

 Brownian Motion American Put  Basket Price:  16.4132

 Gaussian Copula American Call Basket Price:  24.5711

 Gaussian Copula American Put  Basket Price:  17.4229

        t Copula American Call Basket Price:  22.6220

        t Copula American Put  Basket Price:  20.9983

This analysis represents only a small-scale simulation. If the simulation is repeated with
100,000 trials, the following results are obtained:

                   # of Monte Carlo Trials:   100000

                   # of Time Periods/Trial:       63

Brownian Motion American Call Basket Price:  20.2214

Brownian Motion American Put  Basket Price:  16.5355

Gaussian Copula American Call Basket Price:  20.6097

Gaussian Copula American Put  Basket Price:  16.5539

       t Copula American Call Basket Price:  21.1273

       t Copula American Put  Basket Price:  16.6873

Interestingly, the results agree closely. Put option prices obtained from copulas exceed
those of Brownian motion by less than 1%.

A Note on Volatility and Interest Rate Scaling

The same option prices could also be obtained by working with unannualized (in this
case, daily) centered returns and riskless rates, where the time increment dt = 1 day
rather than 1/252 years. In other words, portfolio prices would still be simulated every
trading day; the data is simply scaled differently.

Although not executed, and by first resetting the random stream to its initial internal
state, the following code segments work with daily centered returns and riskless rates
and produce the same option prices.
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Gaussian Distribution/Brownian Motion & Daily Data:

reset(s)

f    = Example_LongstaffSchwartz(nPeriods, nTrials);

GBM1 = gbm(diag(r(ones(1,nIndices))/252), diag(std(returns)), 'StartState', X, ...

          'Correlation', correlation);

simByEuler(GBM1, nPeriods, 'nTrials'  , nTrials, 'DeltaTime', 1, ...

                          'Processes', f.LongstaffSchwartz);

BrownianMotionCallPrice = f.CallPrice(strike, r/252)

BrownianMotionPutPrice  = f.PutPrice (strike, r/252)

Gaussian Copula & Daily Data:

reset(s)

z    = Example_CopulaRNG(returns, nPeriods, 'Gaussian');

f    = Example_LongstaffSchwartz(nPeriods, nTrials);

GBM2 = gbm(diag(r(ones(1,nIndices))/252),   eye(nIndices), 'StartState', X);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime',   1, ...

                          'Processes', f.LongstaffSchwartz , 'Z', z);

GaussianCopulaCallPrice = f.CallPrice(strike, r/252)

GaussianCopulaPutPrice  = f.PutPrice (strike, r/252)

t Copula & Daily Data:

reset(s)

z = Example_CopulaRNG(returns, nPeriods, 't');

f = Example_LongstaffSchwartz(nPeriods, nTrials);

simByEuler(GBM2, nPeriods, 'nTrials'  , nTrials, 'DeltaTime',   1, ...

                          'Processes', f.LongstaffSchwartz , 'Z', z);

tCopulaCallPrice = f.CallPrice(strike, r/252)

tCopulaPutPrice  = f.PutPrice (strike, r/252)

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate | sde
| sdeddo | sdeld | sdemrd | simByEuler | simBySolution | simBySolution |
simulate | ts2func
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Related Examples
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Pricing American Basket Options by Monte Carlo Simulation”
• “Improving Performance of Monte Carlo Simulation with Parallel Computing” on

page 17-110
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
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Improving Performance of Monte Carlo Simulation with Parallel
Computing

This example shows how to improve the performance of a Monte Carlo simulation using
Parallel Computing Toolbox.

Consider a geometric Brownian motion (GBM) process in which you want to incorporate
alternative asset price dynamics. Specifically, suppose you want to include a time-
varying short rate as well as a volatility surface. The process to simulate is written as

dS t r t S t dt V t S t S t dW t( ) ( ) ( ) ( , ( )) ( ) ( )= +

for stock price S(t), rate of return r(t), volatility V(t,S(t)), and Brownian motion W(t). In
this example, the rate of return is a deterministic function of time and the volatility is a
function of both time and current stock price. Both the return and volatility are defined
on a discrete grid such that intermediate values is obtained by linear interpolation. For
example, such a simulation could be used to support the pricing of thinly traded options.

To include a time series of riskless short rates, suppose that you derive the following
deterministic short rate process as a function of time.

times = [0 0.25 0.5 1 2 3 4 5 6 7 8 9 10];  % in years

rates = [0.1 0.2 0.3 0.4 0.5 0.8 1.25 1.75 2.0 2.2 2.25 2.50 2.75]/100;

Suppose that you then derive the following volatility surface whose columns correspond
to simple relative moneyness, or the ratio of the spot price to strike price, and whose rows
correspond to time to maturity, or tenor.

surface = [28.1 25.3 20.6 16.3 11.2  6.2  4.9  4.9  4.9  4.9  4.9  4.9

           22.7 19.8 15.4 12.6  9.6  6.7  5.2  5.2  5.2  5.2  5.2  5.2

           21.7 17.6 13.7 11.5  9.4  7.3  5.7  5.4  5.4  5.4  5.4  5.4

           19.8 16.4 12.9 11.1  9.3  7.6  6.2  5.6  5.6  5.6  5.6  5.6

           18.6 15.6 12.5 10.8  9.3  7.8  6.6  5.9  5.9  5.9  5.9  5.9

           17.4 13.8 11.7 10.8  9.9  9.1  8.5  7.9  7.4  7.3  7.3  7.3

           17.1 13.7 12.0 11.2 10.6 10.0  9.5  9.1  8.8  8.6  8.4  8.0

           17.5 13.9 12.5 11.9 11.4 10.9 10.5 10.2  9.9  9.6  9.4  9.0

           18.3 14.9 13.7 13.2 12.8 12.4 12.0 11.7 11.4 11.2 11.0 10.8

           19.2 19.6 14.2 13.9 13.4 13.0 13.2 12.5 12.1 11.9 11.8 11.4]/100;

tenor = [0 0.25 0.50 0.75 1 2 3 5 7 10];   % in years
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moneyness = [0.25 0.5 0.75 0.8 0.9 1 1.10 1.25 1.50 2 3 5];

Set the simulation parameters. The following assumes that the price of the underlying
asset is initially equal to the strike price and that the price of the underlying asset is
simulated monthly for 10 years, or 120 months. As a simple illustration, 100 sample
paths are simulated.

price = 100;

strike = 100;

dt = 1/12;

nPeriods = 120;

nTrials = 100;

For reproducibility, set the random number generator to its default, and draw the
Gaussian random variates that drive the simulation. Generating the random variates is
not necessary to incur the performance improvement of parallel computation, but doing
so allows the resulting simulated paths to match those of the conventional (that is, non-
parallelized) simulation. Moreover, generating independent Gaussian random variates as
inputs also guarantees that all simulated paths are independent.

rng default

Z = randn(nPeriods,1,nTrials);

Create the return and volatility functions and the GBM model using the gbm constructor.
Notice that the rate of return is a deterministic function of time, and therefore accepts
simulation time as its only input argument. In contrast, the volatility must account
for the moneyness and is a function of both time and stock price. Moreover, since the
volatility surface is defined as a function of time to maturity rather than simulation
time, the volatility function subtracts the current simulation time from the last time at
which the price process is simulated (10 years). This ensures that as the simulation time
approaches its terminal value, the time to maturity of the volatility surface approaches
zero. Although far more elaborate return and volatility functions could be used if desired,
the following assumes simple linear interpolation.

mu = @(t) interp1(times,rates,t);

sigma = @(t,S) interp2(moneyness,tenor,surface,S/strike,tenor(end)-t);

mdl = gbm(mu,sigma,'StartState',price);

Simulate the paths of the underlying geometric Brownian motion without parallelization.

tStart = tic;

paths = simBySolution(mdl,nPeriods,'nTrials',nTrials,'DeltaTime',dt,'Z',Z);

time1 = toc(tStart);
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Simulate the paths in parallel using a parfor loop. For users licensed to access the
Parallel Computing Toolbox, the following code segment automatically creates a parallel
pool using the default local profile. If desired, this behavior can be changed by first
calling the parpool function. If a parallel pool is not already created, the following
simulation will likely be slower than the previous simulation without parallelization. In
this case, rerun the following simulation to assess the true benefits of parallelization.

tStart = tic;

parPaths = zeros(nPeriods+1,1,nTrials);

parfor i = 1:nTrials

    parPaths(:,:,i) = simBySolution(mdl,nPeriods,'DeltaTime',dt,'Z',Z(:,:,i));

end

time2 = toc(tStart);

If you examine any given path obtained without parallelization to the corresponding
path with parallelization, you see that they are identical. Moreover, although relative
performance varies, the results obtained with parallelization will generally incur a
significant improvement. To assess the performance improvement, examine the runtime
of each approach in seconds and speedup gained from simulating the paths in parallel.

time1                 % elapsed time of conventional simulation, in seconds

time2                 % elapsed time of parallel simulation, in seconds

speedup = time1/time2 % speedup factor

time1 =

    6.1329

time2 =

    2.5918

speedup =

    2.3663

See Also
bm | cev | cir | diffusion | drift | gbm | heston | hwv | interpolate |
parpool | sde | sdeddo | sdeld | sdemrd | simByEuler | simBySolution |
simBySolution | simulate | ts2func

Related Examples
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Pricing American Basket Options by Monte Carlo Simulation”
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• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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abs2active

Convert constraints from absolute to active format

Syntax

ActiveConSet = abs2active(AbsConSet, Index)

Description

ActiveConSet = abs2active(AbsConSet, Index) transforms a constraint matrix
to an equivalent matrix expressed in active weight format (relative to the index).

Input Arguments

AbsConSet

Portfolio linear inequality constraint matrix expressed in absolute weight format.
AbsConSet is formatted as [A b] such that A*w <= b, where A is a number of
constraints (NCONSTRAINTS) by number of assets (NASSETS) weight coefficient matrix,
and b and w are column vectors of length NASSETS. The value w represents a vector of
absolute asset weights whose elements sum to the total portfolio value. See the output
ConSet from portcons for additional details about constraint matrices.

Index

NASSETS-by-1 vector of index portfolio weights. The sum of the index weights must equal
the total portfolio value (for example, a standard portfolio optimization imposes a sum-to-
one budget constraint).
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Output Arguments

ActiveConSet

The transformed portfolio linear inequality constraint matrix expressed in active weight
format, also of the form [A b] such that A*w <= b. The value w represents a vector of
active asset weights (relative to the index portfolio) whose elements sum to zero.

Definitions

abs2active transforms a constraint matrix to an equivalent matrix expressed in active
weight format (relative to the index). The transformation equation is

Aw A w w babsolute active index absolute= +( ) £ .

Therefore

Aw b Aw bactive absolute index active£ - = .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality
constraints expressed in absolute weight format. The index portfolio vector contains
NASSETS assets.

Examples

Set up constraints for a portfolio optimization for portfolio w0 with constraints in the
form A*w <= b, where w is absolute portfolio weights. (Absolute weights do not depend
on the tracking portfolio.) Use abs2active to convert constraints in terms of absolute
weights into constraints in terms of active portfolio weights, defined relative to the
tracking portfolio w0. Assume three assets with the following mean and covariance of
asset returns:
m = [ 0.14; 0.10; 0.05 ];

C = [ 0.29^2 0.4*0.29*0.17 0.1*0.29*0.08; 0.4*0.29*0.17 0.17^2 0.3*0.17*0.08;...

0.1*0.29*0.08 0.3*0.17*0.08 0.08^2 ];

Absolute portfolio constraints are the typical ones (weights sum to 1 and fall from 0
through 1), create the A and b matrices using portcons:
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AbsCons = portcons('PortValue',1,3,'AssetLims', [0; 0; 0], [1; 1; 1;]);

Use the Portfolio object to determine the efficient frontier:

p = Portfolio('AssetMean', m, 'AssetCovar', C);

p = p.setInequality(AbsCons(:,1:end-1), AbsCons(:,end));

p.plotFrontier;

The tracking portfolio w0 is:

w0 = [ 0.1; 0.55; 0.35 ];

Use abs2active to compute the constraints for active portfolio weights:

ActCons = abs2active(AbsCons, w0)

This returns:

ActCons =

    1.0000    1.0000    1.0000         0

   -1.0000   -1.0000   -1.0000         0

    1.0000         0         0    0.9000

         0    1.0000         0    0.4500

         0         0    1.0000    0.6500
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   -1.0000         0         0    0.1000

         0   -1.0000         0    0.5500

         0         0   -1.0000    0.3500

Use the Portfolio object p and its efficient frontier to demonstrate expected returns
and risk relative to the tracking portfolio w0:

p = p.setInequality(ActCons(:,1:end-1), ActCons(:,end));

p.plotFrontier;

Note, when using abs2active to compute “active constraints” for use with a Portfolio
object, don't use the Portfolio object’s default constraints because the relative weights can
be positive or negative (the setDefaultConstraints function specifies weights to be
nonnegative).

See Also
active2abs | pcalims | pcglims | pcpval | portcons | Portfolio |
setInequality

Introduced before R2006a
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accrfrac
Fraction of coupon period before settlement

Syntax

Fraction = accrfrac(Settle,Maturity)

Fraction = accrfrac(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

Fraction = accrfrac(Settle,Maturity) returns the fraction of the coupon period
before settlement.

Use accrfrac for computing accrued interest. accrfrac calculates accrued interest for
bonds with regular or odd first or last coupon periods.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

Fraction = accrfrac(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the
fraction of the coupon period before settlement with optional inputs.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

Examples

Find Accrued Interest for a Bond

This example shows how to find the accrued interest for given bond data.

Settle = '14-Mar-1997';

Maturity = ['30-Nov-2000'
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            '31-Dec-2000'

            '31-Jan-2001'];

Period = 2;

Basis = 0;

EndMonthRule = 1;

Fraction = accrfrac(Settle, Maturity, Period, Basis,...

EndMonthRule)

Fraction =

    0.5714

    0.4033

    0.2320

Find Accrued Interest for a Bond Using a datetime Array

This example shows how to find the accrued interest for a given bond's data using a
datetime array.

Fraction = accrfrac(datetime('14-Mar-1997', 'Locale', 'en_US'), ['30-Nov-2000'; '31-Dec-2000'; '31-Jan-2001'], 2, 0,1)

Fraction =

    0.5714

    0.4033

    0.2320

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime
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Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
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Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.
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LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

Fraction — Fraction of coupon period before settlement
vector

Fraction of the coupon period before settlement, returned as an NUMBONDS-by-1 vector.

See Also
cfamounts | cfdates | cpncount | cpndaten | cpndatenq | cpndatep |
cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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acrubond
Accrued interest of security with periodic interest payments

Syntax
AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,

CouponRate, Period, Basis)

Arguments

IssueDate Enter as serial date number, date character vector, or
datetime array.

Settle Enter as serial date number, date character vector, or
datetime array.

FirstCouponDate Enter as serial date number, date character vector, or
datetime array.

Face Redemption (par, face) value.
CouponRate Enter as decimal fraction.
Period (Optional) Coupons per year of the bond. A vector of

integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
Basis (Optional) Day-count basis of the instrument. A vector of

integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Description

AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,

CouponRate, Period, Basis) returns the accrued interest for a security with
periodic interest payments. This function computes the accrued interest for securities
with standard, short, and long first coupon periods.

Note cfamounts or accrfrac is recommended when calculating accrued interest
beyond the first period.

Examples

Find Accrued Interest of a Bond with Periodic Interest Payments

This example shows how to find the accrued interest for a bond with semiannual interest
payments.

AccruInterest = acrubond('31-jan-1983',  '1-mar-1993', ...

                '31-jul-1983',  100,  0.1,  2,  0)

AccruInterest =

    0.8011

Find Accrued Interest of a Bond with Periodic Interest Payments Using datetime Inputs

This example shows how to use datetime inputs to find the accrued interest for a bond
with semiannual interest payments.
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AccruInterest = acrubond(datetime('31-jan-1983','Locale','en_US'),datetime('1-mar-1993','Locale','en_US'),datetime('31-jul-1983','Locale','en_US'),...

100,  0.1,  2,  0)

AccruInterest =

    0.8011

• “Coupon Date Calculations” on page 2-28

More About
• “Fixed-Income Terminology” on page 2-21

See Also
accrfrac | acrudisc | bndprice | bndyield | cfamounts | datenum | datetime

Introduced before R2006a
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acrudisc
Accrued interest of discount security paying at maturity

Syntax
AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,

Basis)

Arguments

Settle Enter as serial date number, date character vector, or datetime
array. Settle must be earlier than Maturity.

Maturity Enter as serial date number, date character vector, or datetime
array.

Face Redemption (par, face) value.
Discount Discount rate of the security. Enter as decimal fraction.
Period (Optional) Coupons per year of the bond. A vector of integers.

Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Description

AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,

Basis) returns the accrued interest of a discount security paid at maturity.

Examples

Find Accrued Interest of a Discount Security Paid at Maturity

This example shows how to find the accrued interest of a discount security paid at
maturity.

AccruInterest = acrudisc('05/01/1992',  '07/15/1992', ...

                100,  0.1,  2,  0)

AccruInterest =

    2.0604

Find Accrued Interest of a Discount Security Paid at Maturity Using datetime Inputs

This example shows how to use datetime inputs to find the accrued interest of a
discount security paid at maturity.

AccruInterest = acrudisc(datetime('1-May-1992','Locale','en_US'),datetime('15-Jul-1992','Locale','en_US'),...

100,  0.1,  2,  0)

AccruInterest =

    2.0604
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• “Coupon Date Calculations” on page 2-28

More About
• “Fixed-Income Terminology” on page 2-21

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula D.

See Also
acrubond | datetime | prdisc | prmat | ylddisc | yldmat

Introduced before R2006a
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active2abs
Convert constraints from active to absolute format

Syntax
AbsConSet = active2abs(ActiveConSet, Index)

Arguments

ActiveConSet Portfolio linear inequality constraint matrix expressed in
active weight format. ActiveConSet is formatted as [A b]
such that A*w <= b, where A is a number of constraints
(NCONSTRAINTS) by number of assets (NASSETS) weight
coefficient matrix, and b and w are column vectors of length
NASSETS. The value w represents a vector of active asset
weights (relative to the index portfolio) whose elements sum
to 0.

See the output ConSet from portcons for additional details
about constraint matrices.

Index NASSETS-by-1 vector of index portfolio weights. The sum of
the index weights must equal the total portfolio value (for
example, a standard portfolio optimization imposes a sum-to-
one budget constraint).

Description

AbsConSet = active2abs(ActiveConSet, Index) transforms a constraint matrix
to an equivalent matrix expressed in absolute weight format. The transformation
equation is

Aw A w w bactive absolute index active= -( ) £ .

Therefore
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Aw b Aw babsolute active index absolute£ + = .

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality
constraints expressed in active weight format (relative to the index portfolio). The index
portfolio vector contains NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint matrix expressed
in absolute weight format, also of the form [A b] such that A*w <= b. The value
w represents a vector of active asset weights (relative to the index portfolio) whose
elements sum to the total portfolio value.

See Also
abs2active | pcalims | pcgcomp | pcglims | pcpval | portcons

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12

Introduced before R2006a
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addEquality
Add linear equality constraints for portfolio weights to existing constraints

Use the addEquality function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to add linear equality constraints for portfolio weights to existing constraints.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = addEquality(obj,AEquality,bEquality)

Description

obj = addEquality(obj,AEquality,bEquality) adds linear equality constraints
for portfolio weights to existing constraints.

Given a linear equality constraint matrix AEquality and vector bEquality, every
weight in a portfolio Port must satisfy the following:

AEquality * Port = bEquality

This function "stacks" additional linear equality constraints onto any existing linear
equality constraints that exist in the input portfolio object. If no constraints exist, this
method is the same as setEquality.

Examples

Add a Linear Equality Constraint for a Portfolio Object

Use the addEquality method to create linear equality constraints. Add another linear
equality constraint to ensure that the last three assets constitute 50% of a portfolio.

p = Portfolio;
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A = [ 1 1 1 0 0 ];    % First equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

     5

     1     1     1     0     0

     0     0     1     1     1

    0.5000

    0.5000

Add a Linear Equality Constraint for a PortfolioCVaR Object

Use the addEquality method to create linear equality constraints. Add another linear
equality constraint to ensure that the last three assets constitute 50% of a portfolio.

p = PortfolioCVaR;

A = [ 1 1 1 0 0 ];    % First equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

     5

     1     1     1     0     0

     0     0     1     1     1

    0.5000
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    0.5000

Add a Linear Equality Constraint for a PortfolioMAD Object

Use the addEquality method to create linear equality constraints. Add another linear
equality constraint to ensure that the last three assets constitute 50% of a portfolio.

p = PortfolioMAD;

A = [ 1 1 1 0 0 ];    % First equality constraint

b = 0.5;

p = setEquality(p, A, b);

A = [ 0 0 1 1 1 ];    % Second equality constraint

b = 0.5;

p = addEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

     5

     1     1     1     0     0

     0     0     1     1     1

    0.5000

    0.5000

• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page

5-76
• “Setting Linear Inequality Constraints Using the setInequality and addInequality

Functions” on page 6-78
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

AEquality — Linear equality constraints formed from matrix
matrix

Linear equality constraints, specified as a matrix.

Note: An error results if AEquality is empty and bEquality is nonempty.

Data Types: double

bEquality — Linear equality constraints formed from vector
vector

Linear equality constraints, specified as a vector.

Note: An error results if bEquality is empty and AEquality is nonempty.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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More About

Tips

• You can also use dot notation to add the linear equality constraints for portfolio
weights.

obj = obj.addEquality(AEquality, bEquality)

• You can also remove linear equality constraints from a portfolio object using dot
notation.

obj = obj.setEquality([ ], [ ])

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setEquality

Introduced in R2011a
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addGroupRatio
Add group ratio constraints for portfolio weights to existing group ratio constraints

Use the addGroupratio function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to add group ratio constraints for portfolio weights to existing
group ratio constraints.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio)

obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio)

Description

obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio) adds group ratio
constraints for portfolio weights to existing group ratio constraints.

Given base and comparison group matrices GroupA and GroupB and, either
LowerRatio, or UpperRatio bounds, group ratio constraints require any portfolio in
Port to satisfy the following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Note: This collection of constraints usually requires that portfolio weights be nonnegative
and that the products GroupA * Port and GroupB * Port are always nonnegative.
Although negative portfolio weights and non-Boolean group ratio matrices are supported,
use with caution.

obj = addGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio) adds
group ratio constraints for portfolio weights to existing group ratio constraints with an
additional option for UpperRatio.
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Given base and comparison group matrices GroupA and GroupB and, either
LowerRatio, or UpperRatio bounds, group ratio constraints require any portfolio in
Port to satisfy the following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Note: This collection of constraints usually requires that portfolio weights be nonnegative
and that the products GroupA * Port and GroupB * Port are always nonnegative.
Although negative portfolio weights and non-Boolean group ratio matrices are supported,
use with caution.

Examples

Add Group Ratio Constraints to a Portfolio Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed
50% of the weight in nonfinancial assets. Then add another group ratio constraint
to ensure that the weight in financial assets constitute at least 20% of the weight in
nonfinancial assets of the portfolio.

p = Portfolio;

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies

GB = [ false false false true true true ];    % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     1     0     1     0     1     0

     0     0     0     1     1     1
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     0     0     0     1     1     1

      -Inf

    0.2000

    0.5000

       Inf

Add Group Ratio Constraints to a PortfolioCVaR Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed
50% of the weight in nonfinancial assets. Then add another group ratio constraint
to ensure that the weight in financial assets constitute at least 20% of the weight in
nonfinancial assets of the portfolio.

p = PortfolioCVaR;

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies

GB = [ false false false true true true ];    % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     1     0     1     0     1     0

     0     0     0     1     1     1

     0     0     0     1     1     1

      -Inf

    0.2000

    0.5000

       Inf
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Add Group Ratio Constraints to a PortfolioMAD Object

Set a group ratio constraint to ensure that the weight in financial assets does not exceed
50% of the weight in nonfinancial assets. Then add another group ratio constraint
to ensure that the weight in financial assets constitute at least 20% of the weight in
nonfinancial assets of the portfolio.

p = PortfolioMAD;

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = setGroupRatio(p, GA, GB, [], 0.5);

GA = [ true false true false true false ];    % odd-numbered companies

GB = [ false false false true true true ];    % nonfinancial companies

p = addGroupRatio(p, GA, GB, 0.2);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.LowerRatio);

disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     1     0     1     0     1     0

     0     0     0     1     1     1

     0     0     0     1     1     1

      -Inf

    0.2000

    0.5000

       Inf

• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Group Ratio Constraints Using PortfolioCVaR Object” on page 5-72
• “Working with Group Ratio Constraints Using PortfolioMAD Object” on page 6-71
• “Portfolio Optimization Examples” on page 4-139
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Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

GroupA — Base groups for comparison
matrix of logical or numerical arrays

Base groups for comparison, specified as a matrix of logical or numerical arrays.

Note: The group matrices GroupA and GroupB are usually indicators of membership
in groups, which means that their elements are usually either 0 or 1. Because of this
interpretation, the GroupA and GroupB matrices can be logical or numerical arrays.

Data Types: double

GroupB — Comparison group
matrix of logical or numerical arrays

Comparison group, specified as a matrix of logical or numerical arrays.

Note: The group matrices GroupA and GroupB are usually indicators of membership
in groups, which means that their elements are usually either 0 or 1. Because of this
interpretation, the GroupA and GroupB matrices can be logical or numerical arrays.

Data Types: double

LowerRatio — Lower-bound for ratio of GroupB groups to GroupA groups
vector

Lower-bound for ratio of GroupB groups to GroupA groups, specified as a vector.
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Note: If input is scalar, LowerRatio undergoes scalar expansion to be conformable with
the group matrices.

Data Types: double

UpperRatio — Upper-bound for ratio of GroupB groups to GroupA groups
vector

Upper-bound for ratio of GroupB groups to GroupA groups, specified as a vector.

Note: If input is scalar, UpperRatio undergoes scalar expansion to be conformable with
the group matrices.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to add group ratio constraints for the portfolio weights
to existing group ratio constraints.

obj = obj.addGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio)
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• To remove group ratio constraints from any of the portfolio objects using dot notation,
enter empty arrays for the corresponding arrays.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setGroupRatio

Introduced in R2011a
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addGroups

Add group constraints for portfolio weights to existing group constraints

Use the addGroups function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to add group constraints for portfolio weights to existing group constraints.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = addGroups(obj,GroupMatrix,LowerGroup)

obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup)

Description

obj = addGroups(obj,GroupMatrix,LowerGroup) adds group constraints for
portfolio weights to existing group constraints.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must
satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup

obj = addGroups(obj,GroupMatrix,LowerGroup,UpperGroup) adds group
constraints for portfolio weights to existing group constraints with an additional option
for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must
satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup
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Examples

Add Group Constraints to a Portfolio Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a
portfolio. Then add another group constraint to ensure that the odd-numbered assets
constitute at least 20% of a portfolio.

p = Portfolio;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

     5

     1     1     1     0     0

     1     0     1     0     1

      -Inf

    0.2000

    0.3000

       Inf

Add Group Constraints to a PortfolioCVaR Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a
portfolio. Then add another group constraint to ensure that the odd-numbered assets
constitute at least 20% of a portfolio.

p = PortfolioCVaR;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);
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disp(p.UpperGroup);

     5

     1     1     1     0     0

     1     0     1     0     1

      -Inf

    0.2000

    0.3000

       Inf

Add Group Constraints to a PortfolioMAD Object

Set a group constraint to ensure that the first three assets constitute at most 30% of a
portfolio. Then add another group constraint to ensure that the odd-numbered assets
constitute at least 20% of a portfolio.

p = PortfolioMAD;

G = [ true true true false false ];    % group matrix for first group constraint

p = setGroups(p, G, [], 0.3);

G = [ true false true false true ];    % group matrix for second group constraint

p = addGroups(p, G, 0.2);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.LowerGroup);

disp(p.UpperGroup);

     5

     1     1     1     0     0

     1     0     1     0     1

      -Inf

    0.2000

    0.3000

       Inf

• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68

18-33



18 Functions — Alphabetical List

• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

GroupMatrix — Group constraint matrix
matrix

Group constraint matrix, specified as a matrix.

Note: The group matrix GroupMatrix often indicates membership in groups,
which means that its elements are usually either 0 or 1. Because of this
interpretation,GroupMatrix can be a logical or numerical matrix.

Data Types: double

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, specified as a vector.

Note:  If input is scalar, LowerGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double
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UpperGroup — Upper bound for group constraints
vector

Upper bound for group constraints, specified as a vector.

Note:  If input is scalar, UpperGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to add group constraints for portfolio weights.

obj = obj.addGroups(GroupMatrix, LowerGroup, UpperGroup)

• To remove group constraints from any of the portfolio objects using dot notation, enter
empty arrays for the corresponding arrays.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)
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See Also
setGroups

Introduced in R2011a
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addInequality
Add linear inequality constraints for portfolio weights to existing constraints

Use the addInequality function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to add linear inequality constraints for portfolio weights to
existing constraints.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = addInequality(obj,AInequality,bInequality)

Description

obj = addInequality(obj,AInequality,bInequality) adds linear inequality
constraints for portfolio weights to existing constraints.

Given a linear equality constraint matrix AInequality and vector bInequality, every
weight in a portfolio Port must satisfy the following:

AInequality * Port = bInequality

This function "stacks" additional linear inequality constraints onto any existing linear
inequality constraints that exist in the input portfolio object. If no constraints exist, this
function is the same as setInequality.

Examples

Add Linear Inequality Constraint to a Portfolio Object

Set a linear inequality constraint to ensure that the first three assets constitute at most
50% of a portfolio. Then add another linear inequality constraint to ensure that the last
three assets constitute at least 50% of a portfolio.
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p = Portfolio;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0

     0     0    -1    -1    -1

    0.5000

   -0.5000

Add Linear Inequality Constraint to a PortfolioCVaR Object

Set a linear inequality constraint to ensure that the first three assets constitute at most
50% of a portfolio. Then add another linear inequality constraint to ensure that the last
three assets constitute at least 50% of a portfolio.

p = PortfolioCVaR;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0
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     0     0    -1    -1    -1

    0.5000

   -0.5000

Add Linear Inequality Constraint to a PortfolioMAD Object

Set a linear inequality constraint to ensure that the first three assets constitute at most
50% of a portfolio. Then add another linear inequality constraint to ensure that the last
three assets constitute at least 50% of a portfolio.

p = PortfolioMAD;

A = [ 1 1 1 0 0 ];    % first inequality constraint

b = 0.5;

p = setInequality(p, A, b);

A = [ 0 0 -1 -1 -1 ];    % second inequality constraint

b = -0.5;

p = addInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0

     0     0    -1    -1    -1

    0.5000

   -0.5000

• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-84
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page

5-79
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page

6-78
• “Portfolio Optimization Examples” on page 4-139
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Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

AInequality — Linear inequality constraints formed from matrix
matrix

Linear inequality constraints, specified as a matrix.

Note: An error results if AInequality is empty and bInequality is nonempty.

Data Types: double

bInequality — Linear inequality constraints formed from vector
vector

Linear inequality constraints, specified as a vector.

Note: An error results if bInequality is empty and AInequality is nonempty.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

18-40



 addInequality

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to add the linear inequality constraints for portfolio
weights.

obj = obj.addInequality(AInequality, bInequality)

• You can also remove linear inequality constraints from any of the portfolio objects
using dot notation.

obj = obj.setInequality([ ], [ ])

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setInequality

Introduced in R2011a
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adline

Accumulation/Distribution line

Syntax

adln = adline(highp, lowp, closep, tvolume)

adln = adline([highp lowp  closep  tvolume])

adlnts = adline(tsobj)

adlnts = adline(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector)
lowp Low price (vector)
closep Closing price (vector)
tvolume Volume traded (vector)
tsobj Time series object

Description

adln = adline(highp, lowp, closep, tvolume) computes the Accumulation/
Distribution line for a set of stock price and volume traded data. The prices required for
this function are the high (highp), low (lowp), and closing (closep) prices.

adln = adline([highp lowp closep tvolume]) accepts a four-column matrix as
input. The first column contains the high prices, the second contains the low prices, the
third contains the closing prices, and the fourth contains the volume traded.

adlnts = adline(tsobj) computes the Williams Accumulation/Distribution line for
a set of stock price data contained in the financial time series object tsobj. The object
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must contain the high, low, and closing prices plus the volume traded. The function
assumes that the series are named High, Low, Close, and Volume. All are required.
adlnts is a financial time series object with the same dates as tsobj but with a single
series named ADLine.

adlnts = adline(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name
• VolumeName: volume traded series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Calculate the Accumulation/Distribution Line for a Stock

This example shows how to compute the Accumulation/Distribution line for Disney stock
and plot the results.

load disney.mat

dis_ADLine = adline(dis);

plot(dis_ADLine)

title('Accumulation/Distribution Line for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 56–58.
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See Also
adosc | willad | willpctr

Introduced before R2006a
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adosc

Accumulation/Distribution oscillator

Syntax

ado = adosc(highp, lowp, openp, closep)

ado = adosc([highp lowp openp closep])

adots = adosc(tsobj)

adots = adosc(tsojb, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector)
lowp Low price (vector)
openp Opening price (vector)
closep Closing price (vector)
tsobj Time series object

Description

ado = adosc(highp, lowp, openp, closep) returns a vector, ado, that represents
the Accumulation/Distribution (A/D) oscillator. The A/D oscillator is calculated based
on the high, low, opening, and closing prices of each period. Each period is treated
individually.

ado = adosc([highp lowp openp closep]) accepts a four-column matrix as input.
The order of the columns must be high, low, opening, and closing prices.

adots = adosc(tsobj) calculates the Accumulation/Distribution (A/D) oscillator,
adots, for the set of stock price data contained in the financial time series object tsobj.
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The object must contain the high, low, opening, and closing prices. The function assumes
that the series are named High, Low, Open, and Close. All are required. adots is a
financial time series object with similar dates to tsobj and only one series named
ADOsc.

adots = adosc(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name-parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name
• LowName: low prices series name
• OpenName: opening prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Calculate the Accumulation/Distribution Oscillator for a Stock

This example shows how to find the Accumulation/Distribution oscillator for Disney stock
and plot the results.

load disney.mat

dis_ADOsc = adosc(dis);

plot(dis_ADOsc)

title('A/D Oscillator for Disney')

18-47



18 Functions — Alphabetical List

• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley and
Sons, New York, 1987.
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See Also
adline | willad

Introduced before R2006a
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amortize

Amortization schedule

Syntax

[Principal, Interest, Balance, Payment] = amortize(Rate,

NumPeriods, PresentValue, FutureValue, Due)

Arguments

Rate Interest rate per period, as a decimal fraction.
NumPeriods Number of payment periods.
PresentValue Present value of the loan.
FutureValue (Optional) Future value of the loan. Default = 0.
Due (Optional) When payments are due: 0 = end of period

(default), or 1 = beginning of period.

Description

[Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods,

PresentValue, FutureValue, Due) returns the principal and interest payments of a
loan, the remaining balance of the original loan amount, and the periodic payment.

Principal Principal paid in each period. A 1-by-NumPeriods vector.
Interest Interest paid in each period. A 1-by-NumPeriods vector.
Balance Remaining balance of the loan in each payment period. A 1-

by-NumPeriods vector.
Payment Payment per period. A scalar.
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Examples

Compute an Amortization Schedule for a Conventional 30-Year, Fixed-Rate Mortgage With
Fixed Monthly Payments

Compute an amortization schedule for a conventional 30-year, fixed-rate mortgage with
fixed monthly payments and assume a fixed rate of 12% APR and an initial loan amount
of $100,000.

Rate         = 0.12/12;   % 12 percent APR = 1 percent per month

NumPeriods   = 30*12;     % 30 years = 360 months

PresentValue = 100000;

[Principal, Interest, Balance, Payment] = amortize(Rate, ...

NumPeriods, PresentValue);

The output argument Payment contains the fixed monthly payment.

format bank

Payment

Payment =

       1028.61

Summarize the amortization schedule graphically by plotting the current outstanding
loan balance, the cumulative principal, and the interest payments over the life of the
mortgage. In particular, note that total interest paid over the life of the mortgage exceeds
$270,000, far in excess of the original loan amount.

plot(Balance,'b'), hold('on')

plot(cumsum(Principal),'--k')

plot(cumsum(Interest),':r')

xlabel('Payment Month')

ylabel('Dollars')

grid('on')

title('Outstanding Balance, Cumulative Principal & Interest')

legend('Outstanding Balance', 'Cumulative Principal', ...

'Cumulative Interest')
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The solid blue line represents the declining principal over the 30-year period. The dotted
red line indicates the increasing cumulative interest payments. Finally, the dashed black
line represents the cumulative principal payments, reaching $100,000 after 30 years.

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
annurate | annuterm | payadv | payodd | payper

Introduced before R2006a
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annurate
Periodic interest rate of annuity

Syntax
Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue,

Due)

Arguments

NumPeriods Number of payment periods.
Payment Payment per period.
PresentValue Present value of the loan or annuity.
FutureValue (Optional) Future value of the loan or annuity. Default = 0.
Due (Optional) When payments are due: 0 = end of period

(default), or 1 = beginning of period.

Description

Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due)

returns the periodic interest rate paid on a loan or annuity.

Examples

Calculate the Periodic Interest Rate Paid on a Loan or Annuity

This example shows how to find the periodic interest rate of a four-year, $5000 loan with
a $130 monthly payment made at the end of each month.

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate =
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    0.0094

Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
amortize | annuterm | bndyield | irr

Introduced before R2006a
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annuterm
Number of periods to obtain value

Syntax
NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue,

Due)

Arguments

Rate Interest rate per period, as a decimal fraction.
Payment Payment per period.
PresentValue Present value.
FutureValue (Optional) Future value. Default = 0.
Due (Optional) When payments are due: 0 = end of period

(default), or 1 = beginning of period.

Description

NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue,

Due) calculates the number of periods needed to obtain a future value. To calculate the
number of periods needed to pay off a loan, enter the payment or the present value as a
negative value.

Examples

Calculate the Number of Periods Needed to Obtain a Future Value

This example shows a savings account with a starting balance of $1500. $200 is added
at the end of each month and the account pays 9% interest, compounded monthly. How
many years will it take to save $5,000?

NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)
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NumPeriods =

   15.6752

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
amortize | annurate | fvfix | pvfix

Introduced before R2006a
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arith2geom
Arithmetic to geometric moments of asset returns

Syntax
[mg, Cg] = arith2geom(ma, Ca)

[mg, Cg] = arith2geom(ma, Ca, t)

Arguments

ma Arithmetic mean of asset-return data (n-vector).
Ca Arithmetic covariance of asset-return data, an n-by-n symmetric,

positive-semidefinite matrix.
t (Optional) Target period of geometric moments in terms of

periodicity of arithmetic moments with default value 1 (scalar).

Description

arith2geom transforms moments associated with a simple Brownian motion into
equivalent continuously compounded moments associated with a geometric Brownian
motion with a possible change in periodicity.

[mg, Cg] = arith2geom(ma, Ca, t) returns mg, continuously compounded or
"geometric" mean of asset returns over the target period (n-vector), and Cg, which is
a continuously compounded or "geometric" covariance of asset returns over the target
period (n-by-n matrix).

Arithmetic returns over period tA are modeled as multivariate normal random variables
with moments

E
A

[ ]X m=

and
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cov( )X C=
A

Geometric returns over period tG are modeled as multivariate lognormal random
variables with moments

E G[ ]Y m= +1

cov( )Y C= G

Given t = tG / tA, the transformation from geometric to arithmetic moments is

1
1

2
+ = +m m CG A A

i i ii
t texp( )

C m m C
j

G G G Aijij i
t= + + -( )( )(exp( ) )1 1 1

For i,j = 1,..., n.

Note: If t = 1, then Y = exp(X).

This function has no restriction on the input mean ma but requires the input covariance
Ca to be a symmetric positive-semidefinite matrix.

The functions arith2geom and geom2arith are complementary so that, given m, C, and
t, the sequence

[mg, Cg] = arith2geom(m, C, t);    

[ma, Ca] = geom2arith(mg, Cg, 1/t); 

yields ma = m and Ca = C.

Examples

Example 1. Given arithmetic mean m and covariance C of monthly total returns, obtain
annual geometric mean mg and covariance Cg. In this case, the output period (1 year) is
12 times the input period (1 month) so that t = 12 with
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[mg, Cg] = arith2geom(m, C, 12);

Example 2. Given annual arithmetic mean m and covariance C of asset returns, obtain
monthly geometric mean mg and covariance Cg. In this case, the output period (1 month)
is 1/12 times the input period (1 year) so that t = 1/12 with

[mg, Cg] = arith2geom(m, C, 1/12);

Example 3. Given arithmetic means m and standard deviations s of daily total returns
(derived from 260 business days per year), obtain annualized continuously compounded
mean mg and standard deviations sg with

[mg, Cg] = arith2geom(m, diag(s .^2), 260);

sg = sqrt(diag(Cg));

Example 4. Given arithmetic mean m and covariance C of monthly total returns, obtain
quarterly continuously compounded return moments. In this case, the output is 3 of the
input periods so that t = 3 with

[mg, Cg] = arith2geom(m, C, 3);

Example 5. Given arithmetic mean m and covariance C of 1254 observations of daily
total returns over a 5-year period, obtain annualized continuously compounded return
moments. Since the periodicity of the arithmetic data is based on 1254 observations
for a 5-year period, a 1-year period for geometric returns implies a target period of t =
1254/5 so that

[mg, Cg] = arith2geom(m, C, 1254/5); 

See Also
geom2arith

Introduced before R2006a

18-59



18 Functions — Alphabetical List

ascii2fts
Create financial time series object from ASCII file

Syntax
tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)

tsobj = ascii2fts(filename, timedata, descrow, colheadrow,

skiprows)

Arguments

filename ASCII data file
descrow (Optional) Row number in the data file that contains the

description to be used for the description field of the financial time
series object

colheadrow (Optional) Row number that has the column headers/names
skiprows (Optional) Scalar or vector of row numbers to be skipped in the data

file
timedata Set to 'T' if time-of-day data is present in the ASCII data file or to

'NT' if no time-of-day data is present.

Description

tsobj = ascii2fts(filename, descrow, colheadrow, skiprows) creates a
financial time series object tsobj from the ASCII file named filename. This form of the
function can only read a data file without time-of-day information and create a financial
time series object without time information. If time information is present in the ASCII
file, an error message appears.

The general format of the text data file is

• Can contain header text lines.
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• Can contain column header information. The column header information must
immediately precede the data series columns unless skiprows is specified.

• Leftmost column must be the date column.
• Dates must be in a valid character vector date format:

• 'ddmmmyy' or 'ddmmmyyyy'
• 'mm/dd/yy' or 'mm/dd/yyyy'
• 'dd-mmm-yy' or 'dd-mmm-yyyy'
• 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Time information must be in 'hh:mm' format.
• Each column must be separated either by spaces or a tab.

tsobj = ascii2fts(filename, timedata, descrow, colheadrow, skiprows)

creates a financial time series object containing time-of-day data. Set timedata to
'T' to create a financial time series object containing time-of-day data. The ascii time
information must be in 'hh:mm' format for ascii2fts.

Examples

Example 1. If your data file contains no description or column header rows,

1/3/95   36.75   36.9063   36.6563   36.875    1167900

1/4/95   37      37.2813   36.625    37.1563   1994700  ...

you can create a financial time series object from it with the simplest form of the
ascii2fts function:
myinc = ascii2fts('my_inc.dat');

myinc = 

 

desc:  my_inc.dat

freq:  Unknown (0)

'dates:  (2)'  'series1: (2)'  'series2: (2)'   'series3: (2)'...

'03-Jan-1995'  [   36.7500]    [    36.9063]    [   36.6563]

'04-Jan-1995'  [        37]    [    37.2813]    [   36.6250]

Example 2: If your data file contains description and column header information with
the data series immediately following the column header row,
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International Business Machines Corporation (IBM)

Daily prices (1/3/95 to 4/5/99)

DATE     OPEN    HIGH      LOW       CLOSE     VOLUME

1/3/95   36.75   36.9063   36.6563   36.875    1167900

1/4/95   37      37.2813   36.625    37.1563   1994700  ...

you must specify the row numbers containing the description and column headers:
ibm = ascii2fts('ibm9599.dat', 1, 3);

ibm = 

 

desc:  International Business Machines Corporation (IBM)

freq:  Unknown (0)

'dates:  (2)'  'OPEN:  (2)'    'HIGH:  (2)'    'LOW:  (2)' ...

'03-Jan-1995'  [  36.7500]    [   36.9063]    [  36.6563]

'04-Jan-1995'  [       37]    [   37.2813]    [  36.6250]

Example 3: If your data file contains rows between the column headers and the data
series, for example,

Staples, Inc. (SPLS)

Daily prices

DATE     OPEN    HIGH     LOW      CLOSE    VOLUME

Starting date: 04/08/1996

Ending date:   04/07/1999

4/8/96   19.50   19.75    19.25    19.375   548500

4/9/96   19.75   20.125   19.375   20       1135900  ...

you need to indicate to ascii2fts the rows in the file that must be skipped. Assume
that you have called the data file containing the Staples data above staples.dat. The
command

spls = ascii2fts('staples.dat', 1, 3, [4 5]);

indicates that the fourth and fifth rows in the file should be skipped in creating the
financial time series object:

spls = 

 

desc:  Staples, Inc. (SPLS)

freq:  Unknown (0)

'dates:  (2)'  'OPEN:  (2)'    'HIGH:  (2)'    'LOW:  (2)'

'08-Apr-1996'  [   19.5000]    [  19.7500]     [19.2500]
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'09-Apr-1996'  [   19.7500]    [  20.1250]     [19.3750]

Example 4: Create a financial time series object containing time-of-day information.

First create a data file with time information:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ... 

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

serial_dates_times = [datenum(dates), datenum(times)];

data = round(10*rand(6,2));

stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ... 

{'dates';'times';'Data1';'Data2'},'My FTS with Time');

Now read the data file back and create a financial time series object:
MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

MyFts = 

 

    desc:  My FTS with Time

    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'   'Data1:  (6)'  'Data2:  (6)'

    '01-Jan-2001'    '11:00'         [          9]   [          4]

    '     "     '    '12:00'         [          7]   [          9]

    '02-Jan-2001'    '11:00'         [          2]   [          1]

    '     "     '    '12:00'         [          4]   [          4]

    '03-Jan-2001'    '11:00'         [          9]   [          8]

    '     "     '    '12:00'         [          9]   [          0]

See Also
fints | fts2ascii

Introduced before R2006a
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bar, barh

Bar chart

Syntax

bar(tsobj)

bar(tsobj, width)

bar(..., 'style')

hbar = bar(...)

barh(...)

hbarh = barh(...)

Arguments

tsobj Financial time series object.
width Width of the bars and separation of bars within a group. (Default

= 0.8.) If width is 1, the bars within a group touch one another.
Values > 1 produce overlapping bars.

style 'grouped' (default) or 'stacked'.

Description

bar, barh draw vertical and horizontal bar charts.

bar(tsobj) draws the columns of data series of the object tsobj. The number of data
series dictates the number of vertical bars per group. Each group is the data for one
particular date.

bar(tsobj, width) specifies the width of the bars.
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bar(..., 'style') changes the style of the bar chart.

hbar = bar(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use shading
flat to turn edges off.

Examples

Create a Bar Chart for a Stock

This example shows how to create a bar chart for Disney stock showing high, low,
opening, and closing prices.

load disney

bar(q_dis)

title('Bar Chart of Disney Prices')
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Create a Horizontal Bar Chart for a Stock

This example shows how to create a horizontal bar chart for Disney stock showing high,
low, opening, and closing prices.

load disney

barh(q_dis)

title('Horizontal Bar Chart of Disney Prices')
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• “Charting Financial Data” on page 2-12

See Also
bar3, bar3h | candle | highlow

Introduced before R2006a
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bar3, bar3h

3-D bar chart

Syntax

bar3(tsobj)

bar3(tsobj, width)

bar3(..., 'style')

hbar3 = bar3(...)

bar3h(...)

hbar3h = bar3h(...)

Arguments

tsobj Financial time series object.
width Width of the bars and separation of bars within a group. (Default

= 0.8.) If width is 1, the bars within a group touch one another.
Values > 1 produce overlapping bars.

style 'detached' (default), 'grouped', or 'stacked'.

Description

bar3, bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(tsobj) draws the columns of data series of the object tsobj. The number of data
series dictates the number of vertical bars per group. Each group is the data for one
particular date.

bar3(tsobj, width) specifies the width of the bars.
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bar3(..., 'style') changes the style of the bar chart.

hbar3 = bar3(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use shading
flat to turn edges off.

Examples

Create a Three-Dimensional Bar Chart

This example shows how to create a three-dimensional bar chart for Disney stock
showing high, low, opening, and closing prices.

load disney

bar3(q_dis, 'stacked')

title('Three-Dimensional Bar Chart of Disney Prices')
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Create a Three-Dimensional (Stacked) Bar Chart

This example shows how to create a three-dimensional, stacked bar chart for Disney
stock showing high, low, opening, and closing prices.

load disney

bar3(q_dis, 'stacked')

title('Three-Dimensional Bar Chart of Disney Prices (Stacked)')
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• “Charting Financial Data” on page 2-12

See Also
bar, barh | candle | highlow

Introduced before R2006a
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beytbill
Bond equivalent yield for Treasury bill

Syntax
Yield = beytbill(Settle, Maturity, Discount)

Arguments

Settle Enter as serial date numbers, date character vectors, or datetime
array. Settle must be earlier than Maturity.

Maturity Enter as serial date numbers, date character vectors, or datetime
array.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.

Description

Yield = beytbill(Settle, Maturity, Discount) returns the bond equivalent
yield for a Treasury bill.

Examples

Find the Bond Equivalent Yield for a Treasury Bill

This example shows how to find the bond equivalent yield for a Treasury bill that has a
settlement date of February 11, 2000, a maturity date of August 7, 2000, and a discount
rate is 5.77.

Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)

Yield =

    0.0602
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Find the Bond Equivalent Yield for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to find the bond equivalent yield for a
Treasury bill that has a settlement date of February 11, 2000, a maturity date of August
7, 2000, and the discount rate is 5.77.

Yield = beytbill(datetime('11-Feb-2000','Locale','en_US'), datetime('7-Aug-2000','Locale','en_US'),...

0.0577)

Yield =

    0.0602

• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

See Also
datenum | datetime | prtbill | yldtbill

Introduced before R2006a
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binprice

Binomial put and call pricing

Syntax

[AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time,

Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)

Arguments

Price Underlying asset price. A scalar.
Strike Option exercise price. A scalar.
Rate Risk-free interest rate. A scalar. Enter as a decimal fraction.
Time Option time until maturity in years. A scalar.
Increment Time increment. A scalar. Increment is adjusted so that the

length of each interval is consistent with the maturity time of
the option. (Increment is adjusted so that Time divided by
Increment equals an integer number of increments.)

Volatility Asset volatility. A scalar.
Flag Specifies whether the option is a call (Flag = 1) or a put

(Flag = 0). A scalar.
DividendRate (Optional) The dividend rate, as a decimal fraction. A scalar.

Default = 0. If you enter a value for DividendRate, set
Dividend and ExDiv = 0 or do not enter them. If you enter
values for Dividend and ExDiv, set DividendRate = 0.

Dividend (Optional) The dividend payment at an ex-dividend date,
ExDiv. A row vector. For each dividend payment, there must
be a corresponding ex-dividend date. Default = 0. If you enter
values for Dividend and ExDiv, set DividendRate = 0.

ExDiv (Optional) Ex-dividend date, specified in number of periods.
A row vector. Default = 0.
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Description

[AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time,

Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) prices an
American option using the Cox-Ross-Rubinstein binomial pricing model.

Examples

Price an American Option Using the Cox-Ross-Rubinstein Binomial Pricing Model

This example shows how to price an American put option with an exercise price of $50
that matures in 5 months. The current asset price is $52, the risk-free interest rate is
10%, and the volatility is 40%. There is one dividend payment of $2.06 in 3-1/2 months.
When specifying the input argument ExDiv in terms of number of periods, divide the ex-
dividend date, specified in years, by the time Increment.

ExDiv = ( 3.5/12) / (1/12) = 3.5

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0, 2.06, 3.5)

Price =

   52.0000   58.1367   65.0226   72.7494   79.3515   89.0642

         0   46.5642   52.0336   58.1706   62.9882   70.6980

         0         0   41.7231   46.5981   49.9992   56.1192

         0         0         0   37.4120   39.6887   44.5467

         0         0         0         0   31.5044   35.3606

         0         0         0         0         0   28.0688

Option =

    4.4404    2.1627    0.6361         0         0         0

         0    6.8611    3.7715    1.3018         0         0

         0         0   10.1591    6.3785    2.6645         0

         0         0         0   14.2245   10.3113    5.4533

         0         0         0         0   18.4956   14.6394

         0         0         0         0         0   21.9312
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The output returned is the asset price and American option value at each node of the
binary tree.

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Cox, J., S. Ross, and M. Rubenstein. “Option Pricing: A Simplified Approach.” Journal of
Financial Economics. Vol. 7, Sept. 1979, pp. 229–263.

Hull, John C. Options, Futures, and Other Derivative Securities.  2nd edition, Chapter 14.

See Also
blkprice | blsprice

Introduced before R2006a
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blkimpv

Implied volatility for futures options from Black model

Syntax

Volatility = blkimpv(Price, Strike, Rate, Time, Value, Limit,

Tolerance, Class)

Arguments

Price Current price of the underlying asset (a futures contract).
Strike Exercise price of the futures option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Value Price of a European futures option from which the implied volatility

of the underlying asset is derived.
Limit (Optional) Positive scalar representing the upper bound of the

implied volatility search interval. If Limit is empty or unspecified,
the default = 10, or 1000% per annum.

Tolerance (Optional) Implied volatility termination tolerance. A positive
scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the option type from
which the implied volatility is derived.Class may be a logical
indicator or a cell array of characters. To specify call options, set
Class = true or Class = {'call'}; to specify put options,
set Class = false or Class = {'put'}. If Class is empty or
unspecified, the default is a call option.
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Description

Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice,

MaxIterations, Tolerance) computes the implied volatility of a futures price from
the market value of European futures options using Black's model.

Volatility is the implied volatility of the underlying asset derived from European
futures option prices, expressed as a decimal number. If no solution is found, blkimpv
returns NaN.

Any input argument can be a scalar, vector, or matrix. When a value is a scalar, that
value is used to compute the implied volatility of all the options. If more than one input is
a vector or matrix, the dimensions of all nonscalar inputs must be identical.

Rate and Time must be expressed in consistent units of time.

Examples

Find Implied Volatility for Futures Options from Black's Model

This example shows how to find the implied volatility for a European call futures option
that expires in four months, trades at $1.1166, and has an exercise price of $20. Assume
that the current underlying futures price is also $20 and that the risk-free rate is 9% per
annum. Furthermore, assume that you are interested in implied volatilities no greater
than 0.5 (50% per annum). Under these conditions, the following commands all return an
implied volatility of 0.25, or 25% per annum.

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5);

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], {'Call'});

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)

Volatility =

    0.2500

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
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• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, , 2003,
pp. 287–288.

Black, Fischer. “The Pricing of Commodity Contracts.” Journal of Financial Economics.
March 3, 1976, pp. 167–79.

See Also
blkprice | blsimpv | blsprice

Introduced before R2006a
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blkprice

Black model for pricing futures options

Syntax

[Call, Put] = blkprice(Price, Strike, Rate, Time, Volatility)

Arguments

Price Current price of the underlying asset (a futures contract).
Strike Strike or exercise price of the futures option.
Rate Annualized, continuously compounded, risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time until expiration of the option, expressed in years. Must be

greater than 0.
Volatility Annualized futures price volatility, expressed as a positive decimal

number.

Description

[Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, Volatility)

uses Black's model to compute European put and call futures option prices.

Any input argument can be a scalar, vector, or matrix. When a value is a scalar, that
value is used to compute the implied volatility from all options. If more than one input is
a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, and Volatility must be expressed in consistent units of time.
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Examples

Compute European Put and Call Futures Option Prices Using Black's Model

This example shows how to price European futures options with exercise prices of $20
that expire in four months. Assume that the current underlying futures price is also $20
with a volatility of 25% per annum. The risk-free rate is 9% per annum.

 [Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25)

Call =

    1.1166

Put =

    1.1166

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, , 2003,
pp. 287–288.

Black, Fischer. “The Pricing of Commodity Contracts.” Journal of Financial Economics.
March 3, 1976, pp. 167–79.

See Also
binprice | blsprice

Introduced before R2006a
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blsdelta

Black-Scholes sensitivity to underlying price change

Syntax

[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,

Volatility, Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,

Volatility, Yield) returns delta, the sensitivity in option value to change in the
underlying asset price. Delta is also known as the hedge ratio. blsdelta uses normcdf,
the normal cumulative distribution function in the Statistics and Machine Learning
Toolbox.
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Note: blsdelta can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Find the Sensitivity in Option Value to Change in the Underlying Asset Price

This example shows how to find the Black-Scholes delta sensitivity for an underlying
asset price change.

[CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta =

    0.5955

PutDelta =

   -0.4045

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall, , 2003.
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See Also
blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

Introduced before R2006a
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blsgamma
Black-Scholes sensitivity to underlying delta change

Syntax
Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield) returns
gamma, the sensitivity of delta to change in the underlying asset price. blsgamma
uses normpdf, the probability density function in the Statistics and Machine Learning
Toolbox.

Note: blsgamma can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:

18-85



18 Functions — Alphabetical List

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Find Gamma for a Change in the Underlying Asset Price

This example shows how to find the gamma, the sensitivity of delta to a change in the
underlying asset price.

Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)

Gamma =

    0.0512

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

See Also
blsdelta | blslambda | blsprice | blsrho | blstheta | blsvega

Introduced before R2006a
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blsimpv
Black-Scholes implied volatility

Syntax
Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit,

Yield, Tolerance, Class)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Value Price of a European option from which the implied volatility of the

underlying asset is derived.
Limit (Optional) Positive scalar representing the upper bound of the

implied volatility search interval. If Limit is empty or unspecified,
the default = 10, or 1000% per annum.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Tolerance (Optional) Implied volatility termination tolerance. A positive
scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the option type
from which the implied volatility is derived. Class can be a logical
indicator or a cell array of characters. To specify call options, set
Class = true or Class = {'call'}; to specify put options,
set Class = false or Class = {'put'}. If Class is empty or
unspecified, the default is a call option.
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Description

Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield,

Tolerance, Class) using a Black-Scholes model computes the implied volatility of an
underlying asset from the market value of European call and put options.

Volatility is the implied volatility of the underlying asset derived from European
option prices, expressed as a decimal number. If no solution is found, blsimpv returns
NaN.

Any input argument can be a scalar, vector, or matrix. When a value is a scalar, that
value is used to price all the options. If more than one input is a vector or matrix, the
dimensions of all non-scalar inputs must be identical.

Rate, Time, and Yield must be expressed in consistent units of time.

Examples

Compute the Implied Volatility of an Underlying Asset Using a Black-Scholes Model

This example shows how to compute the implied volatility for a European call option
trading at $10 with an exercise price of $95 and three months until expiration. Assume
that the underlying stock pays no dividend and trades at $100. The risk-free rate is
7.5% per annum. Furthermore, assume that you are interested in implied volatilities no
greater than 0.5 (50% per annum). Under these conditions, the following statements all
compute an implied volatility of 0.3130, or 31.30% per annum.

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5);

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'});

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)

Volatility =

    0.3130

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
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• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

Luenberger, David G. Investment Science. Oxford University Press, 1998.

See Also
blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

Introduced before R2006a
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blslambda
Black-Scholes elasticity

Syntax
[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,

Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,

Yield) returns the elasticity of an option. CallEl is the call option elasticity or leverage
factor, and PutEl is the put option elasticity or leverage factor. Elasticity (the leverage
of an option position) measures the percent change in an option price per 1 percent
change in the underlying asset price. blslambda uses normcdf, the normal cumulative
distribution function in the Statistics and Machine Learning Toolbox.
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Note: blslambda can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Find the Black-Scholes Elasticity (Lambda) for an Option

This example shows how to find the Black-Scholes elasticity, or leverage, of an option
position.

[CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

CallEl =

    8.1274

PutEl =

   -8.6466

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Daigler. Advanced Options Trading. Chapter 4.
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See Also
blsdelta | blsgamma | blsprice | blsrho | blstheta | blsvega

Introduced before R2006a
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blsprice
Black-Scholes put and call option pricing

Syntax
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)

computes European put and call option prices using a Black-Scholes model.

Any input argument can be a scalar, vector, or matrix. When a value is a scalar, that
value is used to price all the options. If more than one input is a vector or matrix, the
dimensions of all non-scalar inputs must be identical.

Rate, Time, Volatility, and Yield must be expressed in consistent units of time.
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Note: blsprice can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Compute European Put and Call Option Prices Using a Black-Scholes Model

This example shows how to price European stock options that expire in three months
with an exercise price of $95. Assume that the underlying stock pays no dividend, trades
at $100, and has a volatility of 50% per annum. The risk-free rate is 10% per annum.

[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

Call =

   13.6953

Put =

    6.3497

Price a European Call Option with the Garman-Kohlhagen Model

Price an FX option on buying GBP with USD.

S = 1.6;  % spot exchange rate

X = 1.6;  % strike

T = .3333;

r_d = .08;  % USD interest rate

r_f = .11;  % GBP interest rate

sigma = .2;
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Price = blsprice(S,X,r_d,T,sigma,r_f)

Price =

    0.0639

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

Luenberger, David G. Investment Science. Oxford University Press, 1998.

See Also
blkprice | blsdelta | blsgamma | blsimpv | blsprice | blsrho | blstheta |
blsvega

Introduced before R2006a
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blsrho

Black-Scholes sensitivity to interest rate change

Syntax

[CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,

Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

[CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,

Yield) returns the call option rho CallRho, and the put option rho PutRho. Rho is the
rate of change in value of derivative securities with respect to interest rates. blsrho
uses normcdf, the normal cumulative distribution function in the Statistics and Machine
Learning Toolbox

18-96



 blsrho

Note: blsrho can also handle an underlying asset such as currencies. When pricing
currencies (Garman-Kohlhagen model), enter the input argument Yield as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Find the Black-Scholes Sensitivity (Rho) to Interest-Rate Change

This example shows how to find the Black-Scholes sensitivity, rho, to interest-rate
change.

[CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho =

    6.6686

PutRho =

   -5.4619

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

See Also
blsdelta | blsgamma | blsprice | blsrho | blstheta | blsvega
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Introduced before R2006a
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blstheta
Black-Scholes sensitivity to time-until-maturity change

Syntax
[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,

Volatility, Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,

Volatility, Yield) returns the call option theta CallTheta, and the put option
theta PutTheta.

Theta is the sensitivity in option value with respect to time and is measured in years.
CallTheta or PutTheta can be divided by 365 to get Theta per calendar day or by 252
to get Theta by trading day.
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blstheta uses normcdf, the normal cumulative distribution function in the Statistics
and Machine Learning Toolbox.

Note: blstheta can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:

Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Compute the Black-Scholes Sensitivity to Time-Until-Maturity Change (Theta)

This example shows how to compute theta, the sensitivity in option value with respect to
time.

[CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

CallTheta =

   -8.9630

PutTheta =

   -3.1404

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33
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References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

See Also
blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta | blsvega

Introduced before R2006a
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blsvega
Black-Scholes sensitivity to underlying price volatility

Syntax
Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over

the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of

the continuously compounded asset return), expressed as a positive
decimal number.

Yield (Optional) Annualized, continuously compounded yield of the
underlying asset over the life of the option, expressed as a decimal
number. (Default = 0.) For example, for options written on stock
indices, Yield could represent the dividend yield. For currency
options, Yield could be the foreign risk-free interest rate.

Description

Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield) returns
Vega, the rate of change of the option value with respect to the volatility of the
underlying asset. blsvega uses normpdf, the normal probability density function in the
Statistics and Machine Learning Toolbox.

Note: blsvega can handle other types of underlies like Futures and Currencies. When
pricing Futures (Black model), enter the input argument Yield as:
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Yield = Rate

When pricing currencies (Garman-Kohlhagen model), enter the input argument Yield
as:

Yield = ForeignRate

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

Examples

Compute Black-Scholes Sensitivity to Underlying Price Volatility (Vega)

This example shows how to compute vega, the rate of change of the option value with
respect to the volatility of the underlying asset.

Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)

Vega =

    9.6035

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

References

Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,, 2003.

See Also
blsdelta | blsgamma | blslambda | blsprice | blsrho | blstheta

Introduced before R2006a
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bm class

Brownian motion models

Description

The bm constructor creates and displays Brownian motion (sometimes called arithmetic
Brownian motion or generalized Wiener process) bm objects that derive from the sdeld
(SDE with drift rate expressed in linear form) class. Use bm objects to simulate sample
paths of NVARS state variables driven by NBROWNS sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time Brownian motion
stochastic processes. This enables you to transform a vector of NBROWNS uncorrelated,
zero-drift, unit-variance rate Brownian components into a vector of NVARS Brownian
components with arbitrary drift, variance rate, and correlation structure.

The bm constructor allows you to simulate any vector-valued BM process of the form:

dX t dt V t dW
t t

= +m( ) ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-1 drift-rate vector.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 vector of (possibly) correlated zero-drift/unit-variance rate

Brownian components.

Construction

BM = bm(Mu,Sigma) constructs a default bm object.

BM = bm(Mu,Sigma,Name,Value) constructs a bm object with additional options
specified by one or more Name,Value pair arguments.
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Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a bm object, see bm.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Mu — Mu represents the parameter µ
array or deterministic function of time or deterministic function of time and state

Mu represents the parameter μ, specified as an array or deterministic function of time.

If you specify Mu as an array, it must be an NVARS-by-1 column vector representing the
drift rate (the expected instantaneous rate of drift, or time trend).

As a deterministic function of time, when Mu is called with a real-valued scalar time t
as its only input, Mu must produce an NVARS-by-NVARS matrix. If you specify Mu as a
function of time and state, it calculates the expected instantaneous rate of drift. This
function must generate an NVARS-by-1 column vector when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Although the gbm constructor enforces no restrictions on the sign of Sigma volatilities,
they are usually specified as positive values.
Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see bm.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)
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Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:
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SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).
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Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.
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If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle

Methods

Inherited Methods

The following methods are inherited from thesde class.

interpolate

simulate
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simByEuler

Instance Hierarchy
The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a bm Object

Create a univariate Brownian motion (bm) object to represent the model:
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dX dW
t t

= 0 3. .

obj = bm(0, 0.3) % (A = Mu, Sigma)

obj = 

   Class BM: Brownian Motion

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 0

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

             Mu: 0

          Sigma: 0.3

bm objects display the parameter A as the more familiar Mu.

The bm class also provides an overloaded Euler simulation method that improves run-
time performance in certain common situations. This specialized method is invoked
automatically only if all the following conditions are met:

• The expected drift, or trend, rate Mu is a column vector.
• The volatility rate, Sigma, is a matrix.
• No end-of-period adjustments and/or processes are made.
• If specified, the random noise process Z is a three-dimensional array.
• If Z is unspecified, the assumed Gaussian correlation structure is a double matrix.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
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• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, bm treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.
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See Also
diffusion | drift | interpolate | sdeld | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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bm
Construct Brownian motion models

Syntax

BM = bm(Mu, Sigma)

BM = bm(Mu, Sigma, 'Name1', Value1, 'Name2', Value2, ...)

Class

bm

Description

This constructor creates and displays Brownian motion (sometimes called arithmetic
Brownian motion or generalized Wiener process) objects that derive from thesdeld (SDE
with drift rate expressed in linear form) class. Use bm objects to simulate sample paths
of NVARS state variables driven by NBROWNS sources of risk over NPERIODS consecutive
observation periods, approximating continuous-time Brownian motion stochastic
processes. This enables you to transform a vector of NBROWNS uncorrelated, zero-drift,
unit-variance rate Brownian components into a vector of NVARS Brownian components
with arbitrary drift, variance rate, and correlation structure.

The bm method allows you to simulate any vector-valued BM process of the form:

dX t dt V t dW
t t

= +m( ) ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-1 drift-rate vector.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 vector of (possibly) correlated zero-drift/unit-variance rate

Brownian components.
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Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Mu Mu represents μ. If you specify Mu as an array, it must be an NVARS-by-1
column vector representing the drift rate (the expected instantaneous
rate of drift, or time trend). As a deterministic function of time, when
Mu is called with a real-valued scalar time t as its only input, Mu must
produce an NVARS-by-NVARS matrix. If you specify Mu as a function of
time and state, it calculates the expected instantaneous rate of drift. This
function must generate an NVARS-by-1 column vector when invoked with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an array, it
must be an NVARS-by-NBROWNS matrix of instantaneous volatility rates.
In this case, each row of Sigma corresponds to a particular state variable.
Each column of Sigma corresponds to a particular Brownian source
of uncertainty, and associates the magnitude of the exposure of state
variables with sources of uncertainty. As a deterministic function of time,
when Sigma is called with a real-valued scalar time t as its only input,
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Sigma must produce an NVARS-by-NBROWNS matrix. If you specify Sigma
as a function of time and state, it must generate an NVARS-by-NBROWNS
matrix of volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Although the constructor does not enforce restrictions on the sign of this
argument, Sigma is specified as a positive value.

Optional Input Arguments
Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, bm applies the same initial value to all
state variables on all trials.

If StartState is a column vector, bm applies a unique initial value
to each state variable on all trials.

If StartState is a matrix, bm applies a unique initial value to each
state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.
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Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

BM Object of class BM with the following displayed parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input

argument, callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a

function of time and state
• Simulation: A simulation function or method
• Mu: Access function for the input argument Mu, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state
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Algorithm

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, bm treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

Examples

“Creating Brownian Motion (BM) Models” on page 17-25

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.
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Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | sdeld

Introduced in R2008a
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bndconvp
Bond convexity given price

Syntax

[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,

Settle, Maturity)

[YearConvexity, PerConvexity] = bndconvp(Price,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face)

[YearConvexity, PerConvexity] = bndconvp(Price,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate,

Settle, Maturity) computes the convexity of NUMBONDS fixed income securities given
a clean price for each bond.

[YearConvexity, PerConvexity] = bndconvp(Price,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face) computes the convexity of NUMBONDS fixed income securities given a clean price
for each bond using optional arguments.

[YearConvexity, PerConvexity] = bndconvp(Price,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) computes the convexity of NUMBONDS
fixed income securities given a clean price for each bond and accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName' is the name
of the parameter inside single quotes. ParameterValue is the value corresponding
to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.
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Input Arguments

Price

Clean price (excludes accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date, specified as a serial date number, date character vector, or datetime array, for
a bond.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.
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LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0–7) and BUS/252
use a semiannual compounding convention and ICMA bases (8–12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior
is for SIA bases to use the actual/actual day count to compute discount factors. If you use
ICMA day counts and BUS/252, the specified bases are used.
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Output Arguments

YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a semiannual bond basis (in
accordance with SIA convention).

Definitions

bndconvp determines the convexity for a bond whether the first or last coupon periods
in the coupon structure are short or long (that is, whether the coupon structure is
synchronized to maturity). This function also determines the convexity of a zero coupon
bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for
an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be
serial date numbers, date character vectors, or datetime arrays.

Examples

Find Bond Convexity Given Price

This example shows how to compute the convexity of three bonds given their prices.

Price = [106; 100; 98];

CouponRate = 0.055;

Settle = '02-Aug-1999';

Maturity = '15-Jun-2004';

Period = 2;

Basis = 0;

[YearConvexity, PerConvexity] = bndconvp(Price,...

CouponRate,Settle, Maturity, Period, Basis)
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YearConvexity =

   21.4447

   21.0363

   20.8951

PerConvexity =

   85.7788

   84.1454

   83.5803

Find Bond Convexity Given Price Using datetime Inputs

This example shows how to compute the convexity of three bonds given their prices using
datetime inputs.

Price = [106; 100; 98];

CouponRate = 0.055;

Period = 2;

Basis = 0;

Settle = datetime('02-Aug-1999','Locale','en_US');

Maturity = datetime('15-Jun-2004','Locale','en_US');

[YearConvexity, PerConvexity] = bndconvp(Price,...

CouponRate, Settle, Maturity, Period, Basis)

YearConvexity =

   21.4447

   21.0363

   20.8951

PerConvexity =

   85.7788

   84.1454

   83.5803

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
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More About
• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndconvy | bnddurp | bnddury | cfconv | cfdur | datetime

Introduced before R2006a
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bndconvy
Bond convexity given yield

Syntax

[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,

Settle, Maturity)

[YearConvexity, PerConvexity] = bndconvy(Yield,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face)

[YearConvexity, PerConvexity] = bndconvy(Yield,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate,

Settle, Maturity) computes the convexity of NUMBONDS fixed income securities given
the yield to maturity for each bond.

[YearConvexity, PerConvexity] = bndconvy(Yield,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face) computes the convexity of NUMBONDS fixed income securities given the yield to
maturity for each bond using optional arguments.

[YearConvexity, PerConvexity] = bndconvy(Yield,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) computes the convexity of NUMBONDS
fixed income securities given the yield to maturity for each bond and accepts optional
inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the
name of the parameter inside single quotes. ParameterValue is the value corresponding
to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.
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Input Arguments

Yield

Yield to maturity on a semiannual basis.

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.
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LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0–7) and BUS/252
use a semiannual compounding convention and ICMA bases (8–12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior
is for SIA bases to use the actual/actual day count to compute discount factors. If you use
ICMA day counts and BUS/252, the specified bases are used.
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Output Arguments

YearConvexity

NUMBONDS-by-1 vector for the yearly (annualized) convexity.

PerConvexity

NUMBONDS-by-1 vector for the periodic convexity reported on a semiannual bond basis (in
accordance with SIA convention).

Definitions

bndconvy determines the convexity for a bond whether the first or last coupon periods
in the coupon structure are short or long (that is, whether the coupon structure is
synchronized to maturity). This function also determines the convexity of a zero coupon
bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for
an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be
serial date numbers, date character vectors, or datetime arrays.

Examples

Find Bond Convexity Given Yield

This example shows how to compute the convexity of a bond at three different yield
values.

Yield = [0.04; 0.055; 0.06];

CouponRate = 0.055;

Settle = '02-Aug-1999';

Maturity = '15-Jun-2004';

Period = 2;

Basis = 0;

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...

Settle, Maturity, Period, Basis)
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YearConvexity =

   21.4825

   21.0358

   20.8885

PerConvexity =

   85.9298

   84.1434

   83.5541

Find Bond Convexity Given Yield Using datetime Inputs

This example shows how to use datetime inputs to compute the convexity of a bond at
three different yield values.

Yield = [0.04; 0.055; 0.06];

CouponRate = 0.055;

Settle = datetime('02-Aug-1999','Locale','en_US');

Maturity = datetime('15-Jun-2004','Locale','en_US');

Period = 2;

Basis = 0;

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...

Settle, Maturity, Period, Basis)

YearConvexity =

   21.4825

   21.0358

   20.8885

PerConvexity =

   85.9298

   84.1434

   83.5541

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
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More About
• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndconvp | bnddurp | bnddury | cfconv | cfdur | datetime

Introduced before R2006a
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bnddurp

Bond duration given price

Syntax

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity)

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face)

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity) computes the Macaulay and modified duration of
NUMBONDS fixed-income securities given a clean price for each bond.

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face) computes the Macaulay and modified duration of NUMBONDS fixed-income
securities given a clean price for each bond using optional arguments.

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) computes the Macaulay and modified
duration of NUMBONDS fixed-income securities given a clean price for each bond and
accepts optional inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes. ParameterValue
is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any
order. Names are case-insensitive.
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Input Arguments

Price

Clean price (excludes accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.
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LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0–7) and BUS/252
use a semiannual compounding convention and ICMA bases (8–12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior
is for SIA bases to use the actual/actual day count to compute discount factors. If you use
ICMA day counts and BUS/252, the specified bases are used.
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Output Arguments

ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a semiannual bond
basis (in accordance with SIA convention).

YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a semiannual bond
basis (in accordance with SIA convention).

Definitions

bnddurp determines the Macaulay and modified duration for a bond whether the first or
last coupon periods in the coupon structure are short or long (that is, whether the coupon
structure is synchronized to maturity). This function also determines the Macaulay and
modified duration for a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for
an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be
serial date numbers, date character vectors, or datetime arrays.

Examples

Find Bond Duration Given Price

This example shows how to compute the duration of three bonds given their prices.

Price = [106; 100; 98];

CouponRate = 0.055;

Settle = '02-Aug-1999';

Maturity = '15-Jun-2004';

Period = 2;

18-139



18 Functions — Alphabetical List

Basis = 0;

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...

CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

    4.2400

    4.1925

    4.1759

YearDuration =

    4.3275

    4.3077

    4.3007

PerDuration =

    8.6549

    8.6154

    8.6014

Find Bond Duration Given Price Using datetime Inputs

This example shows how to use datetime inputs to compute the duration of three bonds
given their prices.

Price = [106; 100; 98];

CouponRate = 0.055;

Settle = datetime('02-Aug-1999','Locale','en_US');

Maturity = datetime('15-Jun-2004','Locale','en_US');

Period = 2;

Basis = 0;

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...

CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

    4.2400
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    4.1925

    4.1759

YearDuration =

    4.3275

    4.3077

    4.3007

PerDuration =

    8.6549

    8.6154

    8.6014

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7

More About
• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndconvp | bndconvy | bnddury | bndkrdur | datetime

Introduced before R2006a
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bnddury

Bond duration given yield

Syntax

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity)

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face)

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity) computes the Macaulay and modified duration of
NUMBONDS fixed income securities given yield to maturity for each bond.

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate,

Face) computes the Macaulay and modified duration of NUMBONDS fixed income
securities given yield to maturity for each bond using optional arguments.

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,

CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) computes the Macaulay and modified
duration of NUMBONDS fixed income securities given yield to maturity for each bond
and accepts optional inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes. ParameterValue
is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any
order. Names are case-insensitive.
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Input Arguments

Yield

Yield to maturity on a semiannual basis.

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.
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LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Face

(Optional) Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0–7) and BUS/252
use a semiannual compounding convention and ICMA bases (8–12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior
is for SIA bases to use the actual/actual day count to compute discount factors. If you use
ICMA day counts and BUS/252, the specified bases are used.
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Output Arguments

ModDuration

NUMBONDS-by-1 vector for the modified duration in years, reported on a semiannual bond
basis (in accordance with SIA convention).

YearDuration

NUMBONDS-by-1 vector for the Macaulay duration in years.

PerDuration

NUMBONDS-by-1 vector for the periodic Macaulay duration reported on a semiannual bond
basis (in accordance with SIA convention).

Definitions

bnddurp determines the duration for a bond whether the first or last coupon periods
in the coupon structure are short or long (that is, whether the coupon structure is
synchronized to maturity). This function also determines the Macaulay and modified
duration for a zero coupon bond.

All specified arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for
an optional argument. Fill in unspecified entries input vectors with NaNs. Dates can be
serial date numbers, date character vectors, or datetime arrays.

Examples

Find Bond Duration Given Yield

This example shows how to compute the duration of a bond at three different yield
values.

Yield = [0.04; 0.055; 0.06];

CouponRate = 0.055;

Settle = '02-Aug-1999';

Maturity = '15-Jun-2004';
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Period = 2;

Basis = 0;

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...

CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

    4.2444

    4.1924

    4.1751

YearDuration =

    4.3292

    4.3077

    4.3004

PerDuration =

    8.6585

    8.6154

    8.6007

Find Bond Duration Given Yield Using datetime Inputs

This example shows how to use datetime inputs to compute the duration of a bond at
three different yield values.

Yield = [0.04; 0.055; 0.06];

CouponRate = 0.055;

Settle = datetime('02-Aug-1999','Locale','en_US');

Maturity = datetime('15-Jun-2004','Locale','en_US');

Period = 2;

Basis = 0;

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...

CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

18-147



18 Functions — Alphabetical List

    4.2444

    4.1924

    4.1751

YearDuration =

    4.3292

    4.3077

    4.3004

PerDuration =

    8.6585

    8.6154

    8.6007

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7

More About
• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndconvp | bndconvy | bnddurp | bndkrdur | datetime

Introduced before R2006a
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bndkrdur
Bond key rate duration given zero curve

Syntax
KRDUR = bndkrdur(ZeroData, CouponRate,

Settle, Maturity)

KRDUR = bndkrdur(ZeroData, CouponRate, Settle,

Maturity, 'Parameter1', Value1, 'Parameter2',

Value2, ...)

Arguments

ZeroData ZeroData can be represented as a numRates-by-2 matrix
or a numRates-by-2 table. If ZeroData is represented as a
numRates-by-2 matrix, the first column is a MATLAB date
number and the second column is accompanying zero rates.
If ZeroData is a table, the first column can be serial date
numbers, date character vectors, or datetime arrays. The
second column must be numeric data corresponding to the
zero rates.

CouponRate numBonds-by-1 vector of coupon rates in decimal form.
Settle Scalar MATLAB date number for the settlement date for

all the bonds and the zero data. Settle is specified as a
serial date number, date character vector, or datetime array.
Settle must be the same settlement date for all the bonds
and the zero curve.

Maturity numBonds-by-1 vector of maturity dates, specified as serial
date numbers, date character vectors, or datetime arrays.

Period (Optional) Coupons per year of the bond. A vector of
integers. Acceptable values are 0, 1, 2 (default), 3, 4, 6, and
12.

InterpMethod (Optional) Interpolation method used to obtain points from
the zero curve. Acceptable values are:
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• 'linear' (default)
• 'cubic'

• 'pchip'

ShiftValue (Optional) Scalar value that zero curve is shifted up and
down to compute duration. Default is .01 (100 basis points).

KeyRates (Optional) Rates to perform the duration calculation,
specified as a time to maturity. By default, KeyRates is set
to each of the zero dates.

CurveCompounding (Optional) Compounding frequency of the curve. Default is
semiannual.

CurveBasis (Optional) Basis of the curve, where the choices are identical
to Basis below. Default is 0 (actual/actual).

Basis (Optional) Day-count basis of the bond instrument. A vector
of integers:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
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EndMonthRule (Optional) End-of-month rule. This rule applies only when
Maturity is an end-of-month date for a month having 30 or
fewer days. The values are:

• 0 = ignore rule, meaning that a bond's coupon payment
date is always the same numerical day of the month.

• 1 = set rule on (default), meaning that a bond's coupon
payment date is always the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
FirstCouponDate (Optional) Date when a bond makes its first coupon

payment; used when bond has an irregular first coupon
period. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period.
In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of
the bond. The coupon structure of a bond is truncated at
the LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you
do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.

StartDate (Optional) Date when a bond actually starts (the date
from which a bond cash flow is considered). To make an
instrument forward-starting, specify this date as a future
date. If you do not specify StartDate, the effective start
date is the Settle date.

Face (Optional) Face or par value. Default = 100. Face has no
impact on key rate duration.

Note: You must enter the optional arguments as parameter/value pairs.
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Description

KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity)

KRDUR = bndkrdur(ZeroData, CouponRate, Settle, Maturity,

'Parameter1', Value1, 'Parameter2', Value2, ...)

The output argument KRDUR is a numBonds-by-numRates matrix of key rate durations.

bndkrdur computes the key rate durations for one or more bonds given a zero curve and
a set of key rates. By default, the key rates are each of the zero curve rates. For each
key rate, the duration is computed by shifting the zero curve up and down by a specified
amount (ShiftValue) at that particular key rate, computing the present value of the
bond in each case with the new zero curves, and then evaluating the following:

krdur
PV PV

PV ShiftValue
i

down up
  

  

    
=

¥ ¥

( - )

( )2

Note: The shift to the curve is computed by shifting the particular key rate by the
ShiftValue and then interpolating the values of the curve in the interval between the
previous and next key rates. For the first key rate, any curve values before the date are
equal to the ShiftValue; likewise, for the last key rate, any curve values after the date
are equal to the ShiftValue.

Examples

Find the Bond Key Rate Duration Given the Zero Curve

This example shows how to compute the key rate duration of a bond for key rate times of
2, 5, 10, and 30 years.

ZeroRates = [0.0476 .0466 .0465 .0468 .0473 .0478 ...

.0493 .0539 .0572 .0553 .0530]';

ZeroDates = daysadd('31-Dec-1998',[30 360 360*2 360*3 360*5 ...

360*7 360*10 360*15 360*20 360*25 360*30],1);

ZeroData = [ZeroDates ZeroRates];
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krdur = bndkrdur(ZeroData,.0525,'12/31/1998',...

'11/15/2028','KeyRates',[2 5 10 30])

krdur =

    0.2986    0.8791    4.1353    9.5814

Find the Bond Key Rate Duration Given the Zero Curve Using datetime Inputs

This example shows how to use datetime inputs for Settle and Maturity and also use
a table for ZeroData to compute the key rate duration of a bond for key rate times of 2,
5, 10, and 30 years.

ZeroRates = [0.0476 .0466 .0465 .0468 .0473 .0478 ...

.0493 .0539 .0572 .0553 .0530]';

ZeroDates = daysadd('31-Dec-1998',[30 360 360*2 360*3 360*5 ...

360*7 360*10 360*15 360*20 360*25 360*30],1);

ZeroData = table(datetime(ZeroDates,'ConvertFrom','datenum','Locale','en_US'), ZeroRates);

krdur = bndkrdur(ZeroData,.0525,datetime('12/31/1998','Locale','en_US'),...

datetime('11/15/2028','Locale','en_US'),'KeyRates',[2 5 10 30])

krdur =

    0.2986    0.8791    4.1353    9.5814

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7

More About
• “Yield Conventions” on page 2-29

References

Golub, B.W. and L.M. Tilman. Risk Management: Approaches for Fixed Income Markets.
Wiley, 2000.
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Tuckman, B. Fixed Income Securities: Tools for Today's Markets. Wiley, 2002.

See Also
bndconvp | bndconvy | bnddurp | bnddury | datetime

Introduced before R2006a
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bndprice

Price fixed-income security from yield to maturity

Syntax

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity)

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity, Period, Basis, EndMonthRule, IssueDate,

FirstCouponDate, LastCouponDate, StartDate, Face)

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity, 'ParameterName', ParameterValue, ...)

Description

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity) given bonds with SIA date parameters and semiannual yields to maturity,
returns the clean prices and accrued interest due.

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity, Period, Basis, EndMonthRule, IssueDate,

FirstCouponDate, LastCouponDate, StartDate, Face) given bonds with SIA
date parameters and semiannual yields to maturity and optional inputs, returns the
clean prices and accrued interest due.

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,

Maturity, 'ParameterName', ParameterValue, ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName' is the name
of the parameter inside single quotes. ParameterValue is the value corresponding
to 'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.

Note: Given NBONDS with date parameters and yields to maturity, bndprice returns the
clean prices and the accrued interest due.
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All nonscalar or empty matrix input arguments must be either NUMBONDS-by-1 or 1-
by-NUMBONDS conforming vectors. Fill in unspecified entries input vectors with NaNs.
Dates can be serial date numbers, date character vectors, or datetime arrays.

Input Arguments

Yield

Bond yield to maturity is on a semiannual basis for basis values 0 through 7 and an
annual basis for basis values 8 through 12.

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter value pairs. You
cannot mix ordered syntax with parameter value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

Default: If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
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an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date, pecified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array , when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. Possible values include: 1, 2, 3, 4, 6, 12.
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Default: SIA bases (0–7) and BUS/252 use a semiannual compounding convention and
ICMA bases (8–12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The possible values
for DiscountBasis are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

If a SIA day-count basis is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the default behavior is for SIA bases to use the actual/
actual day count to compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and
there is no value assigned for DiscountBasis, the specified bases from theBasis input
argument are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

LastCouponInterest

Compounding convention for computing the yield of a bond in the last coupon period.
This is based on only the last coupon and the face value to be repaid. Acceptable values
are simple or compound.
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Default: compound

Output Arguments

Price

NUMBONDS-by-1 vector for the clean price of the bond. The dirty price of the bond is the
clean price plus the accrued interest. It equals the present value of the bond cash flows of
the yield to maturity with semiannual compounding.

AccruedInt

NUMBONDS-by-1 vector for the accrued interest payable at settlement.

Examples

Price a Treasury Bond from Yield to Maturity

This example shows how to price a treasury bond at three different yield values.

Yield = [0.04; 0.05; 0.06];

CouponRate = 0.05;

Settle = '20-Jan-1997';

Maturity = '15-Jun-2002';

Period = 2;

Basis = 0;

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...

Maturity, Period, Basis)

Price =

  104.8106

   99.9951

   95.4384

AccruedInt =

    0.4945
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    0.4945

    0.4945

Price a Treasury Bond from Yield to Maturity Using datetime Inputs

This example shows how to use datetime inputs to price a treasury bond at three
different yield values.

Yield = [0.04; 0.05; 0.06];

CouponRate = 0.05;

Settle = datetime('20-Jan-1997','Locale','en_US');

Maturity = datetime('15-Jun-2002','Locale','en_US');

Period = 2;

Basis = 0;

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...

Maturity, Period, Basis)

Price =

  104.8106

   99.9951

   95.4384

AccruedInt =

    0.4945

    0.4945

    0.4945

Price a Treasury Bond with Different Yield Values

This example shows how to price a Treasury bond at two different yield values that
include parameter/value pairs for CompoundingFrequency, DiscountBasis, and
LastCouponPeriodInterest.

bndprice(.04,0.08,'5/25/2004','4/21/2005','Period',1,'Basis',8, ...

'LastCouponInterest','simple')

ans =
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  103.4743

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Pricing Functions” on page 2-29
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3

More About

Algorithms

For SIA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield/2)^(-Time)) 

where the sum is over the bond's cash flows and corresponding times in units of semi-
annual coupon periods.

For ICMA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield)^(-Time))

Algorithms

For SIA conventions, the following formula defines bond price and yield:
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where:

PV = Present value of a cash flow.
CF = Cash flow amount.
z = Risk-adjusted annualized rate or yield corresponding to a given cash

flow. The yield is quoted on a semiannual basis.
f = Frequency of quotes for the yield. Default is 2 for Basis values 0 to 7

and 13 and 1 for Basis values 8 to 12. The default can be overridden
by specifying the CompoundingFrequency name/value pair.
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TF = Time factor for a given cash flow. The time factor is computed using the
compounding frequency and the discount basis. If these values are not
specified, then the defaults are as follows: CompoundingFrequency
default is 2 for Basis values 0 to 7 and 13 and 1 for Basis values 8 to
12. DiscountBasis is 0 for Basis values 0 to 7 and 13 and the input
Basis for Basis values 8 to 12.

Note: The Basis is always used to compute accrued interest.

For ICMA conventions, the frequency of annual coupon payments determines bond price
and yield.
• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndyield | cfamounts | datetime

Introduced before R2006a
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bndspread
Static spread over spot curve

Syntax

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity)

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face)

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity) computes
the static spread (Z-spread) to benchmark in basis points.

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face) computes the static spread (Z-spread) to
benchmark in basis points including optional inputs.

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity,

'ParameterName', ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.

Input Arguments

SpotInfo

This input can either be a matrix of two columns, an annualized term structure created
by intenvset, or a table.
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• Matrix of two columns— The first column is the SpotDate, and the second column,
ZeroRates, is the zero-rate corresponding to maturities on the SpotDate. It is
recommended that the spot-rates are spaced as evenly apart as possible, perhaps one
that is built from 3-months deposit rates. For example, using the 3-month deposit
rates:

SpotInfo = ...

[datenum('2-Jan-2004') ,  0.03840;

datenum('2-Jan-2005') ,  0.04512;

datenum('2-Jan-2006') ,  0.05086];

• Annualized term structure — Refer to intenvset to create an annualized term
structure. For example:

Settle = datenum('1-Jan-2004');

Rates = [0.03840; 0.04512; 0.05086];

EndDates = [datenum('2-Jan-2004'); datenum('2-Jan-2005');...

             datenum('2-Jan-2006')];

SpotInfo = intenvset('StartDates' , Settle  ,...

                      'Rates'      , Rates   ,...

                      'EndDates'   , EndDates,...

                      'Compounding', 2       ,...

                      'Basis'      , 0);

• Table — If SpotInfo is a table, the first column can be either a serial date number,
date character vector, or datetime array. The second column is numerical data
representing zero rates. For example:
ZeroRates = … [0.012067955808764;0.012730933424479;0.019360902068703;0.031704525214251;0.042306085224510;0.054987415342936];

CurveDates = [731639;731730;732251;733361;735188;741854];

Settle   = datenum('26-Nov-2002');

Price    = 105.484;

Coupon   = 0.04375;

Maturity = datenum('15-Oct-2006');

Period = 2;

Basis  = 1;

SpotInfo = table(datestr(CurveDates), ZeroRates);

Price

Price for every $100 notional amount of bonds whose spreads are computed. This is the
clean price of the bond (current price without accrued interest).

Coupon

Annual coupon rate of bonds whose spreads are computed.
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Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.
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StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. Possible values include: 1, 2, 3, 4, 6, 12.

By default, SIA bases (0–7) and BUS/252 use a semiannual compounding convention and
ICMA bases (8–12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The possible values
for DiscountBasis are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

If a SIA day-count basis is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the default behavior is for SIA bases to use the actual/
actual day count to compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and
there is no value assigned for DiscountBasis, the specified bases from theBasis input
argument are used.

Output Arguments
Spread

Static spread to benchmark, in basis points.

Examples
Compute the Static Spread Over a Spot Curve

This example shows how to compute a Federal National Mortgage Association (FNMA) 4
3/8 spread over a Treasury spot curve and plot the results.

RefMaturity = [datenum('02/27/2003');

               datenum('05/29/2003');

               datenum('10/31/2004');

               datenum('11/15/2007');

               datenum('11/15/2012');

               datenum('02/15/2031')];

RefCpn = [0;

          0;

          2.125;

          3;

          4;

          5.375] / 100;

RefPrices =  [99.6964;

              99.3572;
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             100.3662;

              99.4511;

              99.4299;

             106.5756];

RefBonds = [RefPrices, RefMaturity, RefCpn];

Settle   = datenum('26-Nov-2002');

[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...

RefPrices, Settle)

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday

Price    = 105.484;

Coupon   = 0.04375;

Maturity = datenum('15-Oct-2006');

% All optional inputs are supposed to be accounted by default,

% except the accrued interest under 30/360 (SIA), so:

Period = 2;

Basis  = 1;

SpotInfo = [CurveDates, ZeroRates];

% Compute static spread over treasury curve, taking into account

% the shape of curve as derived by bootstrapping method embedded

% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...

Maturity, Period, Basis)

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...

ZeroRates*100+SpreadInBP/100, 'r--')

legend({'Treasury'; 'FNMA 4 3/8'})

xlabel('Curve Dates')

ylabel('Spot Rate [%]')

grid;

ZeroRates =

    0.0121

    0.0127

    0.0194

    0.0317

    0.0423

    0.0550
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CurveDates =

      731639

      731730

      732251

      733361

      735188

      741854

SpreadInBP =

   18.5669
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Compute the Static Spread Over a Spot Curve Using datetime Inputs

This example shows how to compute a Federal National Mortgage Association (FNMA) 4
3/8 spread over a Treasury spot curve using datetime inputs for Settle and Maturity
and a table for SpotInfo and plot the results.

RefMaturity = [datenum('02/27/2003');

               datenum('05/29/2003');

               datenum('10/31/2004');

               datenum('11/15/2007');

               datenum('11/15/2012');

               datenum('02/15/2031')];

RefCpn = [0;
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          0;

          2.125;

          3;

          4;

          5.375] / 100;

RefPrices =  [99.6964;

              99.3572;

             100.3662;

              99.4511;

              99.4299;

             106.5756];

RefBonds = [RefPrices, RefMaturity, RefCpn];

Settle   = datetime('26-Nov-2002','Locale','en_US');

[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...

RefPrices, Settle)

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday

Price    = 105.484;

Coupon   = 0.04375;

Maturity = datetime('15-Oct-2006','Locale','en_US');

% All optional inputs are accounted by default,

% except the accrued interest under 30/360 (SIA), so:

Period = 2;

Basis  = 1;

SpotInfo = table(datetime(CurveDates,'ConvertFrom','datenum','Locale','en_US'), ZeroRates);

% Compute static spread over treasury curve, taking into account

% the shape of curve as derived by bootstrapping method embedded

% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...

Maturity, Period, Basis)

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...

ZeroRates*100+SpreadInBP/100, 'r--')

legend({'Treasury'; 'FNMA 4 3/8'})

xlabel('Curve Dates')

ylabel('Spot Rate [%]')

grid;
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ZeroRates =

    0.0121

    0.0127

    0.0194

    0.0317

    0.0423

    0.0550

CurveDates = 

  6×1 datetime array

   27-Feb-2003

   29-May-2003

   31-Oct-2004

   15-Nov-2007

   15-Nov-2012

   15-Feb-2031

SpreadInBP =

   18.5669

18-174



 bndspread

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Pricing Functions” on page 2-29
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3

More About
• “Yield Conventions” on page 2-29
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References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndprice | bndyield | datetime

Introduced before R2006a
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bndtotalreturn

Total return of fixed-coupon bond

Syntax

[BondEquiv,EffectiveRate] =

bndtotalreturn(Price,CouponRate,Settle,Maturity,ReinvestRate)

[BondEquiv,EffectiveRate] =

bndtotalreturn(Price,CouponRate,Settle,Maturity,

ReinvestRate,Name,Value)

Description

[BondEquiv,EffectiveRate] =

bndtotalreturn(Price,CouponRate,Settle,Maturity,ReinvestRate)

calculates the total return for fixed-coupon bonds to maturity or to a specific investment
horizon.

[BondEquiv,EffectiveRate] =

bndtotalreturn(Price,CouponRate,Settle,Maturity,

ReinvestRate,Name,Value) calculates the total return for fixed-coupon bonds to
maturity or to a specific investment horizon with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

Price

NINST-by-1 matrix for the clean price at the settlement date.

CouponRate

NINST-by-1 matrix for the coupon rate in decimal form.
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Settle

NINST-by-1 vector for the settlement date of the fixed-coupon bond, specified as a serial
date number, date character vector, or datetime array.

Maturity

NINST-by-1 vector of dates representing the maturity date of the fixed-coupon bond,
specified as a serial date number, date character vector, or datetime array.

ReinvestRate

NINST-by-1 vector for the reinvestment rate in decimal form. This is the rate earned by
reinvesting the coupons.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'HorizonDate'

Investment horizon date, specified as a serial date number, date character vector, or
datetime array. If unspecified, the total return is calculated to maturity.

Default:

'HorizonPrice'

Price at investment horizon date. If unspecified, the price at horizon is calculated based
on the reinvestment rate. If the horizon date equals the maturity date, this price is
ignored and the total return to maturity is calculated based on the face value.

Default:

'Period'

Number of coupon payments per year. Values are: 0, 1, 2, 3, 4, 6, 12.
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Default: 2

'Basis'

NINST-by-1 vector representing day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

'EndMonthRule'

Value for the end-of-month rule.

• 0 – Rule is not in effect for the bond(s).
• 1 – Rule is in effect for the bond(s). This means that a security that pays coupon

interest on the last day of the month will always make payment on the last day of the
month.

Default: 1 (in effect)
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'IssueDate'

Bond issue date, specified as a serial date number, date character vector, or datetime
array.

Default:  If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

'FirstCouponDate'

Irregular or normal first coupon date, specified as a serial date number, date character
vector, or datetime array.

Default:  If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

'LastCouponDate'

Irregular or normal last coupon date, specified as a serial date number, date character
vector, or datetime array.

Default:  If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

'StartDate'

Forward starting date of payments, specified as a serial date number, date character
vector, or datetime array.

Default:  If you do not specify a StartDate, the effective start date is the Settle date.

'Face'

Face value of the bond.

Default: 100

'CompoundingFrequency'

Compounding frequency for yield calculation. Possible values include: 1, 2, 3, 4, 6, 12.

By default, SIA bases (0-7) and BUS/252 use a semi-annual compounding convention and
ICMA bases (8-12) use an annual compounding convention.
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Default:

'DiscountBasis'

Basis used to compute the discount factors for computing the yield. The possible values
for DiscountBasis are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

The default behavior is for SIA bases to use the actual/actual day count to compute
discount factors, and for ICMA day counts (8 – 12) and BUS/252 to use the specified
basis.

Default:

Output Arguments

BondEquiv

NUMBONDS-by-1 vector for the total return in bond equivalent basis.

EffectiveRate

NUMBONDS-by-1 vector for the total return in effective rate basis.
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Examples

Compute the Total Return of a Fixed-Coupon Bond

Use bndtotalreturn to compute the total return for a fixed-coupon bond, given an
investment horizon date.

Define fixed-coupon bond.

Price = 101;

CouponRate = 0.05;

Settle = '15-Nov-2011';

Maturity = '15-Nov-2031';

ReinvestRate = 0.04;

Calculate the total return to maturity.

[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...

Settle, Maturity, ReinvestRate)

BondEquiv =

    0.0460

EffectiveRate =

    0.0466

Specify an investment horizon.

HorizonDate = '15-Nov-2021';

[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...

Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv =

    0.0521

EffectiveRate =
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    0.0528

Perform scenario analysis on the reinvestment rate.

ReinvestRate = [0.03; 0.035; 0.04; 0.045; 0.05];

[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...

Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv =

    0.0557

    0.0538

    0.0521

    0.0505

    0.0490

EffectiveRate =

    0.0565

    0.0546

    0.0528

    0.0511

    0.0496

Compute the Total Return of a Fixed-Coupon Bond Using datetime Inputs

Use bndtotalreturn with datetime inputs to compute the total return for a fixed-
coupon bond, given an investment horizon date.

Price = 101;

CouponRate = 0.05;

Settle = datetime('15-Nov-2011','Locale','en_US');

Maturity = datetime('15-Nov-2031','Locale','en_US');

HorizonDate = datetime('15-Nov-2021','Locale','en_US');

ReinvestRate = 0.04;

[BondEquiv, EffectiveRate] = bndtotalreturn(Price, CouponRate, ...

Settle, Maturity, ReinvestRate, 'HorizonDate', HorizonDate)

BondEquiv =
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    0.0521

EffectiveRate =

    0.0528

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
• “Pricing Functions” on page 2-29
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3

More About
• “Yield Conventions” on page 2-29

References

Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative
Value Analysis, Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

See Also
bndprice | bndyield | cfamounts | datetime

Introduced in R2012b
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bndyield

Yield to maturity for fixed-income security

Syntax

Yield = bndyield(Price, CouponRate, Settle, Maturity)

Yield = bndyield(Price, CouponRate, Settle, Maturity,

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face)

Yield = bndyield(Price, CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

Yield = bndyield(Price, CouponRate, Settle, Maturity), given NUMBONDS
bonds with SIA date parameters and clean prices (excludes accrued interest), returns the
bond equivalent yields to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity,

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face) bonds with SIA date parameters and clean
prices (excludes accrued interest) and optional inputs, returns the bond equivalent yields
to maturity.

Yield = bndyield(Price, CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.

Note: All nonscalar or empty matrix input arguments must be either NUMBONDS-by-1 or
1-by-NUMBONDS conforming vectors. Fill in unspecified entries input vectors with NaNs.
Dates can be serial date numbers, date character vectors, or datetime arrays.
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Input Arguments

Price

Clean price of the bond (current price without accrued interest).

CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date for a bond, specified as a serial date number, date character vector, or
datetime array.

Default: If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
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both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

Face

Face or par value.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. Possible values include: 1, 2, 3, 4, 6, 12.

Default: SIA bases (0–7) and BUS/252 use a semiannual compounding convention and
ICMA bases (8–12) use an annual compounding convention.

18-188



 bndyield

DiscountBasis

Basis used to compute the discount factors for computing the yield. The possible values
for DiscountBasis are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

If a SIA day-count basis is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the default behavior is for SIA bases to use the actual/
actual day count to compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and
there is no value assigned for DiscountBasis, the specified bases from theBasis input
argument are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

LastCouponInterest

Compounding convention for computing the yield of a bond in the last coupon period.
This computation is based on only the last coupon and the face value to be repaid.
Acceptable values are simple or compound.

Default: compound
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Output Arguments

Yield

NUMBONDS-by-1 vector of the yield to maturity with semiannual compounding.

Examples

Compute Yield to Maturity for a Treasury Bond

This example shows how to compute the yield of a Treasury bond at three different price
values.

Price = [95; 100; 105];

CouponRate = 0.05;

Settle = '20-Jan-1997';

Maturity = '15-Jun-2002';

Period = 2;

Basis = 0;

Yield = bndyield(Price, CouponRate, Settle,...

Maturity, Period, Basis)

Yield =

    0.0610

    0.0500

    0.0396

Compute Yield to Maturity for a Treasury Bond Using datetime Inputs

This example shows how to use datetime inputs to compute the yield of a Treasury bond
at three different price values.

Price = [95; 100; 105];

CouponRate = 0.05;

Settle = datetime('20-Jan-1997','Locale','en_US');

Maturity = datetime('15-Jun-2002','Locale','en_US');

Period = 2;

Basis = 0;

Yield = bndyield(Price, CouponRate, Settle,...
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Maturity, Period, Basis)

Yield =

    0.0610

    0.0500

    0.0396

Compute the Yield of a Treasury Bond Using the Same Basis for Discounting and Generating the
Cash Flows

Compute the yield of a Treasury bond.

Price = [95; 100; 105];

CouponRate = 0.0345;

Settle = '15-May-2016';

Maturity = '02-Feb-2026';

Period = 2;

Basis = 1;

format long

Yield = bndyield(Price,CouponRate,Settle,Maturity,Period,Basis)

Yield =

   0.040764403932618

   0.034482347625316

   0.028554719853118

Using the same data, compute the yield of a Treasury bond using the same basis for
discounting and generating the cash flows.

DiscountBasis = 1;

Yield = bndyield(Price,CouponRate,Settle,Maturity,'Period',Period,'Basis',Basis, ...

'DiscountBasis',DiscountBasis)

Yield =

   0.040780176658036

   0.034495592361619

   0.028565614029497

• “Bond Portfolio for Hedging Duration and Convexity” on page 10-7
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• “Pricing Functions” on page 2-29
• “Sensitivity of Bond Prices to Interest Rates” on page 10-3

More About

Algorithms

For SIA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield/2)^(-Time)) 

where the sum is over the bond's cash flows and corresponding times in units of semi-
annual coupon periods.

For ICMA conventions, the Price and Yield are related by the formula:

 Price + Accrued Interest = sum(Cash_Flow*(1+Yield)^(-Time))

Algorithms

For SIA conventions, the following formula defines bond price and yield:

PV
CF

z

f

TF
=

+( )

,

1

where:

PV = Present value of a cash flow.
CF = The cash flow amount.
z = The risk-adjusted annualized rate or yield corresponding to a given

cash flow. The yield is quoted on a semiannual basis.
f = The frequency of quotes for the yield.
TF = Time factor for a given cash flow. Time is measured in semiannual

periods from the settlement date to the cash flow date. In computing
time factors, use SIA actual/actual day count conventions for all time
factor calculations.

For ICMA conventions, the frequency of annual coupon payments determines bond price
and yield.
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• “Yield Conventions” on page 2-29

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
bndprice | cfamounts | datetime

Introduced before R2006a

18-193



18 Functions — Alphabetical List

bolling

Bollinger band chart

Syntax

bolling(Asset, Samples, Alpha, Width)

[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha,

Width)

Arguments

Asset Vector of asset data.
Samples Number of samples to use in computing the moving average.
Alpha (Optional) Exponent used to compute the element weights of the

moving average. Default = 0 (simple moving average).
Width (Optional) Number of standard deviations to include in the

envelope. A multiplicative factor specifying how tight the bands
should be around the simple moving average. Default = 2.

Description

bolling(Asset, Samples, Alpha, Width) plots Bollinger bands for given Asset
data. This form of the function does not return any data.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha,

Width) returns Movavgv with the moving average of the Asset data, UpperBand with
the upper band data, and LowerBand with the lower band data. This form of the function
does not plot any data.

Note The standard deviations are normalized by N-1, where N = the sequence length.
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Examples

If Asset is a column vector of closing stock prices

bolling(Asset, 20, 1)

plots linear 20-day moving average Bollinger bands based on the stock prices.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)

returns Movavgv, UpperBand, and LowerBand as vectors containing the moving
average, upper band, and lower band data, without plotting the data.

More About
• “Technical Indicators” on page 16-2

See Also
candle | dateaxis | highlow | movavg | movavg

Introduced before R2006a
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bollinger
Time series Bollinger band

Syntax
[mid, uppr, lowr] = bollinger(data, wsize, wts, nstd)

[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)

Arguments

data Data vector.

Note: The input time series data must be ordered from newest to
oldest.

wsize (Optional) Window size. Default = 20.
wts (Optional) Weight factor. Determines the type of moving average

used. Default = 0 (box). 1 = linear.
nstd (Optional) Number of standard deviations for upper and lower

bands. Default = 2.
tsobj Financial time series object.

Description

[mid, uppr, lowr] = bollinger(data, wsize, wts, nstd) calculates the
middle (mid), upper (uppr), and lower (lowr) bands that make up the Bollinger bands
from the vector data.

mid is the vector that represents the middle band, a simple moving average with a
window size of wsize. uppr and lowr are vectors that represent the upper and lower
bands. uppr is a vector representing the upper band that is +nstd times. lowr is a
vector representing the lower band that is -nstd times.
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[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)

calculates the middle, upper, and lower bands that make up the Bollinger bands from a
financial time series object tsobj.

midfts is a financial time series object that represents the middle band for all series
in tsobj. Both upprfts and lowrfts are financial time series objects that represent
the upper and lower bands of all series, which are +nstd times and -nstd times moving
standard deviations away from the middle band.

Examples

Create a Bollinger Bands Plot

This example shows how to compute the Bollinger bands for Disney stock closing prices
and plot the results.

load disney.mat

[dis_Mid,dis_Uppr,dis_Lowr]= bollinger(dis);

dis_CloseBolling = [dis_Mid.CLOSE, dis_Uppr.CLOSE,...

dis_Lowr.CLOSE];

plot(dis_CloseBolling)

title('Bollinger Bands for Disney Closing Prices')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 72–74.
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See Also
tsmovavg

Introduced before R2006a
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boxcox
Box-Cox transformation

Syntax
[transdat, lambda] = boxcox(data)

[transfts, lambda] = boxcox(tsobj)

transdat = boxcox(lambda, data)

transfts = boxcox(lambda, tsobj)

Arguments

data Data vector. Must be positive and specified as a column data vector.
tsobj Financial time series object.

Description

boxcox transforms nonnormally distributed data to a set of data that has approximately
normal distribution. The Box-Cox transformation is a family of power transformations.

If λ is not = 0, then

data
data

( )l

l

l
=

-1

If λ is = 0, then

data data( ) log( )l =

The logarithm is the natural logarithm (log base e). The algorithm calls for finding the λ
value that maximizes the Log-Likelihood Function (LLF). The search is conducted using
fminsearch.
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[transdat, lambda] = boxcox(data) transforms the data vector data using the
Box-Cox transformation method into transdat. It also estimates the transformation
parameter λ.

[transfts, lambda] = boxcox(tsojb) transforms the financial time series object
tsobj using the Box-Cox transformation method into transfts. It also estimates the
transformation parameter λ.

If the input data is a vector, lambda is a scalar. If the input is a financial time series
object, lambda is a structure with fields similar to the components of the object; for
example, if the object contains series names Open and Close, lambda has fields
lambda.Open and lambda.Close.

transdat = boxcox(lambda, data) and transfts = boxcox(lambda, tsobj)
transform the data using a certain specified λ for the Box-Cox transformation. This
syntax does not find the optimum λ that maximizes the LLF.

See Also
fminsearch

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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busdate
Next or previous business day

Syntax
Busday = busdate(Date)

Busday = busdate(Date,DirFlag,Holiday,Weekend)

Description
Busday = busdate(Date) returns the scalar, vector, or matrix of the next or previous
business days, depending on the definition for Holiday.

Busday = busdate(Date,DirFlag,Holiday,Weekend). returns the scalar, vector, or
matrix of the next or previous business days, depending on the optional input arguments,
including Holiday.

If both Date and Holiday are either serial date numbers or date character vectors,
Busday is returned as a serial date number.

However, if either Date or Holiday are datetime arrays,Busday is returned as a
datetime array.

Use the function datestr to convert serial date numbers to formatted date character
vectors.

Examples

Determine Business Days

Determine the next business day when Date is a character vector.

 Busday = busdate('3-Jul-2001', 1)

datestr(Busday)

Busday =
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      731037

ans =

05-Jul-2001

Indicate that Saturday is a business day by appropriately setting the Weekend
argument. July 4, 2003 falls on a Friday. Use busdate to verify that Saturday, July 5, is
actually a business day.

Weekend = [1 0 0 0 0 0 0];

Date = datestr(busdate('3-Jul-2003', 1, [], Weekend))

Date =

05-Jul-2003

If either Date or Holiday are datetime arrays, Busday is returned as a datetime array.

Busday = busdate(datetime('3-Jul-2001','Locale','en_US'), 1)

Busday = 

  datetime

   05-Jul-2001

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Reference business date
serial date number | date character vector | datetime object

Reference business date, specified as a scalar, vector, or matrix using serial date
numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime
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DirFlag — Business day convention
follow (default) | date character vector with values of follow, modifiedfollow,
previous, or modifiedprevious | cell array of date character vectors with values of
follow, modifiedfollow, previous, or modifiedprevious

Business day convention, specified date character vector or cell array of date character
vectors with values of follow, modifiedfollow, previous, or modifiedprevious.

Also, DirFlag can be a scalar, vector, or matrix of search directions, where Next is
DIREC = 1 (default) or Previous is DIREC = -1.

Data Types: double | char | datetime

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date
number | date character vector | datetime object

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date
character vectors, or datetime arrays. (Using serial date numbers improves performance.)
Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length
7, containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates
weekend days and the first element of this vector corresponds to Sunday.
Data Types: double

Output Arguments

Busday — Next or previous business day
scalar | vector | matrix

Next or previous business day, returned as a scalar, vector, or matrix depending on the
definition for Holiday. If Date is a datetime array, Busday returns a datetime array.
Otherwise, Busday returns a serial date numbers.
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More About
• “Trading Calendars User Interface” on page 15-2

See Also
datetime | holidays

Introduced before R2006a
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busdays
Business days for given period

Syntax

bdates = busdate(sdate,edate)

bdates = busdate(sdate,edate,bdmode,holvec)

Description

bdates = busdate(sdate,edate) generates a vector of business days between
the last business date of the period that contains the start date (sdate), and the last
business date of period that contains the end date (edate).

If holvec is not supplied, the dates are generated based on United States holidays. If
you do not supply bdmode, busdays generates a daily vector.

bdates = busdate(sdate,edate,bdmode,holvec) generates a vector of business
days between the last business date of the period that contains the start date (sdate),
and the last business date of period that contains the end date (edate) using optional
input arguments. If holvec is not supplied, the dates are generated based on United
States holidays. If you do not supply bdmode, bdates generates a daily vector.

Examples

Determine Business Days for a Given Period

Determine the business days for a weekly period.

 bdates = datestr(busdays('1/2/01','1/9/01','weekly'))

bdates =

05-Jan-2001

12-Jan-2001
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The end of the week is considered to be a Friday. Between 1/2/01 (Monday) and 1/9/01
(Tuesday), there is only one end-of-week day, 1/5/01 (Friday). Because 1/9/01 is part of
the following week, the following Friday (1/12/01) is also reported.

Determine the business days for a weekly period using a datetime input for sdate.

bdates = busdays(datetime('2-Jan-2001','Locale','en_US'),'9-Jan-2001','weekly')

bdates = 

  2×1 datetime array

   05-Jan-2001

   12-Jan-2001

Determine the business days for a monthly period.

vec = datestr(busdays('1/8/16','3/1/16','monthly'))

vec =

29-Jan-2016

29-Feb-2016

31-Mar-2016

The start date (1/8/16) is in the month of January, 2016. The last business day for the
month of January is 1/29/16 (Friday). The end date (3/1/16) is in the month of March,
2016. The last business day for the month of March is 3/31/16 (Thursday). The month of
February, 2016 lies between the start date and the end date. The last business day for
the month of February is 2/29/16 (Monday).

• “Handle and Convert Dates” on page 2-4

Input Arguments

sdate — Start date
serial date number | date character vector | datetime object
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Start date, specified as a serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

edate — End date
serial date number | date character vector | datetime object

End date, specified as serial date numbers, date character vectors, or datetime arrays.
Data Types: double | char | datetime

bdmode — Frequency of business days
DAILY (1) (default) | nonnegative numeric with values 1 through 5 | date character
vector with values DAILY, WEEKLY, MONTHLY, QUARTERLY, SEMIANNUAL or ANNUAL

Frequency of business days, specified as a nonnegative numeric with values 1 through
5 or date character vector with values of DAILY, WEEKLY, MONTHLY, QUARTERLY,
SEMIANNUAL, or ANNUAL

Valid periodicities include:

• DAILY, Daily, daily, D, d, 1 (default)
• WEEKLY, Weekly, weekly, W, w, 2
• MONTHLY, Monthly, monthly, M, m, 3
• QUARTERLY, Quarterly, quarterly, Q, q, 4
• SEMIANNUAL, Semiannual, semiannual, S, s, 5
• ANNUAL, Annual, annual, A, a, 6

Character vectors must be enclosed in single quotation marks.

For example, if bdmode is set to monthly, busdays will return end-of-month business
dates for all full or partial months between the start date and end date inclusive.
Data Types: double | char

holvec — Holiday dates
if holvec is [ ] holiday dates used are based on United States holidays (default) |
serial date number | date character vector | datetime object

Holiday dates, specified as a vector in date character vector, serial date, or datetime
array format. If you specify holvec, you must also supply the frequency bdmode. Using a
holvec value of NaN uses a holiday list that has no dates.
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Data Types: double | char | datetime

Output Arguments

bdates — Business days
column vector

Business days, returned as a column vector of business dates, in serial date format
(default) or datetime format (if sdate, edate, or holvec are in datetime format).
Business dates can exist before and/or after the specified sdate and edate.

More About
• “Trading Calendars User Interface” on page 15-2

See Also
datetime | holidays

Introduced before R2006a
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candle
Candlestick chart

Syntax
candle(HighPrices, LowPrices, ClosePrices, OpenPrices)

candle(HighPrices, LowPrices, ClosePrices, OpenPrices,

Color, Dates, Dateform)

Arguments

HighPrices High prices for a security. A column vector.
LowPrices Low prices for a security. A column vector.
ClosePrices Closing prices for a security. A column vector.
OpenPrices Opening prices for a security. A column vector.
Color (Optional) Candlestick color is specified as a character vector.

MATLAB software supplies a default color if none is specified. The
default color differs depending on the background color of the figure
window. See ColorSpec in the MATLAB documentation for color
names.

Dates (Optional) Column vector of dates for user specified X-axis tick
labels. Date is specified as a serial date number or datetime array.

Dateform (Optional) Date character vector format used as the x-axis tick
labels. (See datetick in the MATLAB documentation.) You can
specify a dateform only when tsobj does not contain time-of-day
data. If tsobj contains time-of-day data, dateform is restricted to
'dd-mmm-yyyy HH:MM'.

Description

candle(HighPrices, LowPrices, ClosePrices, OpenPrices) plots a candlestick
chart given column vectors with the high, low, closing, and opening prices of a security.
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If the closing price is greater than the opening price, the body (the region between the
opening and closing price) is unfilled.

If the opening price is greater than the closing price, the body is filled.

candle(HighPrices, LowPrices, ClosePrices, OpenPrices, Color, Dates,

Dateform) plots a candlestick chart given column vectors with the high, low, closing,
and opening prices of a security. In addition, the optional arguments Color, Dates, and
Dateform specify the color of the candle box and the date character vector format used
as the x-axis tick labels.

Examples

Create a Candlestick Chart

This example shows how to create a candlestick chart, with blue candles, for the most
recent 21 days in disney.mat.

load disney;

candle(dis_HIGH(end-20:end), dis_LOW(end-20:end), dis_CLOSE(end-20:end),...

dis_OPEN(end-20:end), 'b');
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Create a Candlestick Chart Using datetime Input

This example shows how to create a candlestick chart using datetime input, with blue
candles, for the most recent 21 days in disney.mat.

load disney;

dates=datetime(2015,1,1:21);

candle(dis_HIGH(end-20:end), dis_LOW(end-20:end), dis_CLOSE(end-20:end),...

dis_OPEN(end-20:end), 'b',dates','dd-mmm');
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• “Charting Financial Data” on page 2-12

See Also
bolling | candle | dateaxis | datetime | highlow | movavg | pointfig

Introduced before R2006a
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candle (fts)
Time series candle plot

Syntax
candle(tsobj)

candle(tsobj, color)

candle(tsobj, color, dateform)

candle(tsobj, color, dateform, 'ParameterName', ParameterValue, ...)

hcdl = candle(tsobj, color, dateform, 'ParameterName',

ParameterValue, ...) 

Arguments

tsobj Financial time series object
color (Optional) A three-element row vector representing RGB or a color

identifier. (See plot in the MATLAB documentation.)
dateform (Optional) Date character vector format used as the x-axis tick

labels. (See datetick in the MATLAB documentation.) You can
specify a dateform only when tsobj does not contain time-of-day
data. If tsobj contains time-of-day data, dateform is restricted to
'dd-mmm-yyyy HH:MM'.

Description

candle(tsobj) generates a candle plot of the data in the financial time series object
tsobj. tsobj must contain at least four data series representing the high, low, open,
and closing prices. These series must have the names High, Low, Open, and Close (case-
insensitive).

candle(tsobj, color) additionally specifies the color of the candle box.
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candle(tsobj, color, dateform) additionally specifies the date character vector
format used as the x-axis tick labels. See datestr for a list of date character vector
formats.

candle(tsobj, color, dateform, 'ParameterName', ParameterValue, ...)

indicates the actual names of the required data series if the data series do not have the
default names. 'ParameterName' can be

• HighName: high prices series name
• LowName: low prices series name
• OpenName: open prices series name
• CloseName: closing prices series name

hcdl = candle(tsobj, color, dateform, 'ParameterName',

ParameterValue, ...) returns the handle to the patch objects and the line object that
make up the candle plot. hdcl is a three-element column vector representing the handles
to the two patches and one line that forms the candle plot.

Examples

Create a Candle Plot for a Financial Time Series Object

This example shows how to create a candle plot for Disney stock for the dates March 31,
1998 through April 30, 1998.

load disney.mat

candle(dis('3/31/98::4/30/98'))

title('Disney 3/31/98 to 4/30/98')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
candle | chartfts | highlow | plot

Introduced before R2006a
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cdai
Accrued interest on certificate of deposit

Syntax
AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)

Arguments

CouponRate Annual interest rate in decimal.
Settle Settlement date, specified as a serial date number, date

character vector, or datetime array. Settle must be earlier
than Maturity.

Maturity Maturity date, specified as a serial date number, date
character vector, or datetime array.

IssueDate Issue date, specified as a serial date number, date character
vector, or datetime array.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360 (default)
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or 1-by-NCDS
conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or
a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)

computes the accrued interest on a certificate of deposit.

AccrInt represents the accrued interest per $100 of face value.

This function assumes that the certificates of deposit pay interest at maturity. Because of
the simple interest treatment of these securities, the function is best used for short-term
maturities (less than 1 year). The default simple interest calculation is the actual/360
convention.

Examples

Find the Accrued Interest on a Certificate of Deposit

This example shows how to compute the accrued interest due, given a certificate of
deposit with the following characteristics.

CouponRate      =  0.05;

Settle          =  '02-Jan-02';

Maturity        =  '31-Mar-02';

IssueDate       =  '1-Oct-01';

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt =

    1.2917
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Find the Accrued Interest on a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the accrued interest due,
given a certificate of deposit with the following characteristics.

CouponRate =  0.05;

Settle =  datetime('02-Jan-02','Locale','en_US');

Maturity =  datetime('31-Mar-02','Locale','en_US');

IssueDate =  datetime('1-Oct-01','Locale','en_US');

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt =

    1.2917

• “Coupon Date Calculations” on page 2-28

More About
• “Yield Conventions” on page 2-29

See Also
accrfrac | bndyield | cdprice | cdyield | datetime | stepcpnyield |
tbillyield | zeroyield

Introduced before R2006a
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cdprice
Price of certificate of deposit

Syntax
[Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,

IssueDate, Basis)

Arguments

Yield Simple yield to maturity over the basis denominator.
CouponRate Coupon interest rate in decimal.
Settle Settlement date, specified as a serial date number, date

character vector, or datetime array. Settle must be earlier than
Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

IssueDate Issue date, specified as a serial date number, date character
vector, or datetime array.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360 (default)
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or 1-by-NCDS
conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or
a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description

[Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,

IssueDate, Basis) computes the price of a certificate of deposit given its yield.

Price is the clean price of the certificate of deposit per $100 of face value.

AccruedInt is the accrued interest payable at settlement per unit of face value.

This function assumes that the certificates of deposit pay interest at maturity. Because of
the simple interest treatment of these securities, the function is best used for short-term
maturities (less than 1 year). The default simple interest calculation is the actual/360
convention.

Examples

Compute the Price and Accrued Interest for a Certificate of Deposit

This example shows how to compute the price and the accrued interest due on the
settlement date, given a certificate of deposit with the following characteristics.

Yield           =  0.0525;

CouponRate      =  0.05;

Settle          =  '02-Jan-02';

Maturity        =  '31-Mar-02';

IssueDate       =  '1-Oct-01';

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...
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Maturity, IssueDate)

Price =

   99.9233

AccruedInt =

    1.2917

Compute the Price and Accrued Interest for a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the price and the accrued
interest due on the settlement date, given a certificate of deposit with the following
characteristics.

Yield =  0.0525;

CouponRate =  0.05;

Settle =  datetime('02-Jan-02','Locale','en_US');

Maturity =  datetime('31-Mar-02','Locale','en_US');

IssueDate =  datetime('1-Oct-01','Locale','en_US');

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...

Maturity, IssueDate)

Price =

   99.9233

AccruedInt =

    1.2917

• “Coupon Date Calculations” on page 2-28

More About
• “Yield Conventions” on page 2-29
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See Also
bndprice | cdai | cdyield | datetime | stepcpnprice | tbillprice

Introduced before R2006a
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cdsbootstrap

Bootstrap default probability curve from credit default swap market quotes

Syntax

[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,

Settle)

[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,

Settle, Name,Value)

Description

[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,

Settle) bootstraps the default probability curve using credit default swap (CDS)
market quotes. The market quotes can be expressed as a list of maturity dates and
corresponding CDS market spreads, or as a list of maturities and corresponding upfronts
and standard spreads for standard CDS contracts. The estimation uses the standard
model of the survival probability.

[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,

Settle, Name,Value) bootstraps the default probability curve using CDS market
quotes with additional options specified by one or more Name,Value pair arguments.
The market quotes can be expressed as a list of maturity dates and corresponding CDS
market spreads, or as a list of maturities and corresponding upfronts and standard
spreads for standard CDS contracts. The estimation uses the standard model of the
survival probability.

Input Arguments

ZeroData

M-by-2 vector of dates and zero rates or an IRDataCurve object of zero rates. For more
information on an IRDataCurve object, see “Creating an IRDataCurve Object”.
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MarketData

N-by-2 matrix of dates and corresponding market spreads or N-by-3 matrix of dates,
upfronts, and standard spreads of CDS contracts.

Settle

Settlement date is a serial date number or date character vector. This must be earlier
than or equal to the dates in MarketData.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 2 (actual/360)

'BusDayConvention'

Business day conventions, specified by a character vector or N-by-1 cell array of
character vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in
a different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Default: actual

'PayAccruedPremium'

N-by-1 vector of Boolean flags, True (default), if accrued premiums are paid upon default,
False otherwise.

Default: True
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'Period'

N-by-1 vector of the number of premiums per year of the CDS. Allowed values are 1, 2, 3,
4, 6, and 12.

Default: 4

'ProbDates'

P-by-1 vector of dates for ProbData.

Default: Column of dates in MarketData

'RecoveryRate'

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

'TimeStep'

Positive integer indicating the number of days to take as time step for the numerical
integration.

Default: 10 (days)

'ZeroBasis'

Basis of the zero curve. Choices are identical to Basis.

Default: 0 (actual/actual)

'ZeroCompounding'

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
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• 12 — Monthly compounding
• -1 — Continuous compounding

Note:  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding
and ZeroBasis are implicit in ZeroData and are redundant inside this function. In that
case, specify these optional arguments when constructing the IRDataCurve object before
calling this function.

Default: 2 (Semiannual compounding)

Output Arguments

ProbData

P-by-2 matrix with dates and corresponding cumulative default probability values. The
dates match those in MarketData, unless the optional input parameter ProbDates is
provided.

HazData

N-by-2 matrix with dates and corresponding hazard rate values for the standard survival
probability model. The dates match those in MarketData.

Note: A warning is displayed when non-monotone default probabilities (that is, negative
hazard rates) are found.

Examples

Bootstrap Default Probability Curve from Credit Default Swap Market Quotes

This example shows how to use cdsbootstrap with market quotes for CDS contracts to
generate ProbData and HazData values.

Settle = '17-Jul-2009'; % valuation date for the CDS

Spread_Time = [1 2 3 5 7]';

Spread = [140 175 210 265 310]';
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Market_Dates = daysadd(datenum(Settle),360*Spread_Time,1);

MarketData = [Market_Dates Spread];

Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

Zero_Dates = daysadd(datenum(Settle),360*Zero_Time,1);

ZeroData = [Zero_Dates Zero_Rate];

format longg

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle)

ProbData =

                    734336        0.0233427858530509

                    734701        0.0575839967597608

                    735067         0.102139701668411

                    735797         0.206453998211311

                    736528         0.323411093986656

HazData =

                    734336        0.0232959886360797

                    734701          0.03520005122783

                    735067        0.0476383354493126

                    735797        0.0609055766425819

                    736528        0.0785241514697432

• “Bootstrapping a Default Probability Curve” on page 8-99
• “Bootstrapping from Inverted Market Curves” on page 8-109

More About

Algorithms

If the time to default is denoted by τ, the default probability curve, or function, PD(t), and
its complement, the survival function Q(t), are given by:

PD t P t P t Q t( ) [ ] [ ] ( )= £ = - > = -t t1 1

In the standard model, the survival probability is defined in terms of a piecewise
constant hazard rate h(t). For example, if h(t) =
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λ1, for 0 ≤t ≤ t1

λ2, for t1 < t ≤ t2

λ3, for t2 <t

then the survival function is given by Q(t) =

e
t-l 1 , for 0 ≤ t ≤ t1

- - -l l1 2 1t t t
e

( ) , for t1 < t ≤ t2

- - - - -l l l1 1 2 2 1 3 2t t t t t
e

( ) ( ) , for t2 < t

Given n market dates t1,...,tn and corresponding market CDS spreads S1,...,Sn,
cdsbootstrap calibrates the parameters λ1,...,λn and evaluates PD(t) on the market
dates, or an optional user-defined set of dates.
• “Credit Default Swap (CDS)” on page 8-99
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

References

Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS
Big Bang.”  Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.

Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.”
Journal of Derivatives. Vol. 8, pp. 29–40.

O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.”  Lehman Brothers,
Fixed Income Quantitative Credit Research, April 2003.

See Also
cdsprice | cdsrpv01 | cdsspread

Introduced in R2010b
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cdsprice
Determine price for credit default swap

Syntax

[Price, AccPrem, PaymentDates, PaymentTimes,

PaymentCF] = cdsprice(ZeroData, ProbData, Settle,

Maturity, ContractSpread)

[Price, AccPrem, PaymentDates, PaymentTimes,

PaymentCF] = cdsprice(ZeroData, ProbData,

Settle, Maturity, ContractSpread,

Name,Value)

Description

[Price, AccPrem, PaymentDates, PaymentTimes,

PaymentCF] = cdsprice(ZeroData, ProbData, Settle,

Maturity, ContractSpread) computes the price, or the mark-to-market value for
CDS instruments.

[Price, AccPrem, PaymentDates, PaymentTimes,

PaymentCF] = cdsprice(ZeroData, ProbData,

Settle, Maturity, ContractSpread,

Name,Value) computes the price, or the mark-to-market value for CDS instruments
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ZeroData

M-by-2 vector of dates and zero rates or an IRDataCurve object of zero rates. For more
information on an IRDataCurve object, see “Creating an IRDataCurve Object”.

ProbData

P-by-2 array of dates and default probabilities.
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Settle

Settlement date is a serial date number or character vector. This must be earlier than or
equal to the Maturity dates.

Maturity

N-by-1 vector of serial date numbers or date character vectors containing the maturity
dates.

ContractSpread

N-by-1 vector of contract spreads, expressed in basis points.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 2 (actual/360)

'BusDayConvention'

Business day conventions, specified by a character vector or N-by-1 cell array of
character vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in
a different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Default: actual

'Notional'

N-by-1 vector of contract notional values. Use positive values for long positions and
negative values for short positions.

Default: 10MM
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'PayAccruedPremium'

N-by-1 vector of Boolean flags. True, if accrued premiums are paid upon default, False
otherwise.

Default: True

'Period'

N-by-1 vector of number of premiums per year of the CDS. Allowed values are 1, 2, 3, 4, 6,
and 12.

Default: 4

'RecoveryRate'

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

'TimeStep'

Positive integer indicating the number of days to take as time step for the numerical
integration.

Default: 10 (days)

'ZeroBasis'

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

'ZeroCompounding'

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
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• -1 — Continuous compounding

Note:  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding
and ZeroBasis are implicit in ZeroData and are redundant inside this function. In that
case, specify these optional arguments when constructing the IRDataCurve object before
calling this function.

Default: 2 (Semiannual compounding)

Output Arguments

Price

N-by-1 vector of CDS clean prices.

AccPrem

N-by-1 vector of accrued premiums.

PaymentDates

N-by-numCF matrix of payment dates.

PaymentTimes

N-by-numCF matrix of accrual fractions.

PaymentCF

N-by-numCF matrix of payments.

Examples

Determine the Price For a Credit Default Swap

This example shows how to use cdsprice to compute the clean price for a CDS contract
using the following data.

Settle = '17-Jul-2009'; % valuation date for the CDS
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Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

Zero_Dates = daysadd(Settle,360*Zero_Time,1);

ZeroData = [Zero_Dates Zero_Rate];

ProbData = [daysadd(datenum(Settle),360,1), 0.0247];

Maturity = '20-Sep-2010';

ContractSpread = 135;

[Price,AccPrem] = cdsprice(ZeroData,ProbData,Settle,Maturity,ContractSpread)

Price =

   1.5461e+04

AccPrem =

       10500

• “Finding Breakeven Spread for New CDS Contract” on page 8-102
• “Valuing an Existing CDS Contract” on page 8-105
• “Converting from Running to Upfront” on page 8-106

More About

CDS Price

The price or mark-to-market (MtM) value of an existing CDS contract is computed using
the following formula:

CDS price = Notional * (Current Spread - Contract Spread) * RPV01

Current Spread is the current breakeven spread for a similar contract, according to
current market conditions. RPV01 is the 'risky present value of a basis point,' the present
value of the premium payments, considering the default probability. This formula
assumes a long position, and the right side is multiplied by -1 for short positions.

Algorithms

The premium leg is computed as the product of a spread S and the risky present value of
a basis point (RPV01). The RPV01 is given by:
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when accrued premiums are paid upon default. Here, t0 = 0 is the valuation date, and
t1,...,tn = T are the premium payment dates over the life of the contract,T is the maturity
of the contract, Z(t) is the discount factor for a payment received at time t, and Δ(tj-1, tj, B)
is a day count between dates tj-1  and tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg Z R dPD
T

= -Ú ( )( ) ( )t t1
0
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where the integral is approximated with a finite sum over the discretization τ0 = 0,τ1,...,τM
= T.

If the spread of an existing CDS contract is SC, and the current breakeven spread for a
comparable contract is S0, the current price, or mark-to-market value of the contract is
given by:

MtM = Notional (S0 –SC)RPV01

This assumes a long position from the protection standpoint (protection was bought). For
short positions, the sign is reversed.
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• “Credit Default Swap (CDS)” on page 8-99
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

References

Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the CDS
Big Bang.”  Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.

Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default Risk.”
Journal of Derivatives. Vol. 8, pp. 29–40.

O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.”  Lehman Brothers,
Fixed Income Quantitative Credit Research, April 2003.

See Also
cdsbootstrap | cdsoptprice | cdsspread | IRDataCurve

Introduced in R2010b
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cdsspread
Determine spread of credit default swap

Syntax

[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,

ProbData, Settle, Maturity)

[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,

ProbData, Settle, Maturity,

Name,Value)

Description

[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,

ProbData, Settle, Maturity) computes the spread of the CDS.

[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,

ProbData, Settle, Maturity,

Name,Value) computes the spread of the CDS with additional options specified by one
or more Name,Value pair arguments.

Input Arguments

ZeroData

M-by-2 vector of dates and zero rates or IRCurve of zero rates. For more information on
an IRDataCurve object, see “Creating an IRDataCurve Object”.

ProbData

P-by-2 array of dates and default probabilities.

Settle

Settlement date is a serial date number or date character vector. This must be earlier
than or equal to the dates in MarketData.
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Maturity

N-by-1 vector of serial date numbers or date character vectors containing the maturity
dates.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Default: 2 (actual/360)

'BusDayConvention'

Business day conventions, specified by a character vector or N-by-1 cell array of
character vectors for business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in
a different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Default: actual

'PayAccruedPremium'

N-by-1 vector of Boolean flags, True, if accrued premiums are paid upon default, False
otherwise.

Default: True

'Period'

N-by-1 vector of number of premiums per year of the CDS. Allowed values are 1, 2, 3, 4,
6, and 12.

Default: 4
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'RecoveryRate'

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

'TimeStep'

Positive integer indicating the number of days to take as time step for the numerical
integration.

Default: 10 (days)

'ZeroBasis'

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

'ZeroCompounding'

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• -1 — Continuous compounding

Note:  When ZeroData is an IRCurve object, the arguments ZeroCompounding and
ZeroBasis are implicit in ZeroData and are redundant inside this function. In that
case, specify these optional arguments when constructing the IRCurve object before
calling this function.

Default: 2 (semiannual compounding)
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Output Arguments

Spread

N-by-1 vector of spreads (in basis points).

PaymentDates

N-by-numCF matrix of payment dates.

PaymentTimes

N-by-numCF matrix of accrual fractions.

Examples

Determine the Spread of a Credit Default Swap

This example shows how to use cdsspread to compute the clean price for a CDS contract
with the following data.

Settle = '17-Jul-2009'; % valuation date for the CDS

Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

Zero_Dates = daysadd(Settle,360*Zero_Time,1);

ZeroData = [Zero_Dates Zero_Rate];

ProbData = [daysadd(datenum(Settle),360,1), 0.0247];

Maturity = '20-Sep-2010';

Spread = cdsspread(ZeroData,ProbData,Settle,Maturity)

Spread =

  148.2705

• “Finding Breakeven Spread for New CDS Contract” on page 8-102
• “Valuing an Existing CDS Contract” on page 8-105
• “Converting from Running to Upfront” on page 8-106
• “First-to-Default Swaps”
• “Pricing a CDS Index Option”
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More About

CDS Spread

The market, or breakeven, spread value of a CDS can be computed by equating the value
of the protection leg with the value of the premium leg:

Market Spread * RPV01 = Value of Protection Leg

The left side corresponds to the value of the premium leg, and this has been decomposed
as the product of the market or breakeven spread times the RPV01 or 'risky present value
of a basis point' of the contract. The latter is the present value of the premium payments,
considering the default probability. The Market Spread can be computed as the ratio
of the value of the protection leg, to the RPV01 of the contract. cdsspread returns the
resulting spread in basis points.

Algorithms

The premium leg is computed as the product of a spread S and the risky present value of
a basis point (RPV01). The RPV01 is given by:
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when no accrued premiums are paid upon default, and it can be approximated by
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when accrued premiums are paid upon default. Here, t0 = 0 is the valuation date, and
t1,...,tn = T are the premium payment dates over the life of the contract,T is the maturity
of the contract, Z(t) is the discount factor for a payment received at time t, and Δ(tj-1, tj, B)
is a day count between dates tj-1  and tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg Z R dPD
T

= -Ú ( )( ) ( )t t1
0
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where the integral is approximated with a finite sum over the discretization τ0 = 0,τ1,...,τM
= T.

A breakeven spread S0 makes the value of the premium and protection legs equal. It
follows that:

S
ProtectionLeg

RPV01
0 =

• “Credit Default Swap (CDS)” on page 8-99
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

References
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Big Bang.”  Fitch Solutions, Quantitative Research, Global Special Report. April 7, 2009.
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Journal of Derivatives. Vol. 8, pp. 29–40.

O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.”  Lehman Brothers,
Fixed Income Quantitative Credit Research, April 2003.

See Also
cdsbootstrap | cdsprice | IRDataCurve

Introduced in R2010b
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cdsrpv01
Compute risky present value of a basis point for credit default swap

Syntax
RPV01 = cdsrpv01(ZeroData,ProbData,Settle,

Maturity)

RPV01 = cdsrpv01( ___ ,Name,Value)

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01(ZeroData,ProbData,

Settle,

Maturity)

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01( ___ ,Name,Value)

Description
RPV01 = cdsrpv01(ZeroData,ProbData,Settle,

Maturity) computes the risky present value of a basis point (RPV01) for a credit default
swap (CDS).

RPV01 = cdsrpv01( ___ ,Name,Value) computes the risky present value of a basis
point (RPV01) for a credit default swap (CDS) using optional name-value pair arguments.

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01(ZeroData,ProbData,

Settle,

Maturity) computes the risky present value of a basis point (RPV01), PaymentDates,
and PaymentTimes for a credit default swap (CDS).

[RPV01,PaymentDates,PaymentTimes] = cdsrpv01( ___ ,Name,Value) computes
the risky present value of a basis point (RPV01), PaymentDates, and PaymentTimes for
a credit default swap (CDS) using optional name-value pair arguments.

Examples
Calculate the RPV01 Value for a CDS

Calculate the RPV01 value, given the following specification for a CDS.
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Settle = '17-Jul-2009'; % valuation date for the CDS

Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

Zero_Dates = daysadd(Settle,360*Zero_Time,1);

ZeroData = [Zero_Dates Zero_Rate];

ProbData = [daysadd(datenum(Settle),360,1), 0.0247];

Maturity = '20-Sep-2010';

RPV01 = cdsrpv01(ZeroData,ProbData,Settle,Maturity)

RPV01 =

    1.1651

• “Pricing a CDS Index Option”

Input Arguments

ZeroData — Dates and zero rates
object from IRDataCurve or vector of dates and zero rates

Dates and zero rates, specified by an M-by-2 vector of dates and zero rates or the object
IRDataCurve for zero rates. For more information on an IRDataCurve object, see
“Creating an IRDataCurve Object”.
Data Types: struct | double

ProbData — Dates and default probabilities
vector of dates and default probabilities

Dates and default probabilities, specified by a P-by-2 array.

Data Types: double

Settle — Settlement date
nonnegative integer | character vector | cell array of character vectors

Settlement date, specified by a serial date number or date character vector. This must be
earlier than or equal to the dates in Maturity.

Data Types: char | cell | double

Maturity — CDS maturity date
nonnegative integer | character vector | cell array of character vectors
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CDS maturity date, specified by an N-by-1 vector of serial date numbers or date character
vectors containing the maturity dates. The CDS premium payment dates occur at regular
intervals, and the last payment occurs on these maturity dates.
Data Types: char | cell | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: RPV01 =
cdsrpv01(ZeroData,ProbData,Settle,Maturity,'Period',1,'StartDate','20-

Sep-2010','Basis',1,

'BusDayConvention',actual,'CleanRPV01',true,'PayAccruedPremium',true,'ZeroCompounding',1,'ZeroBasis',1)

'Period' — Number of premium payments per year
4 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Number of premium payments per year, specified by an N-by-1 vector. Values are 1, 2, 3,
4, 6, and 12.

Data Types: double

'StartDate' — Dates the CDS premium leg starts
Settle date (default) | nonnegative integer | character vector | cell array of character
vectors

Dates when the CDS premium leg actually starts, specified by an N-by-1 vector of
serial date numbers or date character vectors. Must be on or between the Settle and
Maturity dates. For a forward-starting CDS, specify this date as a future date after
Settle.

Data Types: double | char | cell

'Basis' — Day-count basis of contract
2 (actual/360) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the contract, specified as a positive integer using a NINST-by-1 vector.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: double

'BusDayConvention' — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified by a character vector or N-by-1 cell array of
character vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed
on the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in
a different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.
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• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

'CleanRPV01' — Flag for premium accrual
true (default) | boolean flag with value true or false

Flag for premium accrual, specified as an N-by-1 vector of Boolean flags, which is true if
the premium accrued at StartDate is excluded in the RPV01, and false otherwise.

Data Types: logical

'PayAccruedPremium' — Flag for accrued premium payment
true (default) | boolean flag with value true or false

Flag for accrued premium payment, specified as a N-by-1 vector of Boolean flags, true if
accrued premiums are paid upon default, false otherwise.

Data Types: logical

'ZeroCompounding' — Compounding frequency of zero curve
2 semiannual compounding (default) | integer with acceptable value [1,2,3,4,6,12, –
1]

Compounding frequency of the zero curve, specified with integer values:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• -1 — Continuous compounding

Note:  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding
and ZeroBasis are implicit in ZeroData and are redundant inside this function. In that
case, specify these optional arguments when constructing the IRDataCurve object before
calling this function.
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Data Types: double

'ZeroBasis' — Basis of zero curve
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Basis of the zero curve, specified as a positive integer using a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: double

Output Arguments

RPV01 — RPV01 value
scalar | vector

RPV01 value, returned as an N-by-1 vector.

PaymentDates — Payment dates
scalar | vector
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Payment dates, returned as an N-by-numCF matrix of dates.

PaymentTimes — Payment times
scalar | vector

Payment times, returned as an N-by-numCF matrix of accrual fractions.

More About

RPV01

RPV01, associated with a CDS, is the value of a stream of 1-basis-point premiums
according to the payment structure of the CDS contract, and considering the default
probability over time.

For more information, see [3] and [4] for details.
• “Credit Default Swap Option”
• www.cdsmodel.com/cdsmodel/
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

References

[1] Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course Through the
CDS Big Bang.” Fitch Solutions, Quantitative Research. Global Special Report. April 7,
2009.

[2] Hull, J., and A. White. “Valuing Credit Default Swaps I: No Counterparty Default
Risk.” Journal of Derivatives. Vol. 8, pp. 29–40.

[3] O'Kane, D. and S. Turnbull. “Valuation of Credit Default Swaps.” Lehman Brothers,
Fixed Income Quantitative Credit Research. April, 2003.

[4] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley Finance,
2008.

See Also
cdsbootstrap | cdsoptprice | cdsprice | cdsspread | IRDataCurve
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Introduced in R2013b
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creditexposures
Compute credit exposures from contract values

Syntax

[exposures,exposurecpty] = creditexposures(values,counterparties)

[exposures,exposurecpty] = creditexposures( ___ ,Name,Value)

[exposures,exposurecpty,collateral] = creditexposures( ___ ,

Name,Value)

Description

[exposures,exposurecpty] = creditexposures(values,counterparties)

computes the counterparty credit exposures from an array of mark-to-market OTC
contract values. These exposures are used when calculating the CVA (credit value
adjustment) for a portfolio.

[exposures,exposurecpty] = creditexposures( ___ ,Name,Value) computes
the counterparty credit exposures from an array of mark-to-market OTC contract values
using optional name-value pair arguments. These exposures are used when calculating
the CVA (credit value adjustment) for a portfolio.

[exposures,exposurecpty,collateral] = creditexposures( ___ ,

Name,Value) computes the counterparty credit exposures from an array of mark-
to-market OTC contract values using optional name-value pair arguments for
CollateralTable and Dates, the collateral output is returned for the simulated
collateral amounts available to counterparties at each simulation date and over each
scenario.

Examples

View Contract Values and Exposures Over Time for a Particular Counterparty

After computing the mark-to-market contract values for a portfolio of swaps over many
scenarios, compute the credit exposure for a particular counterparty. View the contract
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values and credit exposure over time. First, load data containing the mark-to-market
contract values for a portfolio of swaps over many scenarios.

load ccr.mat

% Look at one counterparty.

cpID = 4;

cpValues = squeeze(sum(values(:,swaps.Counterparty == cpID,:),2));

subplot(2,1,1)

plot(simulationDates,cpValues);

title(sprintf('Mark-to-Market Contract Values for Counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Portfolio Value ($)')

% Compute the exposure by counterparty.

[exposures, expcpty] = creditexposures(values,swaps.Counterparty,...

'NettingID',swaps.NettingID);

% View the credit exposure over time for the counterparty.

subplot(2,1,2)

cpIdx = find(expcpty == cpID);

plot(simulationDates,squeeze(exposures(:,cpIdx,:)));

title(sprintf('Exposure for counterparty: %d',cpIdx));

datetick('x','mmmyy')

ylabel('Exposure ($)')

xlabel('Simulation Dates')
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Compute the Credit Exposure and Determine the Incremental Exposure for a New Trade

Load data containing the mark-to-market contract values for a portfolio of swaps over
many scenarios.

load ccr.mat

Look at one counterparty.

cpID = 4;

cpIdx = swaps.Counterparty == cpID;

cpValues = values(:,cpIdx,:);

plot(simulationDates,squeeze(sum(cpValues,2)));

grid on;

title(sprintf('Potential Mark-to-Market Portfolio Values for Counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Portfolio Value ($)')
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Compute the exposures.

netting = swaps.NettingID(cpIdx);

exposures = creditexposures(cpValues,cpID,'NettingID',netting);

View the credit exposure over time for the counterparty.

figure;

plot(simulationDates,squeeze(exposures));

grid on

title(sprintf('Exposure for counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Exposure ($)')

xlabel('Simulation Dates')
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Compute the credit exposure profiles.

profilesBefore = exposureprofiles(simulationDates,exposures)

profilesBefore = 

     Dates: [37x1 double]

        EE: [37x1 double]

       PFE: [37x1 double]

      MPFE: 2.1580e+05

     EffEE: [37x1 double]

       EPE: 2.8602e+04

    EffEPE: 4.9579e+04

Consider a new trade with a counterparty. For this example, take another trade from
the original swap portfolio and "copy" it for a new counterparty. This example is only for
illustrative purposes.

newTradeIdx = 3;

newTradeValues = values(:,newTradeIdx,:);
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% Append a new trade to your existing portfolio.

cpValues = [cpValues newTradeValues];

netting = [netting; cpID];

exposures = creditexposures(cpValues,cpID,'NettingID',netting);

Compute the new credit exposure profiles.

profilesAfter = exposureprofiles(simulationDates,exposures)

profilesAfter = 

     Dates: [37x1 double]

        EE: [37x1 double]

       PFE: [37x1 double]

      MPFE: 2.4689e+05

     EffEE: [37x1 double]

       EPE: 3.1609e+04

    EffEPE: 5.6178e+04

Visualize the expected exposures and the new trade's incremental exposure. The
incremental exposure is used to compute the incremental credit value adjustment (CVA)
charge.

figure;

subplot(2,1,1)

plot(simulationDates,profilesBefore.EE,...

    simulationDates,profilesAfter.EE);

grid on;

legend({'EE before','EE with trade'})

datetick('x','mmmyy','keeplimits')

title('Expected Exposure before and after new trade');

ylabel('Exposure ($)')

subplot(2,1,2)

incrementalEE = profilesAfter.EE - profilesBefore.EE;

plot(simulationDates,incrementalEE);

grid on;

legend('incremental EE')

datetick('x','mmmyy','keeplimits')

ylabel('Exposure ($)')

xlabel('Simulation Dates')
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Compute Exposures for Counterparties Under Collateral Agreement

Load data containing the mark-to-market contract values for a portfolio of swaps over
many scenarios.

load ccr.mat

Only look at a single counterparty for this example.

cpID = 4;

cpIdx = swaps.Counterparty == cpID;

cpValues = values(:,cpIdx,:);

Compute uncollateralized exposures.

exposures = creditexposures(cpValues,swaps.Counterparty(cpIdx),...

'NettingID',swaps.NettingID(cpIdx));

View credit exposure over time for the counterparty.

plot(simulationDates,squeeze(exposures));
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expYLim = get(gca,'YLim');

title(sprintf('Exposures for Counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Exposure ($)')

xlabel('Simulation Dates')

Now add a collateral agreement for the counterparty. The 'CollateralTable'
parameter is a MATLAB® table. You can create tables from spreadsheets or other data
sources, in addition to building them inline as seen here. For more information, see
table.

collateralVariables = {'Counterparty';'PeriodOfRisk';'Threshold';'MinimumTransfer'};

periodOfRisk = 14;

threshold = 100000;

minTransfer = 10000;

collateralTable = table(cpID,periodOfRisk,threshold,minTransfer,...

'VariableNames',collateralVariables)

collateralTable = 
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    Counterparty    PeriodOfRisk    Threshold    MinimumTransfer

    ____________    ____________    _________    _______________

    4               14              1e+05        10000          

Compute collateralized exposures.

[collatExp, collatcpty, collateral] = creditexposures(cpValues,...

    swaps.Counterparty(cpIdx),'NettingID',swaps.NettingID(cpIdx),...

    'CollateralTable',collateralTable,'Dates',simulationDates);

Plot collateral levels and collateralized exposures.

figure;

subplot(2,1,1)

plot(simulationDates,squeeze(collateral));

set(gca,'YLim',expYLim);

title(sprintf('Collateral for counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Collateral ($)')

xlabel('Simulation Dates')

subplot(2,1,2)

plot(simulationDates,squeeze(collatExp));

set(gca,'YLim',expYLim);

title(sprintf('Collateralized Exposure for Counterparty: %d',cpID));

datetick('x','mmmyy')

ylabel('Exposure ($)')

xlabel('Simulation Dates');
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• “Counterparty Credit Risk and CVA”
• “Wrong Way Risk with Copulas”

Input Arguments

values — 3-D array of simulated mark-to-market values of portfolio of contracts
array

3-D array of simulated mark-to-market values of a portfolio of contracts simulated
over a series of simulation dates and across many scenarios, specified as a NumDates-
by-NumContracts-by-NumScenarios “cube” of contract values. Each row represents a
different simulation date, each column a different contract, and each “page” is a different
scenario from a Monte-Carlo simulation.
Data Types: double

counterparties — Counterparties corresponding to each contract
vector | cell array
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Counterparties corresponding to each contract in values, specified as a NumContracts-
element vector of counterparties. Counterparties can be a vector of numeric IDs or a
cell array of counterparty names. By default, each counterparty is assumed to have
one netting set that covers all of its contracts. If counterparties are covered by multiple
netting sets, then use the NettingID parameter. A value of NaN (or '' in a cell array)
indicates that a contract is not included in any netting set unless otherwise specified by
NettingID. counterparties is case insensitive and leading or trailing white spaces
are removed.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [exposures,exposurecpty] =
creditexposures(values,counterparties,'NettingID','10','ExposureType','Additive')

'NettingID' — Netting set IDs indicate which netting set each contract belongs
(default) | vector | cell array

Netting set IDs to indicate to which netting set each contract in values belongs,
specified by a NumContracts-element vector of netting set IDs. NettingID can
be a vector of numeric IDs or else a cell array of character vector identifiers. The
creditexposures function uses counterparties and NettingID to define each
unique netting set (all contracts in a netting set must be with the same counterparty). By
default, each counterparty has a single netting set which covers all of their contracts. A
value of NaN (or '' in a cell array) indicates that a contract is not included in any netting
set. NettingID is case insensitive and leading or trailing white spaces are removed.

Data Types: double | cell

'ExposureType' — Calculation method for exposures
'Counterparty' (default) | character vector with value of 'Counterparty' or
'Additive'

Calculation method for exposures, specified with values:

• 'Counterparty' — Compute exposures per counterparty.
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• 'Additive' — Compute additive exposures at the contract level. Exposures are
computed per contract and sum to the total counterparty exposure.

Data Types: char

'CollateralTable' — Table containing information on collateral agreements of
counterparties
MATLAB table

Table containing information on collateral agreements of counterparties, specified as a
MATLAB table. The table consists of one entry (row) per collateralized counterparty and
must have the following variables (columns):

• 'Counterparty' — Counterparty name or ID. The Counterparty name or ID should
match the parameter 'Counterparty' for the ExposureType argument.

• 'PeriodOfRisk' — Margin period of risk in days. The number of days from a
margin call until the posted collateral is available from the counterparty.

• 'Threshold' — Collateral threshold. When counterparty exposures exceed this
amount, the counterparty must post collateral.

• 'MinimumTransfer' — Minimum transfer amount. The minimum amount over/
under the threshold required to trigger transfer of collateral.

Note: When computing collateralized exposures, both the CollateralTable parameter
and the Dates parameter must be specified.

Data Types: table

'Dates' — Simulation dates corresponding to each row of the values array
vector of date numbers | cell array of character vectors

Simulation dates corresponding to each row of the values array, specified as a
NUMDATES-by-1 vector of simulation dates. Dates is either a vector of MATLAB date
numbers or else a cell array of character vectors in a known date format. See datenum
for known date formats.

Note: When computing collateralized exposures, both the CollateralTable parameter
and the Dates parameter must be specified.
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Data Types: double | cell

Output Arguments

exposures — 3-D array of credit exposures
array

3-D array of credit exposures representing the potential losses from each counterparty
or contract at each date and over all scenarios. The size of exposures depends on the
ExposureType input argument:

• When ExposureType is 'Counterparty', exposures returns a NumDates-
by-NumCounterparties-by-NumScenarios “cube” of credit exposures representing
potential losses that could be incurred over all dates, counterparties, and scenarios, if
a counterparty defaulted (ignoring any post-default recovery).

• When ExposureType is 'Additive', exposures returns a NumDates-
by-NumContracts-by-NumScenarios “cube,” where each element is the additive
exposure of each contract (over all dates and scenarios). Additive exposures sum to
the counterparty-level exposure.

exposurecpty — Counterparties that correspond to columns of exposures array
vector

Counterparties that correspond to columns of the exposures array, returned as
NumCounterparties or NumContracts elements depending on the ExposureType.

collateral — Simulated collateral amounts available to counterparties at each simulation
date and over each scenario
3D array

Simulated collateral amounts available to counterparties at each simulation date and
over each scenario, returned as a NumDates-by-NumCounterparties-by-NumScenarios
3D array. Collateral amounts are calculated using a Brownian bridge to estimate
contract values between simulation dates. For more information, see “Brownian Bridge”
on page 18-267. If the CollateralTable was not specified, this output is empty.
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More About

Brownian Bridge

A Brownian bridge is used to simulate portfolio values at intermediate dates to compute
collateral available at the subsequent simulation dates.

For example, to estimate collateral available at a particular simulation date, ti, you need
to know the state of the portfolio at time ti – dt, where dt is the margin period of risk.
Portfolio values are simulated at these intermediate dates by drawing from a distribution
defined by the Brownian bridge between ti and the previous simulation date, ti–1.

If the contract values at time ti –1 and ti are known and you want to estimate the contract
value at time tc (where tc is ti – dt), then a sample from a normal distribution is used with
variance:
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and with mean that is simply the linear interpolation of the contract values between the
two simulation dates at time tc. For more details, see References.

References

Lomibao, D., and S. Zhu. “A Conditional Valuation Approach for Path-Dependent
Instruments.” August 2005.

Pykhtin M. “Modeling credit exposure for collateralized counterparties.” December 2009.

Pykhtin M., and S. Zhu. “A Guide to Modeling Counterparty Credit Risk.” GARP, July/
August 2007, issue 37.

Pykhtin, Michael., and Dan Rosen. “Pricing Counterparty Risk at the Trade Level and
CVA Allocations.”  FEDS Working Paper No. 10., February 1, 2010.

See Also
datenum | exposureprofiles | table

Introduced in R2014a
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exposureprofiles

Compute exposure profiles from credit exposures

Syntax

profilestructs = exposureprofiles(dates,exposures)

profilestructs = exposureprofiles( ___ ,Name,Value)

Description

profilestructs = exposureprofiles(dates,exposures) computes common
counterparty credit exposures profiles from an array of exposures.

profilestructs = exposureprofiles( ___ ,Name,Value) computes common
counterparty credit exposures profiles from an array of exposures using optional name-
value pair arguments.

Examples

View Exposure Profiles of a Particular Counterparty

After computing the mark-to-market contract values for a portfolio of swaps over many
scenarios, view the exposure profiles of a particular counterparty.

First, load data containing the mark-to-market contract values for a portfolio of swaps
over many scenarios.

load ccr.mat

Compute the exposure by counterparty.

[exposures, expcpty] = creditexposures(values,swaps.Counterparty,...

'NettingID',swaps.NettingID);

Compute the credit exposure profiles for all counterparties.
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 cpProfiles = exposureprofiles(simulationDates,exposures)

cpProfiles = 

5x1 struct array with fields:

    Dates

    EE

    PFE

    MPFE

    EffEE

    EPE

    EffEPE

Visualize the exposure profiles for a particular counterparty.

cpIdx = find(expcpty == 4);

numDates = numel(simulationDates);

plot(simulationDates,cpProfiles(cpIdx).PFE,...

        simulationDates,cpProfiles(cpIdx).MPFE * ones(numDates,1),...

        simulationDates,cpProfiles(cpIdx).EE,...

        simulationDates,cpProfiles(cpIdx).EPE * ones(numDates,1),...

        simulationDates,cpProfiles(cpIdx).EffEE,...

        simulationDates,cpProfiles(cpIdx).EffEPE * ones(numDates,1));

legend({'PFE (95%)','Max PFE','Exp Exposure (EE)',...

        'Time-Avg EE (EPE)','Max past EE (EffEE)',...

        'Time-Avg EffEE (EffEPE)'})

datetick('x','mmmyy','keeplimits')

title(sprintf('Counterparty %d Exposure Profiles',cpIdx));

ylabel('Exposure ($)')

xlabel('Simulation Dates')
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• “Counterparty Credit Risk and CVA”
• “Wrong Way Risk with Copulas”

Input Arguments
dates — Simulation dates
vector of date numbers | cell array of character vectors

Simulation dates, specified as vector of date numbers or a cell array of character vectors
in a known date format. For more information for known date formats, see the function
datenum.

Data Types: double | char | cell

exposures — 3-D array of potential losses due to counterparty default
array

3-D array of potential losses due to counterparty default on a set of instruments
simulated over a series of simulation dates and across many scenarios, specified as a
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NumDates-by-NumCounterParties-by-NumScenarios “cube” of credit exposures. Each
row represents a different simulation date, each column a different counterparty, and
each “page” is a different scenario from a Monte-Carlo simulation.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: profilestructs =
exposureprofiles(dates,exposures,'ProfileSpec','PFE','PFEProbabilityLevel',.9)

'ProfileSpec' — Exposure profiles
All (generate all profiles) (default) | character vector with possible values EE, PFE, MPE,
EffEE, EPE, EffEPE, All | cell array of character vectors with possible values EE, PFE,
MPE, EffEE, EPE, EffEPE

Exposure profiles, specified as a character vector or cell array of character vectors with
the following possible values:

• EE — Expected Exposure. The mean of the distribution of exposures at each date. A
[NumDates-by-1] vector.

• PFE — Potential Future Exposure. A high percentile (default 95%) of the distribution
of possible exposures at each date. This is sometimes referred to as “Peak Exposure.”
A [NumDates-by-1] vector.

• MPFE — Maximum Potential Future Exposure. The maximum potential future
exposure (PFE) over all dates

• EffEE — Effective Expected Exposure. The maximum expected exposure (at a specific
date) that occurs at that date or any prior date. This is the expected exposure, but
constrained to be nondecreasing over time. A [NumDates-by-1] vector.

• EPE — Expected Positive Exposure. The weighted average over time of expected
exposures. A scalar.

• EffEPE — Effective Expected Positive Exposure. The weighted average over time of
the effective expected exposure (EffEE). A scalar.

• All — Generate all the previous profiles.
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Note: Exposure profiles are computed on a per-counterparty basis.

Data Types: char | cell

'PFEProbabilityLevel' — Level for potential future exposure (PFE) and maximum
potential future exposure (MPFE)
.95 (the 95th percentile) (default) | scalar with value [0..1]

Level for potential future exposure (PFE) and maximum potential future exposure
(MPFE), specified as a scalar with value [0..1].

Data Types: double

Output Arguments

profilestructs — Structure of credit exposure profiles
array of structs holding credit exposure profiles for each counterparty

Structure of credit exposure profiles, returned as an array of structs holding credit
exposure profiles for each counterparty, returned as a struct, with the fields of the struct
as the (abbreviated) names of every exposure profile. Profiles listed in the ProfileSpec
(and their related profiles) are populated, while those not requested contain empty ([]).
profilestructs contains the dates information as a vector of MATLAB date numbers
requested in the ProfileSpec argument.

References

Basel II: International Convergence of Capital Measurement and Capital Standards: A
Revised Framework - Comprehensive Version. at http://www.bis.org/publ/bcbs128.htm,
2006.

See Also
creditexposures | datenum

Introduced in R2014a
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cdyield
Yield on certificate of deposit (CD)

Syntax
Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,

Basis)

Arguments

Price Clean price of the certificate of deposit per $100 face. If you
have a vector of dirty or cash prices of CDs, compute the accrued
interest portion using cdai.

CouponRate Annual interest rate in decimal.
Settle Settlement date, specified as a serial date number, date

character vector, or datetime array. Settle must be earlier than
Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

IssueDate Issue date, specified as a serial date number, date character
vector, or datetime array.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360 (default)
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or 1-by-NCDS
conforming vector or scalar. The optional Basis argument may be either a NCDS-by-1 or
a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,

Basis) computes the yield to maturity of a certificate of deposit given its clean price.

This function assumes that the certificates of deposit pay interest at maturity. Because of
the simple interest treatment of these securities, the function is best used for short-term
maturities (less than 1 year). The default simple interest calculation is the actual/360
convention.

Examples

Compute the Yield to Maturity of a Certificate of Deposit

This example shows how to compute the yield on the certificate of deposit (CD), given a
CD with the following characteristics.

Price      = 101.125;

CouponRate = 0.05;

Settle     = '02-Jan-02';

Maturity   = '31-Mar-02';

IssueDate = '1-Oct-01';

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)
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Yield =

    0.0039

Compute the Yield to Maturity of a Certificate of Deposit Using datetime Inputs

This example shows how to use datetime inputs to compute the yield on the certificate
of deposit (CD), given a CD with the following characteristics.

Price      = 101.125;

CouponRate = 0.05;

Settle     = datetime('02-Jan-02','Locale','en_US');

Maturity   = datetime('31-Mar-02','Locale','en_US');

IssueDate = datetime('1-Oct-01','Locale','en_US');

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)

Yield =

    0.0039

• “Coupon Date Calculations” on page 2-28

More About
• “Yield Conventions” on page 2-29

See Also
bndprice | cdai | cdprice | datetime | stepcpnprice | tbillprice

Introduced before R2006a
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cev class

Constant Elasticity of Variance (CEV) models

Description

The cev constructor creates and displays cev objects, which derive from the sdeld
(SDE with drift rate expressed in linear form) class. Use cev objects to simulate sample
paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time stochastic
processes.

This model allows you to simulate any vector-valued SDE of the form:

dX t X dt D t X V t dW
t t t

t

t
= +m

a( ) ( , ) ( )( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS (generalized) expected instantaneous rate of return matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Construction

CEV = cev(Return,Alpha,Sigma) constructs a default cev object.

CEV = cev(Return,Alpha,Sigma,Name,Value) constructs a cev object with
additional options specified by one or more Name,Value pair arguments.
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Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a cev object, see cev.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Return — Return represents the parameter µ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of
time.

If you specify Return as an array, it must be an NVARS-by-NVARS matrix representing
the expected (mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar
time t as its only input, Return must produce an NVARS-by-NVARS matrix. If you specify
Return as a function of time and state, it must return an NVARS-by-NVARS matrix when
invoked with two inputs:

• A real-valued scalar observation time t.
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• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Return represents the parameter D
array or deterministic function of time or deterministic function of time and state

Alpha represents the parameter D, specified as an array or deterministic function of
time.

If you specify Alpha as an array, it represents an NVARS-by-1 column vector of
exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t
as its only input, Alpha must produce an NVARS-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVARS-by-1
column vector of exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates. In this case, each row of Sigma corresponds to a particular
state variable. Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with sources of
uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
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• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see cev.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
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• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as an object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a
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where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
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Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public
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Data Types: function_handle

Methods

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a cev Object

Create a univariate cev object to represent the model:

dX X X dW
t t t t

= +0 25 0 3

1

2. . .

obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)

obj = 

   Class CEV: Constant Elasticity of Variance

   ------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.25

          Alpha: 0.5

          Sigma: 0.3

cev objects display the parameter B as the more familiar Return

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
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• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, cev treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.
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Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | interpolate | sdeld | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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cev
Construct Constant Elasticity of Variance (CEV) models

Syntax
CEV = cev(Return, Alpha, Sigma)

CEV = cev(Return, Alpha, Sigma, 'Name1', Value1, 'Name2',

Value2, ...)

Class
cev

Description
This constructor creates and displays cev objects, which derive from thesdeld (SDE
with drift rate expressed in linear form) class. Use cev objects to simulate sample
paths of NVARS state variables driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time stochastic
processes.

This constructor allows you to simulate any vector-valued SDE of the form:

dX t X dt D t X V t dW
t t t

t

t
= +m

a( ) ( , ) ( )( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS (generalized) expected instantaneous rate of return matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.
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Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Return Return represents the parameter μ.

If you specify Return as an array, it is a NVARS-by-NVARS
2-dimensional matrix that represents the expected (mean)
instantaneous rate of return. As a deterministic function of time,
when Return is called with a real-valued scalar time t as its only
input, Return must produce an NVARS-by-NVARS matrix.

If you specify Return as a function of time and state, it calculates the
expected instantaneous rate of return. This function must generate an
NVARS-by-NVARS matrix when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alpha Alpha determines the format of the parameter D.

If you specify Alpha as an array, it represents an NVARS-by-1 column
vector of exponents. As a deterministic function of time, when Alpha
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is called with a real-valued scalar time t as its only input, Alpha
must produce an NVARS-by-1 matrix.

If you specify it as a function of time and state, Alpha must return
an NVARS-by-1 column vector of exponents when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V.

If you specify Sigma as an array, it represents an NVARS-by-NBROWNS
2-dimensional matrix of instantaneous volatility rates. In this case,
each row of Sigma corresponds to a particular state variable. Each
column of Sigma corresponds to a particular Brownian source of
uncertainty, and associates the magnitude of the exposure of state
variables with sources of uncertainty. As a deterministic function of
time, when Sigma is called with a real-valued scalar time t as its only
input, Sigma must produce an NVARS-by-NBROWNS matrix.

If you specify it as a function of time and state, Sigma must generate
an NVARS-by-NBROWNS matrix of volatility rates when invoked with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Note: Although the constructor does not enforce restrictions on the signs of these input
arguments, each argument is specified as a positive value.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
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• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, cev applies the same initial value to all
state variables on all trials.

If StartState is a column vector, cev applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, cev applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).
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Output Arguments

CEV Object of class cev with the following displayed parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input argument,

callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
• Simulation: A simulation function or method
• Return: Access function for the input argument Return, callable as a

function of time and state
• Alpha: Access function for the input argument Alpha, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state

Examples

• “Creating Constant Elasticity of Variance (CEV) Models” on page 17-26
• Implementing Multidimensional Equity Market Models, Implementation 3: Using

SDELD, CEV, and GBM Objects

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.
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Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, cev treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | sdeld
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Introduced in R2008a
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cfamounts
Cash flow and time mapping for bond portfolio

Syntax

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity)

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, Period,

Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face)

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity) returns matrices
of cash flow amounts, cash flow dates, time factors, and cash flow flags for a portfolio of
NUMBONDS fixed-income securities.

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity, Period,

Basis, EndMonthRule, IssueDate, FirstCouponDate,

LastCouponDate, StartDate, Face) returns matrices of cash flow amounts, cash
flow dates, time factors, and cash flow flags for a portfolio of NUMBONDS fixed-income
securities defined using required and optional inputs.

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags,

CFPrincipal] = cfamounts(CouponRate, Settle, Maturity,

'ParameterName', ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.
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Input Arguments
CouponRate

Decimal number indicating the annual percentage rate used to determine the coupons
payable on a bond. CouponRate is 0 for zero coupon bonds.

Note: CouponRate and Face can change over the life of the bond. Schedules for
CouponRate and Face can be specified with an NINST-by-1 cell array, where each
element is a NumDates-by-2 matrix or cell array, where the first column is dates and the
second column is associated rates. The date indicates the last day that the coupon rate or
face value is valid.

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime
arrays.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Default: 1

IssueDate

Issue date for a bond.

Default: If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
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both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when a bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond actually starts (the date from which a bond cash flow is considered). To make an
instrument forward-starting, specify this date as a future date.

Default: If you do not specify StartDate, the effective start date is the Settle date.

Face

Face or par value.

Note: CouponRate and Face can change over the life of the bond. Schedules for
CouponRate and Face can be specified with an NINST-by-1 cell array where each
element is a NumDates-by-2 matrix or cell array, where the first column is dates and the
second column is associated rates. The date indicates the last day that the coupon rate or
face value is valid.

Default: 100

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.
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AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1 of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with possible choices
of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

CompoundingFrequency

Compounding frequency for yield calculation. Possible values include: 1, 2, 3, 4, 6, 12.

Default: SIA bases (0–7) and BUS/252 use a semiannual compounding convention and
ICMA bases (8–12) use an annual compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The possible values
for DiscountBasis are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

If a SIA day-count basis is defined in the Basis input argument and there is no value
assigned for DiscountBasis, the default behavior is for SIA bases to use the actual/
actual day count to compute discount factors.

If an ICMA day-count basis or BUS/252 is defined in the Basis input argument and
there is no value assigned for DiscountBasis, the specified bases from theBasis input
argument are used.

Default: SIA bases use the actual/actual day count to compute discount factors.

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB date numbers.

Default: If no dates are specified, holidays.m is used.

PrincipalType

Type of principal for case when a Face schedule is specified. The principal type is either
sinking or bullet. If sinking, principal cash flows are returned throughout the life of
the bond. If bullet, principal cash flow is only returned at maturity.

Default: sinking

Output Arguments

CFlowAmounts

Cash flow amounts. First entry in each row vector is the accrued interest due at
settlement. This amount could be zero, positive or negative. If no accrued interest is due,
the first column is zero. If the bond is trading ex-coupon then the accrued interest is
negative.
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CFlowDates

Cash flow date matrix of a portfolio of bonds. Each row represents a single bond in the
portfolio. Each element in a column represents a cash flow date of that bond.

If all of the above inputs (Settle, Maturity, IssueDate, FirstCouponDate,
LastCouponDate, and StartDate) are either serial date numbers or date character
vectors, then CFlowDates is returned as a serial date number. If any of these inputs are
datetime arrays, then CFlowDates is returned as a datetime array.

TFactors

Matrix of time factors for a portfolio of bonds. Each row corresponds to the vector of
time factors for each bond. Each element in a column corresponds to the specific time
factor associated with each cash flow of a bond. Time factors help determine the present
value of a stream of cash flows. The term time factor refers to the exponent TF in the
discounting equation
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where:

PV = Present value of a cash flow.
CF = Cash flow amount.
z = Risk-adjusted annualized rate or yield corresponding to a given cash

flow. The yield is quoted on a semiannual basis.
f = Frequency of quotes for the yield. Default is 2 for Basis values 0 to 7

and 13 and 1 for Basis values 8 to 12. The default can be overridden
by specifying the CompoundingFrequency name/value pair.

TF = Time factor for a given cash flow. The time factor is computed using the
compounding frequency and the discount basis. If these values are not
specified, then the defaults are as follows: CompoundingFrequency
default is 2 for Basis values 0 to 7 and 13 and 1 for Basis values 8 to
12. DiscountBasis is 0 for Basis values 0 to 7 and 13 and the input
Basis for Basis values 8 to 12.
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Note: The Basis is always used to compute accrued interest.

CFlowFlags

Matrix of cash flow flags for a portfolio of bonds. Each row corresponds to the vector of
cash flow flags for each bond. Each element in a column corresponds to the specific flag
associated with each cash flow of a bond. Flags identify the type of each cash flow (for
example, nominal coupon cash flow, front, or end partial, or “stub” coupon, maturity cash
flow).

Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.
1 Initial cash flow amount smaller than normal due to a “stub” coupon

period. A stub period is created when the time from issue date to first
coupon date is shorter than normal.

2 Larger than normal initial cash flow amount because the first coupon
period is longer than normal.

3 Nominal coupon cash flow amount.
4 Normal maturity cash flow amount (face value plus the nominal

coupon amount).
5 End “stub” coupon amount (last coupon period is abnormally short and

actual maturity cash flow is smaller than normal).
6 Larger than normal maturity cash flow because the last coupon period

longer than normal.
7 Maturity cash flow on a coupon bond when the bond has less than one

coupon period to maturity.
8 Smaller than normal maturity cash flow when the bond has less than

one coupon period to maturity.
9 Larger than normal maturity cash flow when the bond has less than

one coupon period to maturity.
10 Maturity cash flow on a zero coupon bond.
11 Sinking principal and initial cash flow amount smaller than normal

due to a "stub" coupon period. A stub period is created when the time
from issue date to first coupon date is shorter than normal.
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Flag Cash Flow Type

12 Sinking principal and larger than normal initial cash flow amount
because the first coupon period is longer than normal.

13 Sinking principal and nominal coupon cash flow amount.

CFPrincipal

CFPrincipal contains the principal cash flows. If PrincipalType is bullet,
CFPrincipal is all zeros and, at Maturity, the appropriate Face value.

Definitions

The elements contained in the cfamounts cash flow matrix, time factor matrix, and cash
flow flag matrix correspond to the cash flow dates for each security. The first element
of each row in the cash flow matrix is the accrued interest payable on each bond. This
accrued interest is zero in the case of all zero coupon bonds. cfamounts determines all
cash flows and time mappings for a bond whether or not the coupon structure contains
odd first or last periods. All output matrices are padded with NaNs as necessary to ensure
that all rows have the same number of elements.

Examples

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio

This example shows how to compute the cash flow structure and time factors for a bond
portfolio that contains a corporate bond paying interest quarterly and a Treasury bond
paying interest semiannually.

Settle = '01-Nov-1993';

Maturity = ['15-Dec-1994';'15-Jun-1995'];

CouponRate= [0.06; 0.05];

Period = [4; 2];

Basis = [1; 0];

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...

cfamounts(CouponRate,Settle, Maturity, Period, Basis)

CFlowAmounts =
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   -0.7667    1.5000    1.5000    1.5000    1.5000  101.5000

   -1.8989    2.5000    2.5000    2.5000  102.5000       NaN

CFlowDates =

      728234      728278      728368      728460      728552      728643

      728234      728278      728460      728643      728825         NaN

TFactors =

         0    0.2404    0.7403    1.2404    1.7403    2.2404

         0    0.2404    1.2404    2.2404    3.2404       NaN

CFlowFlags =

     0     3     3     3     3     4

     0     3     3     3     4   NaN

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio and Return a datatime
array for CFlowDates

This example shows how to compute the cash flow structure and time factors for a bond
portfolio that contains a corporate bond paying interest quarterly and a Treasury bond
paying interest semiannually and CFlowDates is returned as a datatime array.

Settle = datetime('01-Nov-1993','Locale','en_US');

Maturity = ['15-Dec-1994';'15-Jun-1995'];

CouponRate= [0.06; 0.05];

Period = [4; 2];

Basis = [1; 0];

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(CouponRate,...

Settle, Maturity, Period, Basis)

CFlowAmounts =

   -0.7667    1.5000    1.5000    1.5000    1.5000  101.5000

   -1.8989    2.5000    2.5000    2.5000  102.5000       NaN
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CFlowDates = 

  2×6 datetime array

Columns 1 through 5

   01-Nov-1993   15-Dec-1993   15-Mar-1994   15-Jun-1994   15-Sep-1994

   01-Nov-1993   15-Dec-1993   15-Jun-1994   15-Dec-1994   15-Jun-1995

Column 6

   15-Dec-1994

   NaT        

TFactors =

         0    0.2404    0.7403    1.2404    1.7403    2.2404

         0    0.2404    1.2404    2.2404    3.2404       NaN

CFlowFlags =

     0     3     3     3     3     4

     0     3     3     3     4   NaN

Compute the Cash Flow Structure and Time Factors for a Bond Portfolio Using Optional Name-
Value Pairs

This example shows how to compute the cash flow structure and time factors for a bond
portfolio that contains a corporate bond paying interest quarterly and a Treasury bond
paying interest semiannually. This example uses the following Name-Value pairs for
Period, Basis, BusinessDayConvention, and AdjustCashFlowsBasis.

Settle = '01-Jun-2010';

Maturity = ['15-Dec-2011';'15-Jun-2012'];

CouponRate= [0.06; 0.05];

Period = [4; 2];

Basis = [1; 0];

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...

cfamounts(CouponRate,Settle, Maturity, 'Period',Period, ...

'Basis', Basis, 'AdjustCashFlowsBasis', true,...
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'BusinessDayConvention','modifiedfollow')

CFlowAmounts =

  Columns 1 through 7

   -1.2667    1.5000    1.5000    1.5000    1.5000    1.5000    1.5000

   -2.3077    2.4932    2.5068    2.4932    2.5000  102.5000       NaN

  Column 8

  101.5000

       NaN

CFlowDates =

  Columns 1 through 6

      734290      734304      734396      734487      734577      734669

      734290      734304      734487      734669      734852      735035

  Columns 7 through 8

      734761      734852

         NaN         NaN

TFactors =

  Columns 1 through 7

         0    0.0778    0.5778    1.0778    1.5778    2.0778    2.5778

         0    0.0769    1.0769    2.0769    3.0769    4.0769       NaN

  Column 8

    3.0778

       NaN

CFlowFlags =

     0     3     3     3     3     3     3     4
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     0     3     3     3     3     4   NaN   NaN

Use cfamounts With a CouponRate Schedule

This example shows how to use cfamounts with a CouponRate schedule. For
CouponRate and Face that change over the life of the bond, schedules for CouponRate
and Face can be specified with an NINST-by-1 cell array, where each element is a
NumDates-by-2 matrix where the first column is dates and the second column is
associated rates.

CouponSchedule = {[datenum('15-Mar-2012') .04;datenum('15- Mar -2013') .05;...

datenum('15- Mar -2015') .06]}

cfamounts(CouponSchedule,'01-Mar-2011','15-Mar-2015' )

CouponSchedule =

  cell

    [3×2 double]

ans =

  Columns 1 through 7

   -1.8453    2.0000    2.0000    2.0000    2.5000    2.5000    3.0000

  Columns 8 through 10

    3.0000    3.0000  103.0000

Use cfamounts With a Face Schedule

This example shows how to use cfamounts with a Face schedule. For CouponRate and
Face that change over the life of the bond, schedules for CouponRate and Face can be
specified with an NINST-by-1 cell array, where each element is a NumDates-by-2 matrix
where the first column is dates and the second column is associated rates.

FaceSchedule = {[datenum('15-Mar-2012') 100;datenum('15- Mar -2013') 90;...

datenum('15- Mar -2015') 80]}

cfamounts(.05,'01-Mar-2011','15-Mar-2015', 'Face', FaceSchedule)
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FaceSchedule =

  cell

    [3×2 double]

ans =

  Columns 1 through 7

   -2.3066    2.5000    2.5000   12.5000    2.2500   12.2500    2.0000

  Columns 8 through 10

    2.0000    2.0000   82.0000

Use cfamounts to Generate the Cash Flows for a Sinking Bond

This example shows how to use cfamounts to generate the cash flows for a sinking bond.

[CFlowAmounts,CFDates,TFactors,CFFlags,CFPrincipal] = cfamounts(.05,'04-Nov-2010',...

{'15-Jul-2014';'15-Jul-2015'},'Face',{[datenum('15-Jul-2013') 100;datenum('15-Jul-2014')...

90;datenum('15-Jul-2015') 80]})

CFlowAmounts =

  Columns 1 through 7

   -1.5217    2.5000    2.5000    2.5000    2.5000    2.5000   12.5000

   -1.5217    2.5000    2.5000    2.5000    2.5000    2.5000   12.5000

  Columns 8 through 11

    2.2500   92.2500       NaN       NaN

    2.2500   12.2500    2.0000   82.0000

CFDates =

  Columns 1 through 6
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      734446      734518      734699      734883      735065      735249

      734446      734518      734699      734883      735065      735249

  Columns 7 through 11

      735430      735614      735795         NaN         NaN

      735430      735614      735795      735979      736160

TFactors =

  Columns 1 through 7

         0    0.3913    1.3913    2.3913    3.3913    4.3913    5.3913

         0    0.3913    1.3913    2.3913    3.3913    4.3913    5.3913

  Columns 8 through 11

    6.3913    7.3913       NaN       NaN

    6.3913    7.3913    8.3913    9.3913

CFFlags =

     0     3     3     3     3     3    13     3     4   NaN   NaN

     0     3     3     3     3     3    13     3    13     3     4

CFPrincipal =

     0     0     0     0     0     0    10     0    90   NaN   NaN

     0     0     0     0     0     0    10     0    10     0    80

• “Analyzing and Computing Cash Flows” on page 2-17
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See Also
accrfrac | cfdates | cftimes | cpncount | cpndaten | cpndatenq | cpndatep |
cpndatepq | cpndaysn | cpndaysp | datetime

Introduced before R2006a
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cfconv
Cash flow convexity

Syntax
CFlowConvexity = cfconv(CashFlow, Yield)

Arguments

CashFlow A vector of real numbers.
Yield Periodic yield. A scalar. Enter as a decimal fraction.

Description

CFlowConvexity = cfconv(CashFlow, Yield) returns the convexity of a cash flow
in periods.

Examples

Compute the Convexity of a Cash Flow

This example shows how to return the convexity of a cash flow, given a cash flow of nine
payments of $2.50 and a final payment $102.50, with a periodic yield of 2.5%.

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

Convex = cfconv(CashFlow, 0.025)

Convex =

   90.4493

• “Analyzing and Computing Cash Flows” on page 2-17
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See Also
bndconvp | bndconvy | bnddurp | bnddury | cfdur

Introduced before R2006a
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cfdates
Cash flow dates for fixed-income security

Syntax
CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments

Settle Settlement date. A vector of serial date numbers, date
character vectors, or datetime arrays. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers, date
character vectors, or datetime arrays.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies

only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond's coupon payment date is always the same numerical
day of the month. 1 = set rule on (default), meaning that a
bond's coupon payment date is always the last actual day of
the month.

IssueDate (Optional) Date, specified as a serial date number, date
character vector, or datetime array, when a bond was
issued.

FirstCouponDate (Optional) Date, specified as a serial date number,
date character vector, or datetime array, when a bond
makes its first coupon payment. FirstCouponDate is
used when a bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity
date, specified as a serial date number, date character
vector, or datetime array. LastCouponDate is used when a
bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the
bond's maturity cash flow date. If you do not specify
a LastCouponDate, the cash flow payment dates are
determined from other inputs.
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StartDate (Optional) Date, specified as a serial date number, date
character vector, or datetime array, when a bond actually
starts (the date from which a bond cash flow is considered).
To make an instrument forward-starting, specify this date
as a future date. If you do not specify StartDate, the
effective start date is the Settle date.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-
by-NUMBONDS conforming vectors, scalars, or empty matrices.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if Maturity contains
N dates, then Settle must contain N dates or a single date.

Description
CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a matrix
of cash flow dates for a bond or set of bonds. cfdates determines all cash flow dates for
a bond whether or not the coupon payment structure is normal or the first and/or last
coupon period is long or short.

CFlowDates is an N-row matrix of serial date numbers, padded with NaNs as necessary
to ensure that all rows have the same number of elements. Use the function datestr to
convert serial date numbers to formatted date character vectors.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate,
LastCouponDate, and StartDate are either serial date numbers or date character
vectors, then CFlowDates is returned as a serial date number.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate,
LastCouponDate, or StartDate are datetime arrays, then CFlowDates is returned as
a datetime array.

Note The cash flow flags for a portfolio of bonds were formerly available as the cfdates
second output argument, CFlowFlags. You can now use cfamounts to get these flags. If
you specify a CFlowFlags argument, cfdates displays a message directing you to use
cfamounts.
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Examples
CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)

CFlowDates =

      729541      729724      729906      730089

datestr(CFlowDates)

ans =

31-May-1997

30-Nov-1997

31-May-1998

30-Nov-1998

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate,
LastCouponDate, or StartDate are datetime arrays, then CFlowDates is returned as
a datetime array. For example:
CFlowDates = cfdates('14-Mar-1997', datetime('30-Nov-1998','Locale','en_US'), 2, 0, 1)

CFlowDates = 

   31-May-1997   30-Nov-1997   31-May-1998   30-Nov-1998

Given three securities with different maturity dates and the same default arguments
Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];

CFlowDates = cfdates('14-Mar-1997', Maturity)

CFlowDates =

      729480      729663         NaN         NaN

      729510      729694      729875      730059

      729541      729724      729906      730089

Look at the cash-flow dates for the last security.

datestr(CFlowDates(3,:))

ans =

31-May-1997

30-Nov-1997

31-May-1998

30-Nov-1998

See Also
accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime
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Introduced before R2006a
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cfdatesq
Quasi-coupon dates for fixed-income security

Syntax
QuasiCouponDates = cfdatesq(Settle, Maturity, Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, PeriodsBeforeSettle, PeriodsAfterMaturity)

Arguments

Settle Settlement date. A vector of serial date numbers, date
character vectors, or datetime arrays. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers, date
character vectors, or datetime arrays.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies

only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond's coupon payment date is always the same numerical
day of the month. 1 = set rule on (default), meaning that a
bond's coupon payment date is always the last actual day of
the month.

IssueDate (Optional) Date, specified as a serial date number, date
character vector, or datetime array, when a bond was
issued.

FirstCouponDate (Optional) Date, specified as a serial date number,
date character vector, or datetime array, when a bond
makes its first coupon payment. FirstCouponDate is
used when a bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity
date, specified as a serial date number, date character
vector, or datetime array. LastCouponDate is used when a
bond has an irregular last coupon period. In the absence of a
specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed only by the
bond's maturity cash flow date. If you do not specify
a LastCouponDate, the cash flow payment dates are
determined from other inputs.

PeriodsBeforeSettle (Optional) Number of quasi-coupon dates on or before
settlement to include (non-negative integer); default is 0.
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PeriodsAfterMaturity (Optional) Number of quasi-coupon dates after maturity to
include (non-negative integer); default is 0.

Required arguments must be number of bonds (NUMBONDS)-by-1 or 1-by-NUMBONDS
conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-
by-NUMBONDS conforming vectors, scalars, or empty matrices.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if Maturity contains
N dates, then Settle must contain N dates or a single date.

Description

QuasiCouponDates = cfdatesq(Settle, Maturity, Period, Basis,

EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,

PeriodsBeforeSettle, PeriodsAfterMaturity) returns a matrix of quasi-coupon
dates expressed in serial date format (default) or datetime format (if any inputs are in
datetime format).

Successive quasi-coupon dates determine the length of the standard coupon period for
the fixed-income security of interest, and do not necessarily coincide with actual coupon
payment dates. Quasi-coupon dates are determined regardless of whether the first or last
coupon periods are normal, long, or short.

QuasiCouponDates will have NUMBONDS rows and the number of columns is determined
by the maximum number of quasi-coupon dates required to hold the bond portfolio. NaNs
are padded for bonds which have less than the maximum number quasi-coupon dates. By
default, quasi- coupon dates after settlement and on or preceding maturity are returned.
If settlement occurs on maturity, and maturity is a quasi-coupon date, then the maturity
date is returned.

If the date inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
QuasiCouponDates is returned as a serial date number.

If any of the date inputs for Settle, Maturity, IssueDate, FirstCouponDate,
or LastCouponDate are datetime arrays, then QuasiCouponDates is returned as a
datetime array.
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Examples
QuasiCouponDates = cfdatesq('14-Mar-1997', '30-Nov-1998', 2, 0, 1)

QuasiCouponDates =

      729541      729724      729906      730089

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, or
LastCouponDate are datetime arrays, then CFlowDates is returned as a datetime
array. For example:
QuasiCouponDates = cfdatesq('14-Mar-1997', datetime('30-Nov-1998','Locale','en_US'), 2, 0, 1)

QuasiCouponDates = 

   31-May-1997   30-Nov-1997   31-May-1998   30-Nov-1998

See Also
accrfrac | cfamounts | cftimes | cpncount | cpndaten | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cfdur
Cash-flow duration and modified duration

Syntax
[Duration, ModDuration] = cfdur(CashFlow, Yield)

Arguments

CashFlow A vector or matrix of real numbers. When using a matrix, each
column of the matrix is a separate CashFlow.

Yield Periodic yield. A scalar or vector. Enter as a decimal fraction.

Description

[Duration, ModDuration] = cfdur(CashFlow, Yield) calculates the duration
and modified duration of a cash flow in periods.

Examples

Compute the Duration and Modified Duration of a Cash Flow

This example shows how to calculate the duration and modified duration of a cash flow,
given a cash flow of nine payments of $2.50 and a final payment $102.50, with a periodic
yield of 2.5%.

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration =

    8.9709
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ModDuration =

    8.7521

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
bndconvp | bndconvy | bnddurp | bnddury | cfconv

Introduced before R2006a

18-322



 cfplot

cfplot

Visualize cash flows of financial instruments

Syntax

cfplot(CFlowDates,CFlowAmounts)

h = cfplot( ___ ,Name,Value)

[h,axes_handle] = cfplot( ___ ,Name,Value)

Description

cfplot(CFlowDates,CFlowAmounts) plots a cash flow diagram for the specified cash
flow amounts (CFlowAmounts) and dates (CFlowDates). The length and orientation of
each arrow correspond to the cash flow amount.

cfplot( ___ ,Name,Value) plots a cash flow diagram for the specified cash flow
amounts (CFlowAmounts), dates (CFlowDates), and optional name-value pair
arguments.

h = cfplot( ___ ,Name,Value) returns the handle to the line objects used in the cash
flow diagram.

[h,axes_handle] = cfplot( ___ ,Name,Value) returns the handles to the line
objects and the axes using optional name-value pair arguments.

Examples

Plot Cash Flows

Define CFlowAmounts and CFlowDates using the cfamounts function.

CouponRate = [0.06; 0.05; 0.03];

Settle = '03-Jun-1999';
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Maturity = ['15-Aug-2000';'15-Dec-2000';'15-Jun-2000'];

Period = [1; 2; 2];  Basis = [1; 0; 0];

[CFlowAmounts, CFlowDates] = cfamounts(...

CouponRate, Settle, Maturity, Period, Basis)

CFlowAmounts =

   -4.8000    6.0000  106.0000       NaN       NaN

   -2.3352    2.5000    2.5000    2.5000  102.5000

   -1.4011    1.5000    1.5000  101.5000       NaN

CFlowDates =

      730274      730347      730713         NaN         NaN

      730274      730286      730469      730652      730835

      730274      730286      730469      730652         NaN

Plot all cash flows on the same axes, and label the first two.

cfplot(CFlowDates, CFlowAmounts, 'ShowAmnt', [1 2])
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Group the second and third cash flows.

figure;

cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1);
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Format the date axis and place ticks on actual cash flow dates.

figure;

cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1, ...

'DateFormat', 6, 'DateSpacing', 100);
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Stack the cash flow arrows occurring on the same dates.

figure;

cfplot(CFlowDates, CFlowAmounts, 'Groups', {[2 3]}, 'ShowAmnt', 1, ...

'DateFormat', 6, 'DateSpacing', 100, 'Stacked', 1);
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Form subplots of multiple groups and add titles using axes handles.

figure;

[h, axes_handle] = cfplot(CFlowDates, CFlowAmounts, ...

'Groups', {[1] [2 3]}, 'ShowAmnt', 1, 'Stacked', 2, ...

'DateSpacing', [1 60 2 100], 'DateFormat', [1 12 2 6]);

title(axes_handle(1), 'Group 1', 'FontWeight', 'bold');

title(axes_handle(2), 'Group 2', 'FontWeight', 'bold');
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Plot Cash Flows Using datetime Input for CFlowDates

Define CFlowDates using datetime input and plot the cash flow.

CouponRate = [0.06; 0.05; 0.03];

Settle = '03-Jun-1999';

Maturity = ['15-Aug-2000';'15-Dec-2000';'15-Jun-2000'];

Period = [1; 2; 2];  Basis = [1; 0; 0];

[CFlowAmounts, CFlowDates] = cfamounts(...

CouponRate, Settle, Maturity, Period, Basis);

cfplot(datetime(CFlowDates,'ConvertFrom','datenum','Locale','en_US'), CFlowAmounts, 'ShowAmnt', [1 2])
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Plot Cash Flows for Swap

Define the swap using the swapbyzero function.

Settle = datenum('08-Jun-2010');

RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...

'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...

'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017',...

'08-Jun-2020'}');

Maturity = datenum('15-Sep-2020');

LegRate = [.025 50];

LegType = [1 0]; % fixed/floating

LatestFloatingRate = .005;

[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
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swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...

'LatestFloatingRate',LatestFloatingRate)

Price =

   -6.7258

SwapRate =

   NaN

AI =

    1.4575

RecCF =

  Columns 1 through 7

   -1.8219    2.5000    2.5000    2.5000    2.5000    2.5000    2.5000

  Columns 8 through 12

    2.5000    2.5000    2.5000    2.5000  102.5000

RecCFDates =

  Columns 1 through 6

      734297      734396      734761      735127      735492      735857

  Columns 7 through 12

      736222      736588      736953      737318      737683      738049

PayCF =

  Columns 1 through 7
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   -0.3644    0.5000    1.4048    1.9823    2.8436    3.2842    3.8218

  Columns 8 through 12

    4.1733    4.5164    4.4666    4.8068  104.6743

PayCFDates =

  Columns 1 through 6

      734297      734396      734761      735127      735492      735857

  Columns 7 through 12

      736222      736588      736953      737318      737683      738049

Define CFlowDates and CFlowAmounts for the swap and generate a cash flow plot using
cfplot.

CFlowDates = [PayCFDates;RecCFDates];

CFlowAmounts = [-PayCF;RecCF];

cfplot(CFlowDates, CFlowAmounts, 'Groups', {[1 2]});

xlabel('Numeric Cash Flow Dates');
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• “Analyzing and Computing Cash Flows” on page 2-17

Input Arguments

CFlowDates — Matrix of serial date numbers for cash flows
vector

Matrix of serial date numbers or datetime arrays for cash flows, specified as a NINST-
by-(Number of cash flows) matrix of cash flow dates in date numbers, with empty
entries padded with NaNs.
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Each row of the CFlowDates matrix represents an instrument so that
CFlowDates(k,:) is the vector of cash flow dates for the kth instrument. Rows are
padded with trailing NaNs if the number of cash flows is not the same for all instruments.

cfamounts can be used to generate CFlowDates.

Data Types: double

CFlowAmounts — Matrix of cash flow amounts
vector

Matrix of cash flow amounts, specified as a NINST-by-(Number of cash flows)
matrix of cash flow amounts, with empty entries padded with NaNs. The CFlowAmounts
matrix must be the same size as CFlowDates.

cfamounts can be used to generate CFlowAmounts.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: cfplot(CFlowDates,CFlowAmounts,'Groups',{[2
3]},'ShowAmnt',1,‘DateFormat',6,'DateSpacing',100)

'Groups' — Group cash flows
'off’ (default) | character vector with value 'off' or 'individual' | cell array of
character vectors

Group cash flows specified using the following values:

• 'off' — Show all instruments in one set of axes, arranged from top to bottom.
• 'individual' — Generate subplots and plot each instrument in its own axis.
• GRP — Cell array of instrument groups, {Group1, Group2,... }. This

generates subplots and plots each group in each axis. When specifying {Group1,
Group2,... }, each Group must be mutually exclusive vectors of INSTIndex.
Unspecified instruments are not shown in the grouped plot.
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Data Types: char | cell

'Stacked' — Stack arrows if cash flows are in same direction on same day
ignored when 'Groups' is 'off', otherwise 'off' (default) | character vector with
values 'off', 'all', or 'GRPIndex'

Stack arrows if the cash flows are in the same direction on the same day specified using
the following values:

• 'off' — For all groups, all arrows originate from the horizontal line.
• 'all' — For all groups, arrows are stacked if the cash flows are in the same direction

on the same day.
• 'GRPIndex' — For specified groups, arrows are stacked if the cash flows are in the

same direction on the same day.

Data Types: char

'ShowAmnt' — Show amount on arrows
'off' (default) | character vector with values 'off' or 'individual' | cell array of
character vectors

Show amount on the arrows specified using the following values:

• 'off' — Hide cash flow amounts on arrows.
• 'all' — Show cash flow amounts on arrows.
• [INSTIndex or GRPIndex] — Show cash flow amounts for the specified vector of

instruments (when 'Groups' is 'off') or groups.

Data Types: char | cell

'DateSpacing' — Control for date axis tick spacing
'off’ (default) | character vector with values 'off' or TickDateSpace | numeric
value for TickDateSpace

Control for data spacing specified by the following values:

• 'off' — The date axis ticks are spaced regularly.
• TickDateSpace — The date axis ticks are placed on actual cash flow dates. The ticks

skip some cash flows if they are less than TickDateSpace apart.
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Data Types: char | double

'DateFormat' — Date format
'off’ (default) | character vector with values 'off' or DateFormNum | numeric value
for DateFormNum

Date format is specified by the following values:

• 'off' — The date axis tick labels are in date numbers.
• DateFormNum — The date format number (2 = 'mm/dd/yy', 6 = 'mm/dd', and 10 =

'yyyy'). Additional values for DateFormNum are as follows:

DateFormNum Example

2 03/01/00
3 Mar
5 03
6 03/01
7 01
8 Wed
9 W
10 2000
11 00
12 Mar00
17 Q1–00
18 Q1
19 01/03
20 01/03/00
27 Q1–2000
28 Mar2000
29 2000–03–01

Data Types: char | double
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Output Arguments

h — Handles to line objects
vector

Handles to line objects, returned as a NINST-by-3 matrix of handles to line objects,
containing [hLines, hUArrowHead, hDArrowHead] where:

• hLines — Horizontal and vertical lines used in the cash flow diagram
• hUArrowHead — "Up" arrowheads
• hDArrowHead — "Down" arrowheads

axes_handle — Handles to axes for plot or subplots
vector

Handles to axes for the plot or subplots, returned as a (Number of axes)-by-1 vector of
handles to axes.

See Also
cfamounts | cfdates | datetime | swapbyzero

Introduced in R2013a
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cfport
Portfolio form of cash flow amounts

Syntax
[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,

CFlowDates, TFactors)

Arguments

CFlowAmounts Number of bonds (NUMBONDS) by number of cash flows
(NUMCFS) matrix with entries listing cash flow amounts
corresponding to each date in CFlowDates.

CFlowDates NUMBONDS-by-NUMCFS matrix with rows listing cash flow
dates, specified as a serial date number, date character
vector, or datetime array, for each bond and padded with
NaNs. If CFlowDates is a serial date number or a date
character vector, AllDates is returned as an array of serial
date numbers. If CFlowDates is a datetime array, then
AllDates is returned as a datetime array.

TFactors (Optional) NUMBONDS-by-NUMCFS matrix with entries
listing the time between settlement and the cash flow date
measured in semiannual coupon periods.

Description

[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,

CFlowDates, TFactors) computes a vector of all cash flow dates of a bond portfolio,
and a matrix mapping the cash flows of each bond to those dates. Use the matrix for
pricing the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows indexed
by bond and by date in AllDates. Each row contains a bond's cash flow values at the
indices corresponding to entries in AllDates. Other indices in the row contain zeros.
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AllDates is a NUMDATES-by-1 list of all dates that have any cash flow from the bond
portfolio.

AllTF is a NUMDATES-by-1 list of time factors corresponding to the dates in AllDates.
If TFactors is not entered, AllTF contains the number of days from the first date in
AllDates.

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The ith row contains a list of
indices into AllDates where the ith bond has cash flows. Since some bonds have more
cash flows than others, the matrix is padded with NaNs.

Examples

Calculate the Cash Flow Amounts, Cash Flow Dates, and Time Factors for Each of Two Bonds

Use the function cfamounts to calculate the cash flow amounts, cash flow dates, and
time factors for each of two bonds. Then use the function cfplot to plot the cash flow
diagram.

Settle = '03-Aug-1999';

Maturity = ['15-Aug-2000';'15-Dec-2000'];

CouponRate= [0.06; 0.05];

Period = [3;2];

Basis = [1;0];

[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...

Settle, Maturity, Period, Basis);

cfplot(CFlowDates,CFlowAmounts)

xlabel('Numeric Cash Flow Dates')

ylabel('Bonds')

title('Cash Flow Diagram')
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Call the function cfport to map the cash flow amounts to the cash flow dates. Each row
in the resultant CFBondDate matrix represents a bond. Each column represents a date
on which one or more of the bonds has a cash flow. A 0 means the bond did not have a
cash flow on that date. The dates associated with the columns are listed in AllDates.
For example, the first bond had a cash flow of 2.000 on 730347. The second bond had no
cash flow on this date For each bond, IndByBond indicates the columns of CFBondDate,
or dates in AllDates, for which a bond has a cash flow.

[CFBondDate, AllDates, AllTF, IndByBond] = ...

cfport(CFlowAmounts, CFlowDates, TFactors)

CFBondDate =
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   -1.8000    2.0000    2.0000    2.0000         0  102.0000         0

   -0.6694         0    2.5000         0    2.5000         0  102.5000

AllDates =

      730335

      730347

      730469

      730591

      730652

      730713

      730835

AllTF =

         0

    0.0663

    0.7322

    1.3989

    1.7322

    2.0663

    2.7322

IndByBond =

     1     2     3     4     6

     1     3     5     7   NaN

Calculate the Cash Flow Amounts, Cash Flow Dates Using a datetime Array, and Time Factors
for Each of Two Bonds

Use the function cfamounts to calculate the cash flow amounts, cash flow dates, and
time factors for each of two bonds.

Settle = datetime('03-Aug-1999','Locale','en_US');

Maturity = ['15-Aug-2000';'15-Dec-2000'];

CouponRate= [0.06; 0.05];

Period = [3;2];

Basis = [1;0];

[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...
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Settle, Maturity, Period, Basis);

Call the function cfport to map the cash flow amounts to the cash flow dates. Each row
in the resultant CFBondDate matrix represents a bond. Each column represents a date
on which one or more of the bonds has a cash flow. A 0 means the bond did not have a
cash flow on that date. The dates associated with the columns are listed in AllDates
returned as a datetime array.

[CFBondDate, AllDates, AllTF, IndByBond] = ...

cfport(CFlowAmounts, CFlowDates, TFactors)

CFBondDate =

   -1.8000    2.0000    2.0000    2.0000         0  102.0000         0

   -0.6694         0    2.5000         0    2.5000         0  102.5000

AllDates = 

  7×1 datetime array

   03-Aug-1999

   15-Aug-1999

   15-Dec-1999

   15-Apr-2000

   15-Jun-2000

   15-Aug-2000

   15-Dec-2000

AllTF =

         0

    0.0663

    0.7322

    1.3989

    1.7322

    2.0663

    2.7322

IndByBond =
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     1     2     3     4     6

     1     3     5     7   NaN

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
cfamounts | cfplot | datetime

Introduced before R2006a
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cfprice
Compute price for cash flow given yield to maturity

Syntax

Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price = cfprice(CFAmounts, CFDates, Yield, Settle,

Name,Value)

Description

Price = cfprice(CFAmounts, CFDates, Yield, Settle) computes a price given
yield for a cash flow.

Price = cfprice(CFAmounts, CFDates, Yield, Settle,

Name,Value) computes a price for a cash flow given yield to maturity with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of cash flow values for
one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates, specified as a serial date number, date
character vector, or datetime array. Each entry contains the date of the corresponding
cash flow in CFlowAmounts.

Yield

NINST-by-1 vector of yields.
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Settle

Settlement date, specified as a serial date number, date character vector, or datetime
array. Settlement date is the date on which the cash flows are priced.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Default: 0 (actual/actual)

'CompoundingFrequency'

NINST-by-1 vector of Compounding Frequency. By default, SIA bases (0-7) and BUS/252
use a semiannual compounding convention and ICMA bases (8-12) use an annual
compounding convention.

Default: 2

Output Arguments

Price

Price of cash flows.

Examples

Compute the Price for a Cash Flow Given Yield to Maturity

Use cfprice to compute the price for a cash flow given yield to maturity.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');

Yield = .05;

CFAmounts = [30;40;30];

CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Compute the Price.

Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price =

   28.4999

   36.1689

   25.8195
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Compute the Price for a Cash Flow Given Yield to Maturity Using datetime Inputs

Use cfprice to compute the price for a cash flow given yield to maturity using
datetime inputs.

Settle = datenum('01-Jul-2003');

Yield = .05;

CFAmounts = [30;40;30];

CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

CFDates = datetime(CFDates,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

Price = cfprice(CFAmounts, CFDates, Yield, Settle)

Price =

   28.4999

   36.1689

   25.8195

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
cfbyzero | cfspread | cfyield | datetime

Introduced in R2012a
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cfspread
Compute spread over yield curve for cash flow

Syntax

Spread = cfspread(RateSpec, Price, CFAmounts,

CFDates, Settle)

Spread = cfspread(RateSpec, Price, CFAmounts,

CFDates, Settle, Name,Value)

Description

Spread = cfspread(RateSpec, Price, CFAmounts,

CFDates, Settle) computes spread over a yield curve for a cash flow.

Spread = cfspread(RateSpec, Price, CFAmounts,

CFDates, Settle, Name,Value) computes spread over a yield curve for a cash flow
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

RateSpec

Interest-rate specification for the initial risk free rate curve. See intenvset for
information on declaring an interest-rate variable.

Price

Price of cash flows.

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of cash flow values for
one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.
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CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates, specified as a serial date number, date
character vector, or datetime array. Each entry contains the date of the corresponding
cash flow in CFlowAmounts.

Settle

Settlement date, specified as a serial date number, date character vector, or datetime
array. Settlement date is the date on which the cash flows are priced.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

'CompFreq'

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use a semi-annual
compounding convention and ICMA bases (8-12) use an annual compounding convention.

Default: actual

Output Arguments

Spread

Spread of cash flows over a zero curve.

Examples

Compute Spread Over a Yield Curve for a Cash Flow

Use cfspread to compute the spread over a yield curve for a cash flow.

Define data for the yield curve.

Settle = datenum('01-Jul-2003');

CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);

ZeroRates = [.0089 .0096 .0107 .0130 .0166 .0248 .0306 .0356 .0454]';

Compute the RateSpec.

RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...

'Rates', ZeroRates)
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RateSpec = 

  struct with fields:

           FinObj: 'RateSpec'

      Compounding: 2

             Disc: [9×1 double]

            Rates: [9×1 double]

         EndTimes: [9×1 double]

       StartTimes: [9×1 double]

         EndDates: [9×1 double]

       StartDates: 731763

    ValuationDate: 731763

            Basis: 0

     EndMonthRule: 1

Compute the spread.

Price = 98;

CFAmounts = [30;40;30];

CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)

Spread =

   1.0e+03 *

   -8.7956

   -4.0774

   -3.7073

Compute Spread Over a Yield Curve for a Cash Flow Using datetime Inputs

Use cfspread to compute the spread over a yield curve for a cash flow using datetime
inputs.

Settle = datenum('01-Jul-2003');

CurveDates = daysadd(Settle,360*[.25 .5 1 2 3 5 7 10 20],1);

ZeroRates = [.0089 .0096 .0107 .0130 .0166 .0248 .0306 .0356 .0454]';

RateSpec = intenvset('StartDates', Settle, 'EndDates', CurveDates,...

'Rates', ZeroRates);
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Price = 98;

CFAmounts = [30;40;30];

CFDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'});

CFDates = datetime(CFDates,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

Spread = cfspread(RateSpec, Price, CFAmounts, CFDates, Settle)

Spread =

   1.0e+03 *

   -8.7956

   -4.0774

   -3.7073

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
cfbyzero | cfprice | cfyield | datetime

Introduced in R2012a
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cfyield
Compute yield to maturity for cash flow given price

Syntax

Yield = cfyield(CFAmounts, CFDates, Price, Settle)

Yield = cfyield(CFAmounts, CFDates, Price, Settle,

Name,Value)

Description

Yield = cfyield(CFAmounts, CFDates, Price, Settle) computes yield to
maturity for a cash flow given price.

Yield = cfyield(CFAmounts, CFDates, Price, Settle,

Name,Value) computes yield to maturity for a cash flow given price with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

CFlowAmounts

NINST-by-MOSTCFS matrix of cash flow amounts. Each row is a list of cash flow values for
one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates

NINST-by-MOSTCFS matrix of cash flow dates, specified as a serial date number,
date character vector, or datetime array. Each entry contains the serial date of the
corresponding cash flow in CFlowAmounts.

Price

Price.
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Settle

Settlement date, specified as a serial date number, date character vector, or datetime
array. Settlement date is the date on which the cash flows are priced.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or
as a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

'Basis'

N-by-1 vector of day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
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Default: 0 (actual/actual)

'CompFreq'

Compounding frequency. By default, SIA bases (0-7) and BUS/252 use a semi-annual
compounding convention and ICMA bases (8-12) use an annual compounding convention.

Default: actual

Output Arguments

Yield

Yield for cash flows.

Examples

Compute the Yield to Maturity for a Cash Flow When Given a Price

Use cfyield to compute yield to maturity for a cash flow when given a price.

Define data for the yield curve and price.

Settle = datenum('01-Jul-2003');

Price = 98;

CFlowAmounts = [30 40 30];

CFlowDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'})';

Compute the Yield.

 Yield = cfyield(CFlowAmounts, CFlowDates, Price, Settle)

Yield =

    0.0099

Compute the Yield to Maturity for a Cash Flow When Given a Price Using datetime Inputs

Use cfyield to compute yield to maturity for a cash flow, when given a price using
datetime inputs.

18-355



18 Functions — Alphabetical List

Settle = datenum('01-Jul-2003');

Price = 98;

CFlowAmounts = [30 40 30];

CFlowDates = datenum({'15-Jul-2004', '15-Jul-2005', '15-Jul-2006'})';

CFlowDates = datetime(CFlowDates,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

Yield = cfyield(CFlowAmounts, CFlowDates, Price, Settle)

Yield =

    0.0099

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
cfbyzero | cfprice | cfspread | datetime

Introduced in R2012a
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cftimes
Time factors corresponding to bond cash flow dates

Syntax

[TFactors] = cftimes(Settle, Maturity)

[TFactors] = cftimes(Settle, Maturity,

Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate)

[TFactors] = cftimes(Settle, Maturity,

'ParameterName', ParameterValue, ...)

Description

[TFactors] = cftimes(Settle, Maturity) determines the time factors
corresponding to the cash flows of a bond or set of bonds.

[TFactors] = cftimes(Settle, Maturity,

Period, Basis, EndMonthRule,

IssueDate, FirstCouponDate, LastCouponDate, StartDate) determines the
time factors corresponding to the cash flows of a bond or set of bonds, including optional
inputs.

[TFactors] = cftimes(Settle, Maturity,

'ParameterName', ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter/value pairs in any order. Names are case-
insensitive.

Input Arguments

Settle

Settlement date. A vector of serial date numbers, date character vectors, or datetime
array. Settle must be earlier than Maturity.
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Maturity

Maturity date. A vector of serial date numbers, date character vectors, or datetime array.

Ordered Input or Parameter–Value Pairs

Enter the following inputs using an ordered syntax or as parameter/value pairs. You
cannot mix ordered syntax with parameter/value pairs.

Period

Coupons per year of the bond. A vector of integers. Values are 0, 1, 2, 3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0
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EndMonthRule

End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond coupon
payment date is always the same numerical day of the month. 1 = set rule on, meaning
that a bond coupon payment date is always the last actual day of the month.

Default: 1

IssueDate

Issue date, specified as a serial date number, date character vector, or datetime array, for
a bond.

FirstCouponDate

Date, specified as a serial date number, date character vector, or datetime array, when
a bond makes its first coupon payment. FirstCouponDate is used when a bond has
an irregular first coupon period. When FirstCouponDate and LastCouponDate are
both specified, FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date, specified as a serial date number,
date character vector, or datetime array. LastCouponDate is used when bond has an
irregular last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered),
specified as a serial date number, date character vector, or datetime array. To make
an instrument forward-starting, specify this date as a future date. If you do not specify
StartDate, the effective start date is the Settle date.

18-359



18 Functions — Alphabetical List

Parameter–Value Pairs

Enter the following inputs only as parameter/value pairs.

CompoundingFrequency

Compounding frequency for yield calculation. By default, SIA bases (0–7) and BUS/252
use a semiannual compounding convention and ICMA bases (8–12) use an annual
compounding convention.

DiscountBasis

Basis used to compute the discount factors for computing the yield. The default behavior
is for SIA bases to use the actual/actual day count to compute discount factors. If you use
ICMA day counts and BUS/252, the specified bases are used.

Output Arguments

TFactors

TFactors has NUMBONDS rows and the number of columns is determined by the
maximum number of cash flow payment dates required to hold the bond portfolio. NaNs
are padded for bonds which have less than the maximum number of cash flow payment
dates.

Definitions

cftimes computes the time factor of a cash flow, which is the difference between the
settlement date and the cash flow date, in units of semiannual coupon periods. In
computing time factors, use SIA actual/actual day count conventions for all time factor
calculations.

Examples

Compute the Time Factor of a Cash Flow

This example shows how to calculate a cash flow time factor.
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Settle = '15-Mar-1997';

Maturity = '01-Sep-1999';

Period = 2;

TFactors = cftimes(Settle, Maturity, Period)

TFactors =

    0.9239    1.9239    2.9239    3.9239    4.9239

• “Analyzing and Computing Cash Flows” on page 2-17

References

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

Mayle, Jan. “Standard Securities Calculations Methods: Fixed Income Securities
Formulas for Analytic Measures.” SIA, Vol 2, Jan 1994.

Stigum, Marcia, and Franklin Robinson. Money Market and Bond Calculations. McGraw-
Hill, 1996.

See Also
accrfrac | cfamounts | cfdates | cpncount | cpndaten | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | date2time

Introduced before R2006a
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chaikosc
Chaikin oscillator

Syntax
chosc = chaikosc(highp, lowp, closep, tvolume)

chosc = chaikosc([highp lowp closep tvolume])

choscts = chaikosc(tsobj)

choscts = chaikosc(tsobj, 'ParameterName', ParameterValue, ... )

Arguments

highp High price (vector)
lowp Low price (vector)
closep Closing price (vector)
tvolume Volume traded (vector)
tsobj Financial time series object

Description

The Chaikin oscillator is calculated by subtracting the 10-period exponential moving
average of the Accumulation/Distribution (A/D) line from the three-period exponential
moving average of the A/D line.

chosc = chaikosc(highp, lowp, closep, tvolume) calculates the Chaikin
oscillator (vector), chosc, for the set of stock price and volume traded data (tvolume).
The required inputs are the prices for the high (highp), low (lowp), and closing (closep)
prices and the volume traded data (tvolume).

chosc = chaikosc([highp lowp closep tvolume]) accepts a four-column matrix
as input.
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choscts = chaikosc(tsobj) calculates the Chaikin Oscillator, choscts, from the
data contained in the financial time series object tsobj. tsobj must at least contain
data series with names High, Low, Close, and Volume. These series must represent the
high, low, and closing prices, plus the volume traded. choscts is a financial time series
object with the same dates as tsobj but only one series named ChaikOsc.

choscts = chaikosc(tsobj, 'ParameterName', ParameterValue, ...)

accepts parameter name/parameter value pairs as input. These pairs specify the name(s)
for the required data series if it is different from the expected default name(s). Valid
parameter names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name
• VolumeName: volume traded series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Chaikin Oscillator

This example shows how to compute the Chaikin oscillator for Disney stock and plot the
results.

load disney.mat

dis_CHAIKosc = chaikosc(dis);

plot(dis_CHAIKosc)

title('Chaikin Oscillator for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 91–94.
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See Also
adline

Introduced before R2006a
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chaikvolat
Chaikin volatility

Syntax
chvol = chaikvolat(highp, lowp)

chvol = chaikvolat([highp lowp])

chvol = chaikvolat(high, lowp, nperdiff, manper)

chvol = chaikvolat([high lowp], nperdiff, manper)

chvts = chaikvolat(tsobj)

chvts = chaikvolat(tsobj, nperdiff, manper, 'ParameterName',

ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
nperdiff Period difference (vector). Default = 10.
manper Length of exponential moving average in periods (vector). Default =

10.
tsobj Financial time series object.

Description

chvol = chaikvolat(highp, lowp) calculates the Chaikin volatility from the series
of stock prices, highp and lowp. The vector chvol contains the Chaikin volatility values,
calculated on a 10-period exponential moving average and 10-period difference.

chvol = chaikvolat([highp lowp]) accepts a two-column matrix as the input.
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chvol = chaikvolat(high, lowp, nperdiff, manper) manually sets the period
difference nperdiff and the length of the exponential moving average manper in
periods.

chvol = chaikvolat([high lowp], nperdiff, manper) accepts a two-column
matrix as the first input.

chvts = chaikvolat(tsobj) calculates the Chaikin volatility from the financial
time series object tsobj. The object must contain at least two series named High and
Low, representing the high and low prices per period. chvts is a financial time series
object containing the Chaikin volatility values, based on a 10-period exponential moving
average and 10-period difference. chvts has the same dates as tsobj and a series called
ChaikVol.

chvts = chaikvolat (tsobj,nperdiff, manper, 'ParameterName',

ParameterValue, ...) accepts parameter name/parameter value pairs as input.
These pairs specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name
• LowName: low prices series name

Parameter values are the character vectors that represent the valid parameter names.

nperdiff, the period difference, and manper, the length of the exponential moving
average in periods, can also be set with this form of chaikvolat.

Examples

Compute the Chaikin Volatility

This example shows how to compute the Chaikin volatility for Disney stock and plot the
results.

load disney.mat

dis_CHAIKvol = chaikvolat(dis);

plot(dis_CHAIKvol)

title('Chaikin Volatility for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 304–305.
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See Also
chaikosc

Introduced before R2006a
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chartfts

Interactive display

Syntax

chartfts(tsobj)

Description

chartfts(tsobj) produces a figure window that contains one or more plots. You can
use the mouse to observe the data at a particular time point of the plot.

Examples

Create a financial time series object from the supplied data file ibm9599.dat:

ibmfts = ascii2fts('ibm9599.dat', 1, 3, 2);

Chart the financial time series object ibmfts:

chartfts(ibmfts)

With the Zoom feature set off, a mouse click on the indicator line displays object data
in a pop-up box.
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With the Zoom feature set on, mouse clicks indicate the area of the chart to zoom.

You can find a tutorial on using chartfts in “Visualizing Financial Time Series Objects”
on page 11-16. See “Zoom Tool” on page 11-19 for details on performing the zoom.
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Also see “Combine Axes Tool” on page 11-22 for information about combining axes for
specified plots.

More About
• “Technical Indicators” on page 16-2

See Also
candle | highlow | plot

Introduced before R2006a
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checkFeasibility
Check feasibility of input portfolios against portfolio object

Use the checkFeasibility function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to check the feasibility of input portfolios against a portfolio object.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

status = checkFeasibility(obj,pwgt)

Description

status = checkFeasibility(obj,pwgt) checks the feasibility of input portfolios
against a portfolio object.

Examples

Determine if the Portfolio Is Feasible for a Portfolio Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)
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ans =

  1×10 logical array

   1   1   1   1   1   1   1   1   1   1

Determine if the Portfolio Is Feasible for a PortfolioCVaR Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

  1×10 logical array

   1   1   1   1   1   1   1   1   1   1

Determine if the Portfolio Is Feasible for a PortfolioMAD Object

Given portfolio p, determine if p is feasible.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;
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    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

checkFeasibility(p, pwgt)

ans =

  1×10 logical array

   1   1   1   1   1   1   1   1   1   1

• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Validate the CVaR Portfolio Problem” on page 5-90
• “Validate the MAD Portfolio Problem” on page 6-87
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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pwgt — Portfolios to check
matrix

Portfolios to check, specified as a NumAssets-by-NumPorts matrix.

Data Types: double

Output Arguments

status — Indicator if portfolio is feasible
row vector

Indicator if portfolio is feasible, returned as a row vector of NumPorts indicators that are
true if portfolio is feasible and false otherwise.

Note: By definition, any portfolio set must be nonempty and bounded. If the set is empty,
no portfolios can be feasible. Use estimateBounds to test for nonempty and bounded
sets.

Feasibility status is returned for Portfolio, PortfolioCVaR, or PortfolioMAD
objects. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to check the feasibility of input portfolios against a
portfolio object.

status = obj.checkFeasibility(pwgt);

• The constraint tolerance to assess whether a constraint is satisfied is obtained from
the hidden property obj.defaultTolCon.
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• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateBounds

Introduced in R2011a
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chfield
Change data series name

Syntax
newfts = chfield(oldfts, oldname, newname)

Arguments

oldfts Name of an existing financial time series object.
oldname Name of the existing component in oldfts. A MATLAB character

vector or column cell array.
newname New name for the component in oldfts. A MATLAB character

vector or column cell array.

Description

newfts = chfield(oldfts, oldname, newname) changes the name of the financial
time series object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component without changing
the name of the financial time series object.

To change the names of several components at once, specify the series of old and new
component names in corresponding column cell arrays.

You cannot change the names of the object components desc, freq, and dates.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
fieldnames | isfield | rmfield
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Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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convert2sur

Convert multivariate normal regression model to seemingly unrelated regression (SUR)
model

Syntax

DesignSUR = convert2sur(Design, Group)

Arguments

Design A matrix or a cell array that depends on the number of data series
NUMSERIES.

• If NUMSERIES = 1, convert2sur returns the Design matrix.
• If NUMSERIES > 1, Design is a cell array with NUMSAMPLES

cells, where each cell contains a NUMSERIES-by-NUMPARAMS
matrix of known values.

Group Contains information about how data series are to be grouped, with
separate parameters for each group. Specify groups either by series
or by groups:

• To identify groups by series, construct an index vector that has
NUMSERIES elements. Element i = 1, ..., NUMSERIES in
the vector, and has the index j = 1, ..., NUMGROUPS of the
group in which series i is a member.

• To identify groups by groups, construct a cell array with
NUMGROUPS elements. Each cell contains a vector with the
indexes of the series that populate a given group.

In either case, the number of series is NUMSERIES and the
number of groups is NUMGROUPS, with 1 ≤ NUMGROUPS  ≤
NUMSERIES.
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Description
DesignSUR = convert2sur(Design, Group) converts a multivariate normal
regression model into a seemingly unrelated regression model with a specified grouping
of the data series. DesignSUR is either a matrix or a cell array that depends on the value
of NUMSERIES:

• If NUMSERIES = 1, DesignSUR = Design, which is a NUMSAMPLES-by-NUMPARAMS
matrix.

• If NUMSERIES > 1 and NUMGROUPS groups are to be formed, Design is a cell array
with NUMSAMPLES cells, where each cell contains a NUMSERIES-by-(NUMGROUPS *
NUMPARAMS) matrix of known values.

The original collection of parameters that are common to all series are replicated to form
collections of parameters for each group.

Examples
Use convert2sur to Estimate Stock Alpha and Beta Values

This example shows a CAPM demonstration using 6 stocks and 60 months of simulated
asset returns, where the model for each stock is AssetReturn = Alpha * 1 +
CashReturn + Beta * (MarketReturn - CashReturn) + Noise and the
parameters to estimate are Alpha and Beta.

Using simulated data, where the Alpha estimate(s) are displayed in the first row(s) and
the Beta estimate(s) are display in the second row(s).

Market = (0.1 - 0.04) + 0.17*randn(60, 1);

Asset = (0.1 - 0.04) + 0.35*randn(60, 6);

Design = cell(60, 1);

for i = 1:60

            Design{i} = repmat([ 1, Market(i) ], 6, 1);

end

Obtain the aggregate estimates for all stocks.

[Param, Covar] = mvnrmle(Asset, Design);

disp({'All 6 Assets Combined'});

disp(Param);
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    'All 6 Assets Combined'

    0.0233

    0.1050

Estimate parameters for individual stocks using convert2sur

Group = 1:6;

DesignSUR = convert2sur(Design, Group);

[Param, Covar] = mvnrmle(Asset, DesignSUR);

Param = reshape(Param, 2, 6);

disp({ 'A', 'B', 'C', 'D', 'E', 'F' });

disp(Param);

    'A'    'B'    'C'    'D'    'E'    'F'

    0.0144    0.0270    0.0046    0.0419    0.0376    0.0291

    0.3264   -0.1716    0.3248   -0.0630   -0.0001    0.0637

Estimate parameters for pairs of stocks by forming groups.

disp({'A & B', 'C & D','E & F'});

Group = { [1,2 ],[3,4],[5,6]};

DesignSUR = convert2sur(Design, Group);

[Param, Covar] = mvnrmle(Asset, DesignSUR);

Param = reshape(Param, 2, 3);

disp(Param);

    'A & B'    'C & D'    'E & F'

    0.0186    0.0190    0.0334

    0.0988    0.1757    0.0293

• “Seemingly Unrelated Regression Without Missing Data” on page 9-22

More About
• “Multivariate Normal Linear Regression” on page 9-2
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See Also
ecmnfish | mvnrfish

Introduced in R2006a
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cir class

Cox-Ingersoll-Ross mean-reverting square root diffusion models

Description

cir objects derive from the sdemrd (SDE with drift rate expressed in mean-reverting
form) class. Use the cir constructor to create cir objects to simulate sample paths of
NVARS state variables expressed in mean-reverting drift-rate form. These state variables
are driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive
observation periods, approximating continuous-time CIR stochastic processes with
square root diffusions.

This method allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t t= - +( )[ ( ) ] ( , ) ( )

1

2

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS matrix of mean reversion speeds (the rate of mean

reversion).
• L is an NVARS-by-1 vector of mean reversion levels (long-run mean or level).
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the square root of the corresponding element of the state vector.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Construction

CIR = cir(Speed,Level,Sigma) constructs a default cir object.

CIR = cir(Speed,Level,Sigma,Name,Value) constructs a cir object with
additional options specified by one or more Name,Value pair arguments.
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Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a cir object, see cir.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of
time.

If you specify Speed as an array, it must be an NVARS-by-NVARS matrix of mean-
reversion speeds (the rate at which the state vector reverts to its long-run average
Level).

As a deterministic function of time, when Speed is called with a real-valued scalar
time t as its only input, Speed must produce an NVARS-by-NVARS matrix. If you specify
Speed as a function of time and state, it calculates the speed of mean reversion. This
function must generate an NVARS-by-NVARS matrix of reversion rates when called with
two inputs:
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• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of
time.

If you specify Level as an array, it must be an NVARS-by-1 column vector of reversion
levels.

As a deterministic function of time, when Level is called with a real-valued scalar time
t as its only input, Level must produce an NVARS-by-1 column vector. If you specify
Level as a function of time and state, it must generate an NVARS-by-1 column vector of
reversion levels when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
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• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see cir.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
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• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a
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where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
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Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle
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Methods

simBySolution Simulate approximate solution of diagonal-
drift HWV processes

Inherited Methods

The following methods are inherited from thesde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a cir Object

The Cox-Ingersoll-Ross (CIR) short rate class derives directly from SDE with mean-
reverting drift (SDEMRD):

dX S t L t X dt D t X V t dWt t t t= - +( )[ ( ) ] ( , ) ( )

1

2

where D is a diagonal matrix whose elements are the square root of the corresponding
element of the state vector.

Create a cir object to represent the model:

dX X dt X dW
t t t t

= - +0 2 0 1 0 05

1

2. ( . ) . .

obj = cir(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 

   Class CIR: Cox-Ingersoll-Ross

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 
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      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

Although the last two objects are of different classes, they represent the same
mathematical model. They differ in that you create the cir object by specifying only
three input arguments. This distinction is reinforced by the fact that the Alpha
parameter does not display – it is defined to be 1/2.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, cir treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.
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See Also
diffusion | drift | interpolate | sdeddo | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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cir
Construct Cox-Ingersoll-Ross mean-reverting square root diffusion models

Syntax
CIR = cir(Speed, Level, Sigma)

CIR = cir(Speed, Level, Sigma, 'Name1', Value1, 'Name2',

Value2, ...)

Class
cir

Description
This constructor creates and displays cir objects, which derive from the sdemrd (SDE
with drift rate expressed in mean-reverting form) class. Use cir objects to simulate
sample paths of NVARS state variables expressed in mean-reverting drift-rate form.
These state variables are driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time cir
stochastic processes with square root diffusions.

This method allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t t= - +( )[ ( ) ] ( , ) ( )

1

2

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS matrix of mean reversion speeds (the rate of mean

reversion).
• L is an NVARS-by-1 vector of mean reversion levels (long-run mean or level).
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the square root of the corresponding element of the state vector.
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• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Speed Speed represents S. If you specify Speed as an array, it must be an
NVARS-by-NVARS matrix of mean-reversion speeds (the rate or speed
at which the state vector reverts to its long-run average Level). As a
deterministic function of time, when Speed is called with a real-valued
scalar time t as its only input, Speed must produce an NVARS-by-NVARS
matrix.

If you specify Speed as a function of time and state, it must generate
an NVARS-by-NVARS matrix of reversion rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Level Level represents L. If you specify Level as an array, it must be
an NVARS-by-1 column vector of reversion levels. As a deterministic
function of time, when Level is called with a real-valued scalar time t
as its only input, Level must produce an NVARS-by-1 matrix.

If you specify Level as a function of time and state, it must generate
an NVARS-by-1 column vector of reversion levels when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an
array, it must be an NVARS-by-NBROWNS 2-dimensional matrix
of instantaneous volatility rates. In this case, each row of Sigma
corresponds to a particular state variable. Each column of Sigma
corresponds to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state variables with sources
of uncertainty. As a deterministic function of time, when Sigma is called
with a real-valued scalar time t as its only input, Sigma must produce
an NVARS-by-NBROWNS matrix.

If you specify Sigma as a function of time and state, it must generate
an NVARS-by-NBROWNS matrix of volatility rates when invoked with two
inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Note: Although the constructor does not enforce restrictions on the signs of these input
arguments, each argument is specified as a positive value.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, cir applies the same initial value to all
state variables on all trials.

If StartState is a column vector, cir applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, cir applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

18-398



 cir

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

CIR Object of class CIR with the following displayed parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input

argument, callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
• Simulation: A simulation function or method
• Speed: Access function for the input argument Speed, callable as a

function of time and state
• Level: Access function for the input argument Level, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state

Examples

“Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models” on page 17-29
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More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t followed
by a state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, cir treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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See Also
diffusion | drift | sdeddo

Introduced in R2008a
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convertto
Convert to specified frequency

Syntax
newfts = convertto(oldfts, newfreq)

newfts = convertto(oldfts, newfreq, 'param1','value1','param2',

'value2', ... )

Arguments

oldfts Name of an existing financial time series object.
newfreq 1, DAILY, Daily, daily, D, d

2, WEEKLY, Weekly, weekly, W, w

3, MONTHLY, Monthly, monthly, M, m

4, QUARTERLY, Quarterly, quarterly, Q, q

5, SEMIANNUAL, Semiannual, semiannual, S, s

6, ANNUAL, Annual, annual, A, a

Description

convertto converts a financial time series of any frequency to one of a specified
frequency.

newfts = convertto(oldfts, newfreq) converts the object oldfts to the new time
series object newfts with the frequency newfreq.

Refer to the documentation for each frequency conversion function to determine the valid
parameter/value pairs.
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See Also
toannual | todaily | tomonthly | toquarterly | tosemi | toweekly

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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corrcoef
Correlation coefficients

Syntax
r = corrcoef(X)

r = corrcoef(X,Y)

Arguments

X Matrix where each row is an observation and each column is a
variable.

Y Matrix where each row is an observation and each column is a
variable.

Description

corrcoef for financial time series objects is based on the MATLAB corrcoef function.
See corrcoef in the MATLAB documentation.

r=corrcoef(X) calculates a matrix r of correlation coefficients for an array X, in which
each row is an observation, and each column is a variable.

r=corrcoef(X,Y), where X and Y are column vectors, is the same as r=corrcoef([X
Y]). corrcoef converts X and Y to column vectors if they are not; that is, r =
corrcoef(X,Y) is equivalent to r=corrcoef([X(:) Y(:)]) in that case.

If c is the covariance matrix, c= cov(X), then corrcoef(X) is the matrix whose (i,j)
'th element is ci,j/sqrt(ci,i*c(j,j)).

[r,p]=corrcoef(...) also returns p, a matrix of p-values for testing the hypothesis
of no correlation. Each p-value is the probability of getting a correlation as large as the
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observed value by random chance, when the true correlation is zero. If p(i,j) is less than
0.05, then the correlation r(i,j) is significant.

[r,p,rlo,rup]=corrcoef(...) also returns matrices rlo and rup, of the same
size as r, containing lower and upper bounds for a 95% confidence interval for each
coefficient.

[...]=corrcoef(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies additional
parameters and their values. Valid parameters are:

• 'alpha' — A number from 0 through 1 to specify a confidence level of 100*(1-
ALPHA)%. Default is 0.05 for 95% confidence intervals.

• 'rows' — Either 'all' (default) to use all rows, 'complete' to use rows with no
NaN values, or 'pairwise' to compute r(i,j) using rows with no NaN values in
column i or j.

The p-value is computed by transforming the correlation to create a t-statistic having
N – 2 degrees of freedom, where N is the number of rows of X. The confidence bounds
are based on an asymptotic normal distribution of 0.5*log((1 + r)/(1 – r)), with an
approximate variance equal to 1/(N – 3). These bounds are accurate for large samples
when X has a multivariate normal distribution. The 'pairwise' option can produce an
r matrix that is not positive definite.

Examples

Compute Correlation Coefficients

This example shows how to generate random data having correlation between column 4
and the other columns.

x = randn(30,4);       % uncorrelated data

x(:,4) = sum(x,2);     % introduce correlation

f = fints((today:today+29)', x);  % create a fints object using x

[r,p] = corrcoef(x);    % compute sample correlation and p-values

[i,j] = find(p<0.05);  % find significant correlations

[i,j]                  % display their (row,col) indices

ans =

     4     1
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     3     2

     2     3

     1     4

Class support for inputs X,Y: float: double and single.

• “Using Time Series to Predict Equity Return” on page 12-25

See Also
cov | std | var

Introduced before R2006a
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corr2cov
Convert standard deviation and correlation to covariance

Syntax
ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

Arguments

ExpSigma Vector of length n with the standard deviations of each process. n is
the number of random processes.

ExpCorrC (Optional) n-by-n correlation coefficient matrix. If ExpCorrC is not
specified, the processes are assumed to be uncorrelated, and the
identity matrix is used.

Description

corr2cov converts standard deviation and correlation to covariance.

ExpCovariance is an n-by-n covariance matrix, where n is the number of processes.
ExpCov(i,j) = ExpCorrC(i,j)*ExpSigma(i)*ExpSigma(j) 

Examples

Convert Standard Deviation and Correlation to Covariance

This example shows how to convert standard deviation and correlation to covariance.

ExpSigma = [0.5  2.0];

ExpCorrC = [1.0 -0.5

           -0.5  1.0];

ExpCovariance = corr2cov(ExpSigma, ExpCorrC)
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ExpCovariance =

    0.2500   -0.5000

   -0.5000    4.0000

• “Data Transformation and Frequency Conversion” on page 12-12

See Also
corrcoef | cov | cov2corr | ewstats | std

Introduced before R2006a
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cov
Covariance matrix

Syntax
cov(X)

cov(X,Y)

Arguments

X Financial times series object.
Y Financial times series object.

Description

cov for financial time series objects is based on the MATLAB cov function. See cov in
the MATLAB documentation.

If X is a financial time series object with one series, cov(X) returns the variance. For a
financial time series object containing multiple series, where each row is an observation,
and each series a variable, cov(X) is the covariance matrix.

diag(cov(X)) is a vector of variances for each series and sqrt(diag(cov(X))) is a
vector of standard deviations.

cov(X, Y), where X and Y are financial time series objects with the same number of
elements, is equivalent to cov([X(:) Y(:)]).

cov(X) or cov(X, Y) normalizes by (N -1) if N > 1, where N is the number of
observations. This makes cov(X) the best unbiased estimate of the covariance matrix if
the observations are from a normal distribution. For N = 1, cov normalizes by N.

cov(X, 1) or cov(X, Y, 1) normalizes by N and produces the second moment matrix
of the observations about their mean. cov(X, Y, 0) is the same as cov(X, Y) and
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cov(X, 0) is the same as cov(X). The mean is removed from each column before
calculating the result.

Examples

Create a Covariance Matrix

This example shows how to create a covariance matrix for the following dates.

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

A = [-1 1 2 ; -2 3 1 ; 4 0 3];

f = fints(dates, A);

c = cov(f)

c =

   10.3333   -4.1667    3.0000

   -4.1667    2.3333   -1.5000

    3.0000   -1.5000    1.0000

• “Using Time Series to Predict Equity Return” on page 12-25

See Also
corrcoef | cov | mean | std | var

Introduced before R2006a
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cov2corr
Convert covariance to standard deviation and correlation coefficient

Syntax
[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Arguments

ExpCovariance n-by-n covariance matrix; for example, from cov or
ewstats. n is the number of random processes.

Description

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to
standard deviations and correlation coefficients.

ExpSigma is a 1-by-n vector with the standard deviation of each process.

ExpCorrC is an n-by-n matrix of correlation coefficients.
ExpSigma(i) = sqrt(ExpCovariance(i,i))

ExpCorrC(i,j) = ExpCovariance(i,j)/(ExpSigma(i)*ExpSigma(j))

Examples

Convert Covariance to Standard Deviations and Correlation Coefficients

This example shows how to convert a covariance matrix to standard deviations and
correlation coefficients.

ExpCovariance = [0.25 -0.5

                -0.5   4.0];

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)
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ExpSigma =

    0.5000    2.0000

ExpCorrC =

    1.0000   -0.5000

   -0.5000    1.0000

• “Data Transformation and Frequency Conversion” on page 12-12

See Also
corr2cov | corrcoef | cov | ewstats | std

Introduced before R2006a
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cpncount
Coupon payments remaining until maturity

Syntax

NumCouponsRemaining = cpncount(Settle,Maturity)

NumCouponsRemaining = cpncount(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

NumCouponsRemaining = cpncount(Settle,Maturity) returns the whole number
of coupon payments between the Settle and Maturity dates for a coupon bond or set
of bonds. Coupons falling on or before Settle are not counted, except for the Maturity
payment which is always counted.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NumCouponsRemaining = cpncount(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the whole
number of coupon payments between the Settle and Maturity dates for a coupon bond
or set of bonds using optional input arguments.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

Examples

Find Coupon Payments Remaining Until Maturity

This example shows how to find the coupon payments remaining until maturity.

NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',...

2, 0, 0)
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NumCouponsRemaining =

     8

Find Coupon Payments Remaining Until Maturity for Different Maturity Dates

This example shows how to find the coupon payments remaining until maturity, given
three coupon bonds with different maturity dates and the same default arguments.

Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];

NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)

NumCouponsRemaining =

     7

     9

    11

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]
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Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the bond
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the bond, specified as an integer with a value of 0 through 13 or a N-
by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar
nonnegative integer [0, 1] or a using a N-by-1 vector of values. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days.
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• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime
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Output Arguments

NumCouponsRemaining — Whole number of coupon payments between the settlement and
maturity dates for a coupon bond or set of bonds
vector

Whole number of coupon payments between the settlement and maturity dates for a
coupon bond or set of bonds, returned as an NBONDS-by-1 vector.

Coupons falling on or before settlement are not counted, except for the maturity payment
which is always counted.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpndaten | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndaten

Next coupon date for fixed-income security

Syntax

NextCouponDate = cpndaten(Settle,Maturity)

NextCouponDate = cpndaten(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

NextCouponDate = cpndaten(Settle,Maturity) returns the next coupon date
after the Settle date. This function finds the next coupon date whether or not the
coupon structure is synchronized with the Maturity date.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NextCouponDate = cpndaten(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the next
coupon date after the Settle date using optional input arguments. This function finds
the next coupon date whether or not the coupon structure is synchronized with the
Maturity date.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NextCouponDate is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NextCouponDate is returned as a datetime
array.
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Examples

Calculate the Next Coupon Date After the Settlement Date

Determine the NextCouponDate when using character vectors for input arguments.

NextCouponDate = cpndaten('14-Mar-1997', '30-Nov-2000', 2, 0, 0);

datestr(NextCouponDate)

ans =

30-May-1997

Determine the NextCouponDate when using datetime arrays for input arguments.

NextCouponDate = cpndaten('14-Mar-1997', datetime('30-Nov-2000','Locale','en_US'),...

2, 0, 0)

NextCouponDate = 

  datetime

   30-May-1997

Determine the NextCouponDate when using character vectors for input arguments and
the optional argument for EndMonthRule.

NextCouponDate = cpndaten('14-Mar-1997', '30-Nov-2000', 2, 0, 1);

datestr(NextCouponDate)

ans =

31-May-1997

Determine the NextCouponDate when using an input vector for Maturity.

Maturity = ['30-Sep-2000'; '31-Oct-2000'; '30-Nov-2000'];

NextCouponDate = cpndaten('14-Mar-1997', Maturity);

datestr(NextCouponDate)
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ans =

31-Mar-1997

30-Apr-1997

31-May-1997

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the bond
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the bond, specified as an integer with a value of 0 through 13 or a N-
by-1 vector of integers with values of 0 through 13.
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• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar
nonnegative integer [0, 1] or a using a N-by-1 vector of values. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
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Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

NextCouponDate — Next coupon date after the settlement date
vector

Next coupon date after the settlement date, returned as an NUMBONDS-by-1 vector of next
actual coupon dates after settlement. If settlement is a coupon date, this function never
returns the settlement date. Instead, the actual coupon date strictly after settlement is
returned, but not exceeding the maturity date. Thus, this function will always return the
lesser of the actual maturity date and the next coupon payment date.
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If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NextCouponDate is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NextCouponDate is returned as a datetime
array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndatenq | cpndatep
| cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndatenq
Next quasi-coupon date for fixed-income security

Syntax

NextQuasiCouponDate = cpndatenq(Settle,Maturity)

NextQuasiCouponDate = cpndatenq(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

NextQuasiCouponDate = cpndatenq(Settle,Maturity) determines the next quasi
coupon date for a portfolio of NUMBONDS fixed income securities whether or not the first
or last coupon is normal, short, or long. For zero coupon bonds cpndatenq returns quasi
coupon dates as if the bond had a semiannual coupon structure. Successive quasi coupon
dates determine the length of the standard coupon period for the fixed income security of
interest and do not necessarily coincide with actual coupon payment dates.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NextQuasiCouponDate = cpndatenq(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) determines the
next quasi coupon date for a portfolio of NUMBONDS fixed income securities whether or not
the first or last coupon is normal, short, or long using optional input arguments. For zero
coupon bonds cpndatenq returns quasi coupon dates as if the bond had a semiannual
coupon structure. Successive quasi coupon dates determine the length of the standard
coupon period for the fixed income security of interest and do not necessarily coincide
with actual coupon payment dates.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NextQuasiCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.
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If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NextQuasiCouponDate is returned as a
datetime array.

Examples

Determine the Next Quasi Coupon Date for a Portfolio of Fixed-Income Securities

Given a pair of bonds with the following characteristics:

Settle = char('30-May-1997','10-Dec-1997');

Maturity = char('30-Nov-2002','10-Jun-2004');

Compute NextCouponDate for this pair of bonds.

NextCouponDate = cpndaten(Settle, Maturity);

datestr(NextCouponDate)

ans =

31-May-1997

10-Jun-1998

Compute the next quasi coupon dates for these two bonds.

NextQuasiCouponDate = cpndatenq(Settle, Maturity);

datestr(NextQuasiCouponDate)

ans =

31-May-1997

10-Jun-1998

Because no FirstCouponDate has been specified, the results are identical.

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.
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NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...

FirstCouponDate);

datestr(NextCouponDate)

ans =

30-Nov-1997

10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.

Now recompute the next quasi coupon dates.

NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],...

FirstCouponDate);

datestr(NextQuasiCouponDate)

ans =

31-May-1997

10-Jun-1998

These results illustrate the distinction between actual coupon payment dates and quasi
coupon dates. FirstCouponDate (and LastCouponDate, as well), when specified, is
associated with an actual coupon payment and also serves as the synchronization date
for determining all quasi coupon dates. Since each bond in this example pays semiannual
coupons, and the first coupon date occurs more than six months after settlement, each
will have an intermediate quasi coupon date before the actual first coupon payment
occurs.

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.
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Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.
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LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

NextQuasiCouponDate — Next quasi coupon date for portfolio of NUMBONDS fixed income
securities
vector

Next quasi coupon date for a portfolio of NUMBONDS fixed income securities, whether or
not the first or last coupon is normal, short, or long, returned as a NUMBONDS-by-1 vector.

For zero coupon bonds cpndatenq returns quasi coupon dates as if the bond had a
semiannual coupon structure. Successive quasi coupon dates determine the length of the
standard coupon period for the fixed income security of interest and do not necessarily
coincide with actual coupon payment dates.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NextQuasiCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NextQuasiCouponDate is returned as a
datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndatepq
Previous quasi-coupon date for fixed-income security

Syntax

PreviousQuasiCouponDate = cpndatepq(Settle,Maturity)

PreviousQuasiCouponDate = cpndatepq(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

PreviousQuasiCouponDate = cpndatepq(Settle,Maturity) determines the
previous quasi-coupon date for a set of NUMBONDS fixed income securities. Prior quasi-
coupon dates determine the length of the standard coupon period for the fixed income
security of interest, and do not necessarily coincide with actual coupon payment dates.
This function finds the previous quasi-coupon date for bonds with a coupon structure
whose first or last period is either normal, short, or long.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

PreviousQuasiCouponDate = cpndatepq(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate), using optional
input arguments, determines the previous quasi-coupon date for a set of NUMBONDS
fixed income securities. Prior quasi-coupon dates determine the length of the standard
coupon period for the fixed income security of interest, and do not necessarily coincide
with actual coupon payment dates. This function finds the previous quasi-coupon date for
bonds with a coupon structure whose first or last period is either normal, short, or long.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
PreviousQuasiCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.

18-430



 cpndatepq

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then PreviousQuasiCouponDate is returned as
a datetime array.

Examples

Determine the Previous Quasi Coupon Date for a Portfolio of Fixed-Income Securities

Given a pair of bonds with the following characteristics:

Settle = char('30-May-1997','10-Dec-1997');

Maturity = char('30-Nov-2002','10-Jun-2004');

With no FirstCouponDate explicitly supplied, compute the PreviousCouponDate for
this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity);

datestr(PreviousCouponDate)

ans =

30-Nov-1996

10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date, cpndatep
returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ...

IssueDate, FirstCouponDate);

datestr(PreviousCouponDate)

ans =
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30-May-1996

10-Dec-1996

Since both of these bonds settled before the first coupon had been paid, cpndatep
returns the IssueDate as the PreviousCouponDate.

Using the same data, compute PreviousQuasiCouponDate.

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,...

IssueDate, FirstCouponDate);

datestr(PreviousQuasiCouponDate)

ans =

30-Nov-1996

10-Dec-1997

For the first bond the settlement date is not a normal coupon date. The
PreviousQuasiCouponDate is the coupon date before or on the settlement date.
Since the coupon structure is synchronized to FirstCouponDate, the previous quasi
coupon date is 30-Nov-1996. PreviousQuasiCouponDate disregards IssueDate and
FirstCouponDate in this case. For the second bond the settlement date (10-Dec-1997)
occurs on a date when a coupon would normally be paid in the absence of an explicit
FirstCouponDate. cpndatepq returns this date as PreviousQuasiCouponDate.

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

18-432



 cpndatepq

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double
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EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
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the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

PreviousQuasiCouponDate — Previous quasi coupon date for portfolio of NUMBONDS
fixed income securities
vector

Previous quasi coupon date for a portfolio of NUMBONDS fixed income securities, whether
or not the first or last coupon is normal, short, or long, returned as a NUMBONDS-by-1
vector of previous quasi-coupon dates before settlement. If settlement is a coupon date,
this function returns the settlement date.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
PreviousQuasiCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then PreviousQuasiCouponDate is returned as
a datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndatep
Previous coupon date for fixed-income security

Syntax

PreviousCouponDate = cpndatep(Settle,Maturity)

PreviousCouponDate = cpndatep(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

PreviousCouponDate = cpndatep(Settle,Maturity) returns the previous coupon
date on or before settlement for a portfolio of bonds. This function finds the previous
coupon date whether or not the coupon structure is synchronized with the maturity date.
For zero coupon bonds the previous coupon date is the issue date, if available. However,
if the issue date is not supplied, the previous coupon date for zero coupon bonds is the
previous quasi coupon date calculated as if the frequency is semiannual.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

PreviousCouponDate = cpndatep(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the
previous coupon date on or before settlement for a portfolio of bonds. This function finds
the previous coupon date whether or not the coupon structure is synchronized with
the maturity date. For zero coupon bonds the previous coupon date is the issue date,
if available. However, if the issue date is not supplied, the previous coupon date for
zero coupon bonds is the previous quasi coupon date calculated as if the frequency is
semiannual.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
PreviousCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.
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If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then PreviousCouponDate is returned as a
datetime array.

Examples

Calculate the Previous Coupon Date on or Before Settlement

Determine the PreviousCouponDate when using character vectors for input
arguments.

PreviousCouponDate = cpndatep('14-Mar-1997', '30-Jun-2000',...

2, 0, 0);

datestr(PreviousCouponDate)

ans =

30-Dec-1996

Determine the PreviousCouponDate when using datetime arrays for input arguments.

PreviousCouponDate = cpndatep(datetime('14-Mar-1997','Locale','en_US'), '30-Jun-2000',...

2, 0, 0)

PreviousCouponDate = 

  datetime

   30-Dec-1996

Determine the PreviousCouponDate when using character vectors for input arguments
and the optional argument for EndMonthRule.

PreviousCouponDate = cpndatep('14-Mar-1997', '30-Jun-2000',...

2, 0, 1);

datestr(PreviousCouponDate)

ans =
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31-Dec-1996

Determine the PreviousCouponDate when using an input vector for Maturity.

Maturity = ['30-Apr-2000'; '31-May-2000'; '30-Jun-2000'];

PreviousCouponDate = cpndatep('14-Mar-1997', Maturity);

datestr(PreviousCouponDate)

ans =

31-Oct-1996

30-Nov-1996

31-Dec-1996

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double
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Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.
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Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments
PreviousCouponDate — Previous coupon date on or before settlement for portfolio of
bonds
vector
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Previous coupon date on or before settlement for portfolio of bonds, returned as
an NUMBONDS-by-1 vector. If settlement is a coupon date, this function returns the
settlement date. The actual coupon date strictly on or before settlement is returned,
but not exceeding the issue date, if available. Thus, this function will always return the
lesser of the actual issue date and the previous coupon payment date with respect to
settlement date.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
PreviousCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then PreviousCouponDate is returned as a
datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndaysn
Number of days to next coupon date

Syntax
NumDaysNext = cpndaysn(Settle,Maturity)

NumDaysNext = cpndaysn(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description
NumDaysNext = cpndaysn(Settle,Maturity) returns the number of days from
the settlement date to the next coupon date for a bond or set of bonds. For zero coupon
bonds coupon dates are computed as if the bonds have a semiannual coupon structure.
NumDaysNext returns a double for serial date number, date character vector, and
datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NumDaysNext = cpndaysn(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the
number of days from the settlement date to the next coupon date for a bond or set of
bonds using optional input arguments. For zero coupon bonds coupon dates are computed
as if the bonds have a semiannual coupon structure. NumDaysNext returns a double for
serial date number, date character vector, and datetime inputs.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NumDaysNext is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NumDaysNext is returned as a datetime
array.
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Examples

Calculate the Number of Days From Settlement Date to Next Coupon Date

Determine the NumDaysNext when using character vectors for input arguments.

NumDaysNext = cpndaysn('14-Sep-2000', '30-Jun-2001', 2, 0, 0)

NumDaysNext =

   107

Determine the NumDaysNext when using datetime arrays for input arguments.

NumDaysNext = cpndaysn(datetime('14-Sep-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysNext =

   107

Determine the NumDaysNext when using character vectors for input arguments and the
optional argument for EndMonthRule.

NumDaysNext = cpndaysn('14-Sep-2000', '30-Jun-2001', 2, 0, 1)

NumDaysNext =

   108

Determine the NumDaysNext when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];

NumDaysNext = cpndaysn('14-Sep-2000', Maturity)

NumDaysNext =

    47
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    77

   108

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime
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FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

NumDaysNext — Number of days from settlement date to next coupon date
vector

Number of days from settlement date to next coupon date, returned as an NUMBONDS-
by-1 vector. For zero coupon bonds coupon dates are computed as if the bonds have a
semiannual coupon structure. NumDaysNext returns a double for serial date number,
date character vector, and datetime inputs.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
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NumDaysNext is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NumDaysNext is returned as a datetime
array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpndaysp

Number of days since previous coupon date

Syntax

NumDaysPrevious = cpndaysp(Settle,Maturity)

NumDaysPrevious = cpndaysp(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

NumDaysPrevious = cpndaysp(Settle,Maturity) returns the number of days
between the previous coupon date and the settlement date for a bond or set of bonds.
When the coupon frequency is 0 (a zero coupon bond), the previous coupon date is
calculated as if the frequency were semiannual. NumDaysPrevious returns a double for
serial date number, date character vector, and datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NumDaysPrevious = cpndaysp(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the
number of days between the previous coupon date and the settlement date for a bond
or set of bonds using optional input arguments. When the coupon frequency is 0 (a
zero coupon bond), the previous coupon date is calculated as if the frequency were
semiannual. NumDaysPrevious returns a double for serial date number, date character
vector, and datetime inputs.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NumDaysPrevious is returned as a serial date number. The function datestr converts
a serial date number to a formatted date character vector.
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If any of the of the inputs for Settle, Maturity, IssueDate, FirstCouponDate,
and LastCouponDate are datetime arrays, then NumDaysPrevious is returned as a
datetime array.

Examples

Calculate the Number of Days Between Previous Coupon Date and Settlement Date

Determine the NumDaysPrevious when using character vectors for input arguments.

NumDaysPrevious = cpndaysp('14-Mar-2000', '30-Jun-2001', 2, 0, 0)

NumDaysPrevious =

    75

Determine the NumDaysPrevious when using a datetime array for an input argument.

NumDaysPrevious = cpndaysp(datetime('14-Mar-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysPrevious =

    75

Determine the NumDaysPrevious when using character vectors for input arguments
and the optional argument for EndMonthRule.

NumDaysPrevious = cpndaysp('14-Mar-2000', '30-Jun-2001', 2, 0, 1)

NumDaysPrevious =

    74

Determine the NumDaysPrevious when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];

NumDaysPrevious = cpndaysp('14-Mar-2000', Maturity)
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NumDaysPrevious =

   135

   105

    74

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a with value 0 through 13
or a N-by-1 vector of integers with values 0 through 13.
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• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
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Data Types: double | char | datetime

FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

NumDaysPrevious — Number of days between previous coupon date and settlement date
vector

Number of days between the previous coupon date and the settlement date, returned as
an NUMBONDS-by-1 vector. If the settlement date is a coupon date, this function always
returns the settlement date.

When the coupon frequency is 0 (a zero coupon bond), the previous coupon date is
calculated as if the frequency were semiannual. NumDaysPrevious returns a double for
serial date number, date character vector, and datetime inputs.
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If all of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NumDaysPrevious is returned as a serial date number. The function datestr converts
a serial date number to a formatted date character vector.

If any of the of the inputs for Settle, Maturity, IssueDate, FirstCouponDate,
and LastCouponDate are datetime arrays, then NumDaysPrevious is returned as a
datetime array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | cpnpersz | datetime

Introduced before R2006a
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cpnpersz
Number of days in coupon period

Syntax

NumDaysPeriod = cpnpersz(Settle,Maturity)

NumDaysPeriod = cpnpersz(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate)

Description

NumDaysPeriod = cpnpersz(Settle,Maturity) returns the number of days in the
coupon period containing the settlement date. For zero coupon bonds coupon dates are
computed as if the bonds have a semiannual coupon structure. NumDaysPeriod returns
a double for serial date number, date character vector, and datetime inputs.

Required input arguments must be number of bonds, NUMBONDS-by-1 or 1-by-NUMBONDS,
conforming vectors or scalars.

NumDaysPeriod = cpnpersz(Settle,Maturity,Period,Basis,

EndMonthRule,IssueDate,FirstCouponDate,LastCouponDate) returns the
number of days in the coupon period containing the settlement date using optional input
arguments. For zero coupon bonds coupon dates are computed as if the bonds have a
semiannual coupon structure. NumDaysPeriod returns a double for serial date number,
date character vector, and datetime inputs.

Optional input arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming
vectors, scalars, or empty matrices.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NumDaysPeriod is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.

If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NumDaysPeriod is returned as a datetime
array.

18-454



 cpnpersz

Examples

Calculate the Number of Days in the Coupon Period Containing Settlement Date

Determine the NumDaysPeriod when using character vectors for input arguments.

NumDaysPeriod = cpnpersz('14-Sep-2000', '30-Jun-2001', 2, 0, 0)

NumDaysPeriod =

   183

Determine the NumDaysPeriod when using a datetime array for an input argument.

NumDaysPeriod = cpnpersz(datetime('14-Sep-2000','Locale','en_US'), '30-Jun-2001', 2, 0, 0)

NumDaysPeriod =

   183

Determine the NumDaysPeriod when using character vectors for input arguments and
the optional argument for EndMonthRule.

NumDaysPeriod = cpnpersz('14-Sep-2000', '30-Jun-2001', 2, 0, 1)

NumDaysPeriod =

   184

Determine the NumDaysPeriod when using an input vector for Maturity.

Maturity = ['30-Apr-2001'; '31-May-2001'; '30-Jun-2001'];

NumDaysPeriod = cpnpersz('14-Sep-2000', Maturity)

NumDaysPeriod =

   184
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   183

   184

• “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Input Arguments

Settle — Settlement date
serial date numbers | date character vector | datetime object

Settlement date, specified as a vector of serial date number, date character vector, or
datetime array. Settle must be earlier than Maturity.

Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime array

Maturity date, specified as a vector of serial date numbers, date character vectors, or
datetime arrays.
Data Types: double | char | datetime

Period — Coupons per year of the bond
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

Coupons per year of the bond, specified as a vector of positive integers from the set
[1,2,3,4,6,12].

Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a nonnegative
integer [0, 1] using a N-by-1 vector of values. This rule applies only when Maturity is an
end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond’s coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond’s coupon payment date is always the last actual
day of the month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | datetime array

Bond issue date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime
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FirstCouponDate — Date when bond makes first coupon payment
serial date number | date character vector | datetime array

Date when a bond makes its first coupon payment, specified as a serial date number,
date character vector, or datetime array.

FirstCouponDate is used when a bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.

Data Types: double | char | datetime

LastCouponDate —  Last coupon date of bond before maturity date
serial date number | date character vector | datetime array

Last coupon date of a bond before maturity date, specified as a serial date number, date
character vector, or datetime array.

LastCouponDate is used when a bond has an irregular last coupon period. In the
absence of a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | datetime

Output Arguments

NumDaysPeriod — Number of days in coupon period containing settlement date
vector

Number of days in the coupon period containing the settlement date, returned as an
NUMBONDS-by-1 vector. For zero coupon bonds coupon dates are computed as if the bonds
have a semiannual coupon structure.

If all the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are either serial date numbers or date character vectors, then
NumDaysPeriod is returned as a serial date number. The function datestr converts a
serial date number to a formatted date character vector.
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If any of the inputs for Settle, Maturity, IssueDate, FirstCouponDate, and
LastCouponDate are datetime arrays, then NumDaysPeriod is returned as a datetime
array.

See Also
accrfrac | cfamounts | cfdates | cftimes | cpncount | cpndaten | cpndatenq
| cpndatep | cpndatepq | cpndaysn | cpndaysp | datetime

Introduced before R2006a
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createholidays

Create trading calendars

Syntax

createholidays(Filename,Codefile,InfoFile,TargetDir,IncludeWkds,

Wprompt,NoGUI)

Description

createholidays(Filename,Codefile,InfoFile,TargetDir,IncludeWkds,

Wprompt,NoGUI) programmatically generates the market-specific holidays.m files
(from FinancialCalendar.com financial center holiday data) without displaying the
interface.

Note: To use createholidays, you must obtain data, codes, and info files from
http://www.FinancialCalendar.com trading calendars. The data files must be in
the required MATLAB format.

Examples

Create holidays.m Files Using createholidays

Use createholidays to create holidays*.m files from My_datafile.csv in the
folder c:\work. Weekends are included in the holidays list based on the input flag
INCLUDEWDKS = 1

createholidays('FinancialCalendar\My_datafile.csv',...

'FinancialCalendar\My_codesfile.csv',...

'FinancialCalendar\My_infofile.csv','c:\work',1,1,1)

• “Handle and Convert Dates” on page 2-4
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Input Arguments

Filename — Data file name
character vector

Data file name, specified using a character vector.
Data Types: char

Codefile — Code file name
character vector

Code file name, specified using a character vector.
Data Types: char

InfoFile — Info file name
character vector

Info file name, specified using a character vector.
Data Types: char

TargetDir — Target folder where to write new holidays.m files
character vector

Target folder where to write the new holidays.m files, specified using a character
vector.
Data Types: char

IncludeWkds — Option to include weekends in holiday list
numeric with value 0 or 1

Option to include weekends in the holiday list, specified using a numeric with value 0 or
1. Values are:

• 0 – Do not include weekends in the holiday list.
• 1 – Include weekends in the holiday list.

Data Types: logical

Wprompt — Option to prompt for file location for each holiday.m file that is created
numeric with value 0 or 1
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Option to prompt for the file location for each holiday.m file that is created, specified
using a numeric with value 0 or 1. Values are:

• 0 – Do not prompt for the file location.
• 1 – Prompt for the file location.

Data Types: logical

NoGUI — Run createholidays without displaying Trading Calendars user interface
numeric with value 0 or 1

Run createholidays without displaying the Trading Calendars user interface,
specified using a numeric with value 0 or 1. Values are:

• 0 – Display the GUI.
• 1 – Do not display the GUI.

Data Types: logical

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
holidays

Introduced in R2007b
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cumsum

Cumulative sum

Syntax

newfts = cumsum(oldfts)

Description

newfts = cumsum(oldfts) calculates the cumulative sum of each individual time
series data series in the financial time series object oldfts and returns the result in
another financial time series object newfts. newfts contains the same data series
names as oldfts.

Examples

Compute the Cumulative Sum

This example shows how to compute the cumulative sum for Disney stock and plot the
results.

load disney.mat

cs_dis = cumsum(fillts(dis));

plot(cs_dis)

title('Cumulative Sum for Disney')
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• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
fints

Introduced before R2006a
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cur2frac
Decimal currency values to fractional values

Syntax

Fraction = cur2frac(Decimal,Denominator)

Description

Fraction = cur2frac(Decimal,Denominator) converts decimal currency values to
fractional values.Fraction is returned as a character vector.

Examples

Convert Decimal Currency Values to Fractional Values

This example shows how to convert decimal currency values to fractional values.

Fraction = cur2frac(12.125, 8)

Fraction =

12.1

• “Format Currency” on page 2-11

Input Arguments

Decimal — Decimal currency value
numeric decimal

Decimal currency value, specified as a scalar or vector using numeric decimal values.
Data Types: double
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Denominator — Denominator of the fractions
numeric

Denominator of the fractions, specified as a scalar or vector using numeric values for the
denominator.
Data Types: double

Output Arguments

Fraction — Fractional values
character vector | cell array of character vectors

Fractional values, returned as a character vector or cell array of character vectors.

See Also
cur2str | frac2cur

Introduced before R2006a
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cur2str
Bank-formatted text

Syntax

BankText = cur2str(Value,Digits)

Description

BankText = cur2str(Value,Digits) returns the given value in bank format.

Examples

Return Bank Formatted Text

Return bank formatted text for a negative numeric value.

BankText = cur2str(-826444.4456,3)

% Negative numbers are displayed in parentheses.

BankText =

($826444.446)

• “Format Currency” on page 2-11

Input Arguments

Value — Value to be formatted
numeric value

Value to be formatted, specified as a numeric value.
Data Types: double
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Digits — Number of significant digits
2 (default) | integer

Number of significant digits, specified as an integer. A negative Digits rounds the value
to the left of the decimal point.
Data Types: double

Output Arguments

BankText — Bank-formatted text
character vector

Bank-formatted text (BankText) is returned as a character vector with a leading dollar
sign ($). Negative numbers are displayed in parentheses.

See Also
cur2frac | frac2cur

Introduced before R2006a
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date2time
Time and frequency from dates

Syntax

[TFactors,F] = date2time(Settle,Maturity)

[TFactors,F] = date2time(Settle,Maturity,Compounding,Basis,

EndMonthRule)

Description

[TFactors,F] = date2time(Settle,Maturity) computes time factors appropriate
to compounded rate quotes between the Settle and Maturity dates. date2time is the
inverse of time2date.

[TFactors,F] = date2time(Settle,Maturity,Compounding,Basis,

EndMonthRule) computes time factors appropriate to compounded rate quotes between
the Settle and Maturity dates using optional input arguments for Compounding,
Basis, and EndMonthRule. date2time is the inverse of time2date.

Examples

Compute date2time Using an actual/actual Basis

To get the date2time period between '31-Jul-2015' and '30-Sep-2015' using an actual/
actual basis:

date2time('31-Jul-2015', '30-Sep-2015', 2, 0, 1)

ans =

    0.3333

When using date2time quasi coupon, two quasi coupon dates are computed for a bond
with a maturity corresponding to the Dates input. In this case, that would be "30-
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Sep-2015". Assuming that the compounding frequency is 2, the other quasi coupon date is
six months prior to this date. Assuming the end of month rule is in place, then the other
quasi coupon date is "31-Mar-2015". You can use these two dates to compute the total
number of actual days in a period (which is 183). Given this, the fraction of time between
the start and end date for the actual/actual basis is computed as follows.

(Actual Days between Start Date and End Date)/(Actual Number of Days

between Quasi Coupon Dates)

There are 61 days between 31-Jul-2015 and 30-Sep-2015 and 183 days between the quasi
coupon dates ("31-Mar-2015" and "30-Sep-2015") which leads to a final result of 61/183 or
exactly 1/3.

• “Handle and Convert Dates” on page 2-4

Input Arguments

Settle — Settlement date
nonnegative integer | date character vector | datetime object

Settlement date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as a scalar or N-by-1 vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Compounding — Rate at which input zero rates are compounded when annualized
2 (Semiannual compounding) (default) | scalar with numeric values of 0, 1, 2, 3, 4, 5, 6,
12, 365, –1

Rate at which input zero rates are compounded when annualized, specified as a scalar
with numeric values of: 0, 1, 2, 3, 4, 5, 6, 12, 365, or –1. Allowed values are defined as:

• 0 — Simple interest (no compounding)
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• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

The optional Compounding argument determines the formula for the discount factors
(Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes
annual times F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero
rate, and T is the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T
is a number of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Basis — Day-count basis
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis, specified as an integer with a value 0 through 13 or a N-by-1 vector of
integers with values 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar
nonnegative integer [0, 1] or a using a N-by-1 vector of values. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments

TFactors — Time factors
vector

Time factors, appropriate to compounded rate quotes between Settle and Maturity
dates, returned as a vector.
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F — Compounding frequencies
scalar

Compounding frequencies, returned as a scalar.

More About

Difference Between yearfrac and date2time

The difference between yearfrac and date2time is that date2time counts full
periods as a whole integer, even if the number of actual days in the periods are different.
yearfrac does not count full periods.

For example,

yearfrac('1/1/2000', '1/1/2001', 9)

ans =

    1.0167

yearfrac for Basis 9 (ACT/360 ICMA) calculates 366/360 = 1.0167. So, even if the
dates have the same month and date, with a difference of 1 in the year, the returned
value may not be exactly 1. On the other hand, date2time calculates one full year
period:

date2time('1/1/2000', '1/1/2001', 1, 9)

ans =

     1

See Also
cftimes | datetime | disc2rate | rate2disc | time2date | yearfrac

Introduced before R2006a
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dateaxis
Convert serial-date axis labels to calendar-date axis labels

Syntax
dateaxis(Tickaxis, DateForm, StartDate)

Arguments

Tickaxis (Optional) Determines which axis tick labels—x, y, or z—to replace.
Enter as a character vector. Default = 'x'.

DateForm (Optional) Specifies which date format to use. Enter as an integer
from 0 to 17. If no DateForm argument is entered, this function
determines the date format based on the span of the axis limits.
For example, if the difference between the axis minimum and
maximum is less than 15, the tick labels are converted to three-
letter day-of-the-week abbreviations (DateForm = 8). See
DateForm format descriptions below.

StartDate (Optional) Assigns the date to the first axis tick value, specified
as a serial date number, date character vector, or datetime array.
The tick values are treated as serial date numbers. The default
StartDate is the lower axis limit converted to the appropriate date
number. For example, a tick value of 1 is converted to the date 01-
Jan-0000. Entering StartDate as '06-apr-1999' assigns the
date April 6, 1999 to the first tick value and the axis tick labels are
set accordingly.

Description

dateaxis(Tickaxis, DateForm, StartDate) replaces axis tick labels with date
labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick values and
other axis parameters.
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DateForm Format Description

0 01-Mar-1999 15:45:17 day-month-year hour:minute:second
1 01-mar-1999 day-month-year
2 03/01/99 month/day/year
3 Mar month, three letters
4 M month, single letter
5 3 month
6 03/01 month/day
7 1 day of month
8 Wed day of week, three letters
9 W day of week, single letter
10 1999 year, four digits
11 99 year, two digits
12 Mar99 month year
13 15:45:17 hour:minute:second
14 03:45:17 PM hour:minute:second AM or PM
15 15:45 hour:minute
16 03:45 PM hour:minute AM or PM
17 95/03/01 year month day

Examples

dateaxis('x') or dateaxis

converts the x-axis labels to an automatically determined date format.

dateaxis('y', 6)

converts the y-axis labels to the month/day format.

dateaxis('x', 2, '03-Mar-1999')

or
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dateaxis('x', 2, datetime('03-Mar-1999'))

converts the x-axis labels to the month/day/year format. The minimum x-tick value is
treated as March 3, 1999.

See Also
bolling | candle | datenum | datestr | datetime | highlow | movavg |
pointfig

Introduced before R2006a
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datedisp
Display date entries

Syntax

datedisp(NumMat)

datedisp(NumMat,DateForm)

CharMat = datedisp(NumMat,DateForm)

Description

datedisp(NumMat) displays a matrix with the serial dates formatted as date character
vectors, using a matrix with mixed numeric entries and serial date number entries.
Integers between datenum('01-Jan-1900') and datenum('01-Jan-2200') are
assumed to be serial date numbers, while all other values are treated as numeric entries.

datedisp(NumMat,DateForm), using the optional argument DateForm, displays a
matrix with the serial dates formatted as date character vectors, using a matrix with
mixed numeric entries and serial date number entries. Integers between datenum('01-
Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers,
while all other values are treated as numeric entries.

CharMat = datedisp(NumMat,DateForm) returns CharMat, character array
representing NumMat. If no output variable is assigned, the function prints the array to
the display.

Examples

Display a Matrix with the Serial Dates Formatted as Date Character Vectors

This example shows how to display a matrix with the serial dates formatted as date
character vectors.

NumMat = [730730, 0.03, 1200 730100;

          730731, 0.05, 1000 NaN];
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datedisp(NumMat)

01-Sep-2000   0.03   1200   11-Dec-1998   

02-Sep-2000   0.05   1000      NaN        

• “Handle and Convert Dates” on page 2-4

Input Arguments

NumMat — Numeric matrix to display
serial date numbers

Numeric matrix to display, specified as a serial date numbers.
Data Types: double

DateForm — Date format
scalar character vector to indicate format of text representing dates

Date format, specified as a scalar character vector to indicate the format of text
representing dates. See datestr for available and default format flags.

Data Types: char

Output Arguments

CharMat — Character array representing NumMat
array of date character vectors

Character array representing NumMat, returned as an array of date character vectors. If
no output variable is assigned, the function prints the array to the display.

See Also
datenum | datestr

Introduced before R2006a
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datefind
Indices of dates in matrix

Syntax

Indices = datefind(Subset,Superset)

Indices = datefind(Subset,Superset,Tolerance)

Description

Indices = datefind(Subset,Superset) returns a vector of indices to the date
numbers in Superset that are present in Subset. If no date numbers match, Indices
= [].

Indices = datefind(Subset,Superset,Tolerance) returns a vector of indices to
the date numbers in Superset that are present in Subset, plus or minus the optional
argument for Tolerance. If no date numbers match, Indices = [].

Examples

Return a Vector of Indices to Date Numbers

This example shows how to return a vector of indices to date numbers.

Superset = datenum(1999, 7, 1:31);

Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];

Indices = datefind(Subset, Superset, 1)

Indices =

     9

    10

    11

    19

    20

    21
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• “Handle and Convert Dates” on page 2-4

Input Arguments

Subset — Subset of dates to find matching dates
matrix of nonnegative integers with values for serial date numbers or datetime arrays

Subset of dates to find matching dates in Superset, specified as a matrix of nonnegative
integers with values for serial date numbers or datetime arrays.

Subset and Superset can be either serial date numbers or datetime arrays. These
types do not have to match. datefind determines the underlying date to match dates of
different data types.

Note: The elements of Subset must be contained in Superset, without repetition.
datefind works with non-repeating sequences of dates.

Example: Subset = [datenum(1997,7,10); datenum(1997,7,20)];

Data Types: single | double

Superset — Superset of dates
matrix of nonnegative integers with values for serial date numbers or datetime arrays

Superset of dates, specified as a matrix of serial date numbers or datetime arrays, whose
elements are sought.

Subset and Superset can be either serial date numbers or datetime arrays. These
types do not have to match. datefind determines the underlying date to match dates of
different data types.

Note: The elements of Subset must be contained in Superset, without repetition.
datefind works with non-repeating sequences of dates.

Example: Superset = datenum(1997,7,1:31);
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Data Types: single | double

Tolerance — Tolerance for matching dates in Superset
0 (default) | positive integer or duration object

Tolerance for matching dates (+/-) in Superset, specified as a positive integer or
duration object.
Data Types: single | double

Output Arguments

Indices — Indices of dates in Superset that are present in Subset
vector

Indices of dates in Superset that are present in Subset (plus or minus the tolerance if
defined using the optional argument Tolerance), returned as a vector of indices to the
date numbers or datetimes.

See Also
datenum | datetime

Introduced before R2006a
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datemnth
Date of day in future or past month

Syntax

TargetDate = datemnth(StartDate,NumberMonths)

TargetDate = datemnth(StartDate,NumberMonths,DayFlag,Basis,

EndMonthRule)

Description

TargetDate = datemnth(StartDate,NumberMonths) determines a date in a future
or past month based on movement either forward or backward in time by a given number
of months.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an
n-row character array of date character vectors, then NumberMonths must be an N-
by-1 vector of integers or a single integer. TargetDate is then an N-by-1 vector of date
numbers.

If StartDate is a serial date number or date character vector, TargetDate is returned
as a serial date number. Use datestr to convert serial date numbers to formatted date
character vectors.

If StartDate is a datetime array, then TargetDate is returned as a datetime array.

TargetDate = datemnth(StartDate,NumberMonths,DayFlag,Basis,

EndMonthRule) determines a date in a future or past month based on movement
either forward or backward in time by a given number of months, using optional input
arguments.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if StartDate is an
n-row character array of date character vectors, then NumberMonths must be an N-
by-1 vector of integers or a single integer. TargetDate is then an N-by-1 vector of date
numbers.
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If StartDate is a serial date number or date character vector, TargetDate is returned
as a serial date number. Use datestr to convert serial date numbers to formatted date
character vectors.

If StartDate is a datetime array, then TargetDate is returned as a datetime array.

Examples

Determine the Dates of Days in a Future Month

Determine the TargetDate in a future month using a date character vector for
StartDate.

StartDate = '03-Jun-1997';

NumberMonths = 6;

DayFlag = 0;

Basis = 0;

EndMonthRule = 1;

TargetDate = datemnth(StartDate, NumberMonths, DayFlag,...

Basis, EndMonthRule)

datestr(TargetDate)

TargetDate =

      729727

ans =

03-Dec-1997

Determine the TargetDate in a future month using a datetime array for StartDate.

Day = datemnth(datetime('3-jun-2001','Locale','en_US'), 6, 0, 0, 0)

Day = 

  datetime
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   03-Dec-2001

Determine the TargetDate in a future month using a vector for NumberMonths.

NumberMonths = [1; 3; 5; 7; 9];

TargetDate = datemnth('31-jan-2001', NumberMonths);

datestr(TargetDate)

ans =

28-Feb-2001

30-Apr-2001

30-Jun-2001

31-Aug-2001

31-Oct-2001

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

NumberMonths — Number of months in future (positive) or past (negative)
positive or negative integers

Number of months in future (positive) or past (negative), specified as an N-by-1 or 1-by-N
vector containing positive or negative integers.
Data Types: double

DayFlag — Flag for how actual day number for target date in future or past month is
determined
0 (day number should be the day in the future or past month corresponding to the actual
day number of the start date) (default) | numeric with values 0, 1, or 2
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Flag for how the actual day number for the target date in future or past month is
determined, specified as an N-by-1 or 1-by-N vector using a numeric with values0, 1, or 2.

Possible values are:

• 0 (default) = day number should be the day in the future or past month corresponding
to the actual day number of the start date.

• 1 = day number should be the first day of the future or past month.
• 2 = day number should be the last day of the future or past month.

This flag has no effect if EndMonthRule is set to 1.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis to be used when determining the past or future date, specified as a
scalar value with an integer with value of 0 through 13, or an N-by-1 or 1-by-N vector of
integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
0 (not in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as a scalar with a
nonnegative integer 0 or 1, or as an N-by-1 or 1-by-N vector of values 0 or 1.

• 0 = Ignore rule, meaning that rule is not in effect.
• 1 = Set rule on, meaning that if you are beginning on the last day of a month, and the

month has 30 or fewer days, you will end on the last actual day of the future or past
month regardless of whether that month has 28, 29, 30 or 31 days.

Data Types: logical

Output Arguments

TargetDate — Target date in the future or past month
vector

Target date in the future or past month, returned as an N-by-1 or 1-by-N vector
containing the serial date number (default) or datetime (if StartDate is a datetime
array) of the target date.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
datestr | datetime | datevec | days360 | days365 | daysact | daysdif |
wrkdydif

Introduced before R2006a
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datewrkdy
Date of future or past workday

Syntax
EndDate = datewrkdy(StartDate,NumberWorkDays,NumberHolidays)

Description
EndDate = datewrkdy(StartDate,NumberWorkDays,NumberHolidays)

returns the serial number of the date a given number of workdays before or after the
start date.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, ifStartDate is an n-
row character array of date character vectors, then NumberWorkDays must be an N-by-1
vector of integers or a single integer. EndDate is then an N-by-1 vector of date numbers.

If StartDate is a serial date number or date character vector, EndDate is returned as
a date number. Use datestr to convert serial date numbers to formatted date character
vectors.

If StartDate is a datetime array, then EndDate is returned as a datetime array.

Examples

Determine the Date for a Future Workday

Determine the EndDate for a future workday using a date character vector for
StartDate.

StartDate = '20-Dec-1994';

NumberWorkDays = 16;

NumberHolidays = 2;

EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)
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datestr(EndDate)

EndDate =

      728671

ans =

12-Jan-1995

Determine the EndDate for a future workday using a datetime array for StartDate.

EndDate = datewrkdy(datetime('12-dec-2000','Locale','en_US'), 16, 2)

EndDate = 

  datetime

   04-Jan-2001

Determine the EndDate for future workdays using a vector for NumberWorkDays.

NumberWorkDays = [16; 20; 44];

EndDate = datewrkdy('12-dec-2000', NumberWorkDays, 2);

datestr(EndDate)

ans =

04-Jan-2001

10-Jan-2001

13-Feb-2001

• “Handle and Convert Dates” on page 2-4

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object
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Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

NumberWorkDays — Number of work or business days in future (positive) or past (negative)
positive or negative integers

Number of work or business days in future (positive) or past (negative) that includes
the starting date, specified as an N-by-1 or 1-by-N vector containing positive or negative
integers.

NumberHolidays and NumberWorkDays must have the same sign.

Data Types: double

NumberHolidays — Number of holidays within NumberWorkDays
positive or negative integers

Number of holidays within NumberWorkDays, specified as positive or negative integers
using an N-by-1 or 1-by-N containing values for the number of days movement in terms of
holidays into the future (if positive) or past (if negative).

NumberHolidays and NumberWorkDays must have the same sign.

Data Types: double

Output Arguments

EndDate — Date of future or past workday
vector

Date of future or past workday, returned as an N-by-1 or 1-by-N vector containing the
serial date number (default) or the datetime (if StartDate is a datetime array) of the
future or past date.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4
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See Also
busdate | datetime | holidays | isbusday | wrkdydif

Introduced before R2006a
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day

Day of month

Syntax

DayMonth = day(Date)

DayMonth = day(Date,F)

Description

DayMonth = day(Date) returns the day of the month given a serial date number or
date character vector.

DayMonth = day(Date,F) returns the day of the month, given a serial date number or
character vector and an optional argument, F, defining the date format for Date.

Examples

Determine the Day of the Month for Various Date Formats

Find the day of the month using a serial date number.

DayMonth = day(730544)

DayMonth =

    28

Find the day of the month using a date character vector.

DayMonth = day('2/28/00')
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DayMonth =

    28

Find the day of the month using a date character vector with an optional argument F for
a country-specific date format.

DayMonth = day('28/02/00','dd/mm/yyyy')

DayMonth =

    28

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine day of month
serial date number | date character vector | cell array of date character vectors

Date to determine day of month, specified as a serial date number, date character vector,
or cell array of date character vectors.

All the date character vectors in Date must have same date character vector format. For
more information on supported date character vector formats, see datestr.

Example: DayMonth = day({'2/28/00','3/10/06'})

Data Types: single | double | char | cell

F — Country-specific date format
character vector designating date format

Country-specific date format, specified as a character vector to designate the date format
for the input argument Date. For more information on supported date character vector
format symbols, see datestr. Note, formats with 'Q' are not accepted.

Example: DayMonth = day('28/02/00','dd/mm/yyyy')

Data Types: char

18-492



 day

Output Arguments

DayMonth — Day of the month
nonnegative integer

Day of the month, returned as a nonnegative integer, given a serial date number or date
character vector.

See Also
datestr | datevec | eomday | month | year

Introduced before R2006a
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days252bus

Number of business days between dates

Syntax

NumberDays = days252bus(StartDate, EndDate)

NumberDays = days252bus(StartDate, EndDate, HolidayVector)

Arguments

StartDate N-by-1 or 1-by-N vector or scalar value, in serial date number, date
character vector, or datetime array form, representing the start
date.

EndDate N-by-1 or 1-by-N vector or scalar value, in serial date number, date
character vector, or datetime array form, representing the end date.

HolidayVector (Optional) N-by-1 or 1-by-N vector, in serial date number, date
character vector, or datetime array form, representing holidays.

Description

NumberDays = days252bus(StartDate, EndDate, HolidayVector) computes
the number of business days (that is, non-holiday or non-weekend) between the two
input dates. Note that a holiday vector may be optionally specified; if it is not, then the
holidays.m file is used to determine the holidays.

days252bus returns NumberDays, a N-by-1 or 1-by-N vector or scalar value for the
number of days between two dates. NumberDays returns as a double for serial date
number, date character vector, and datetime inputs.
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Examples

Computes the Number of Business Days Between Two Input Dates

This example shows how to compute the number of business days (i.e. non-holiday or
non-weekend) between two dates using the days252bus convention.

NumberDays = days252bus('1/1/2009', '8/1/2009')

NumberDays =

   146

Computes the Number of Business Days Between Two Input Dates Using a datetime Array

This example shows how to compute the number of business days (i.e. non-holiday or
non-weekend) between two dates, specified as a datetime array, using the days252bus
convention.

NumberDays = days252bus(datetime('1-Jan-2009','Locale','en_US'), '8/1/2009')

NumberDays =

   146

• “Handle and Convert Dates” on page 2-4

See Also
datetime | days360psa | days365 | daysact | daysdif

Introduced before R2006a
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days360
Days between dates based on 360-day year

Syntax

NumDays = days360(StartDate,EndDate)

Description

NumDays = days360(StartDate,EndDate) returns the number of days between
StartDate and EndDate based on a 360-day year (that is, all months contain 30 days).
If EndDate is earlier than StartDate, NumDays is negative.

Either input argument can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if StartDate
is an N-row character array of date character vectors, then EndDate must be an N-by-1
vector of integers or a single integer. NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based on a 360-Day Year

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = days360('15-jan-2000', '15-mar-2000')

NumDays =

    60

Determine the NumDays using a datetime array for StartDate.

NumDays = days360(datetime('15-jan-2000','Locale','en_US'), '15-mar-2000')
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NumDays =

    60

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360('15-jan-2000', MoreDays)

NumDays =

    60

    90

   150

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments

NumDays — Number of days between two dates
vector
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Number of days between two dates, returned as a scalar or an N-by-1 or 1-by-N vector
containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datetime | days365 | daysact | daysdif | wrkdydif | yearfrac

Introduced before R2006a
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days360e
Days between dates based on 360-day year (European)

Syntax

NumDays = days360e(StartDate,EndDate)

Description

NumDays = days360e(StartDate,EndDate) returns the number of days between
StartDate and EndDate based on a 360-day year (that is, all months contain 30 days).
If EndDate is earlier than StartDate, NumDays is negative. This day count convention
is used primarily in Europe. Under this convention, all months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain
the same number of values or a single value that applies to all. For example, if
StartDate is an N-row character array of date character vectors, then EndDate must
be an N-by-1 vector of integers or a single integer. “Determine the Number of Days
Between Two Dates Given a Basis of 30/360 Based on European Convention” on page
18-499NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on
European Convention

Determine the NumDays using date character vectors for StartDate and EndDate for
the month of January.

StartDate = '1-Jan-2002';

EndDate = '1-Feb-2002';

NumDays = days360e(StartDate, EndDate)

NumDays =
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    30

Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360e(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays =

    30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360e('15-jan-2000', MoreDays)

NumDays =

    60

    90

   150

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
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Data Types: double | char | datetime

Output Arguments

NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on European
convention, returned as a scalar or an N-by-1 or 1-by-N vector containing the number of
days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datetime | days360 | days360isda | days360psa

Introduced before R2006a
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days360isda
Days between dates based on 360-day year (International Swap Dealer Association
(ISDA) compliant)

Syntax

NumDays = days360isda(StartDate,EndDate)

Description

NumDays = days360isda(StartDate,EndDate) returns the number of days between
StartDate and EndDate based on a 360-day year (that is, all months contain 30 days)
and is International Swap Dealer Association (ISDA) compliant. If EndDate is earlier
than StartDate, NumDays is negative. Under this convention, all months contain 30
days.

Either input argument can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if StartDate
is an N-row character array of date character vectors, then EndDate must be an N-by-1
vector of integers or a single integer. NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on ISDA
Compliance

Determine the NumDays using date character vectors for StartDate and EndDate for
the month of January.

StartDate = '1-Jan-2002';

EndDate = '1-Feb-2002';

NumDays = days360isda(StartDate, EndDate)

NumDays =
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    30

Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360isda(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays =

    30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360isda('15-jan-2000', MoreDays)

NumDays =

    60

    90

   150

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
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Data Types: double | char | datetime

Output Arguments

NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on International Swap
Dealer Association (ISDA) compliance, returned as a scalar or an N-by-1 or 1-by-N vector
containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datetime | days360 | days360e

Introduced before R2006a
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days360psa
Days between dates based on 360-day year (Public Securities Association (PSA)
compliant)

Syntax

NumDays = days360isda(StartDate,EndDate)

Description

NumDays = days360isda(StartDate,EndDate) returns the number of days between
StartDate and EndDate based on a 360-day year (that is, all months contain 30
days) and is Public Securities Association (PSA) compliant. If EndDate is earlier than
StartDate, NumDays is negative. Under this convention, all months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if StartDate
is an N-row character array of date character vectors, then EndDate must be an N-by-1
vector of integers or a single integer. NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Given a Basis of 30/360 Based on PSA
Compliance

Determine the NumDays using date character vectors for StartDate and EndDate for
the month of January.

StartDate = '1-Jan-2002';

EndDate = '1-Feb-2002';

NumDays = days360psa(StartDate, EndDate)

NumDays =

    30
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Determine the NumDays in the month of January using a datetime array for StartDate.

NumDays = days360psa(datetime('1-Jan-2002','Locale','en_US'), '1-Feb-2002')

NumDays =

    30

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360psa('15-jan-2000', MoreDays)

NumDays =

    60

    90

   150

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime
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Output Arguments

NumDays — Number of days between two dates given a basis of 30/360 based on European
convention
vector

Number of days between two dates given a basis of 30/360 based on Public Securities
Association (PSA) compliance, returned as a scalar or an N-by-1 or 1-by-N vector
containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datetime | days360 | days360e | days360isda

Introduced before R2006a
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days365
Days between dates based on 365-day year

Syntax

NumDays = days365(StartDate,EndDate)

Description

NumDays = days365(StartDate,EndDate) returns the number of days between
StartDate and EndDate based on a 365-day year. All months contain their actual
number of days. February always contains 28 days.

If EndDate is earlier than StartDate, NumDays is negative. Under this convention, all
months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if StartDate
is an N-row character array of date character vectors, then EndDate must be an N-by-1
vector of integers or a single integer. NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based on a 365-Day Year

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = days365('15-jan-2000', '15-mar-2000')

NumDays =

    59

Determine the NumDays using a datetime array for StartDate.

NumDays = days365(datetime('15-jan-2000','Locale','en_US'), '15-mar-2000')
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NumDays =

    59

Determine the NumDays using a vector for EndDate.

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days365('15-jan-2000', MoreDays)

NumDays =

    59

    90

   151

• “Handle and Convert Dates” on page 2-4

Input Arguments
StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Output Arguments
NumDays — Number of days between two dates based on 365-day year
vector
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Number of days between two dates based on a 365-day year, returned as a scalar or an N-
by-1 or 1-by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datetime | days360 | daysact | daysdif | wrkdydif | yearfrac

Introduced before R2006a
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daysact
Actual number of days between dates

Syntax

NumDays = daysact(StartDate)

NumDays = daysact(StartDate,EndDate)

Description

NumDays = daysact(StartDate) returns the actual number of days between the
MATLAB base date and StartDate. In MATLAB, the base date 1 is 1-Jan-0000 A.D.
See datenum for a similar function.

NumDays = daysact(StartDate,EndDate) returns the actual number of days
between StartDate and EndDate.

If EndDate is earlier than StartDate, NumDays is negative. Under this convention, all
months contain 30 days.

Either input argument can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if StartDate
is an N-row character array of date character vectors, then EndDate must be an N-by-1
vector of integers or a single integer. NumDays is then an N-by-1 vector of date numbers.

Examples

Determine the Number of Days Between Two Dates Based the Actual Number of Days

Determine the NumDays using date character vectors for StartDate and EndDate.

NumDays = daysact('7-sep-2002',  '25-dec-2002')

NumDays =
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   109

Determine the NumDays using a datetime array for StartDate.

NumDays = daysact(datetime('7-sep-2002','Locale','en_US'),  '25-dec-2002')

NumDays =

   109

Determine the NumDays using a vector for EndDate.

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];

NumDays = daysact(MoreDays, '12/25/2002')

NumDays =

   109

    64

    50

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
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Data Types: double | char | datetime

Output Arguments

NumDays — Number of days between two dates based actual number of days
vector

Number of days between two dates based on the actual number of days, returned as a
scalar or an N-by-1 or 1-by-N vector containing the number of days.

NumDays returns as a double for serial date number, date character vector, or datetime
inputs for StartDate and EndDate.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

References

Addendum to Securities Industry Association, Standard Securities Calculation Methods:
Fixed Income Securities Formulas for Analytic Measures. Vol. 2, Spring 1995.

See Also
datenum | datetime | datevec | days360 | days365 | daysdif

Introduced before R2006a
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daysadd

Date away from starting date for any day-count basis

Syntax

NewDate = daysadd(StartDate,NumDays)

NewDate = daysadd(StartDate,NumDays,Basis)

Description

NewDate = daysadd(StartDate,NumDays) returns a date NewDate number of days
away from StartDate.

If StartDate is a serial date number or date character vector, NewDate is returned as a
date number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

NewDate = daysadd(StartDate,NumDays,Basis) returns a date NewDate number
of days away from StartDate, using the given day-count Basis.

If StartDate is a serial date number or date character vector, NewDate is returned as a
date number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

Examples

Determine the Date for Given Number of Days Away From StartDate

Determine the NewDate using a date character vector for StartDate.

NewDate = daysadd('01-Feb-2004', 31)

datestr(NewDate)
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NewDate =

      732009

ans =

03-Mar-2004

Determine the NewDate using a datetime array for StartDate.

NewDate = daysadd(datetime('01-Feb-2004','Locale','en_US'), 31)

NewDate = 

  datetime

   03-Mar-2004

Determine the NewDate using a vector for StartDate.

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];

NewDate = daysadd(MoreDays, 31 ,2)

datestr(NewDate)

NewDate =

      731497

      731542

      731556

ans =

08-Oct-2002

22-Nov-2002

06-Dec-2002

• “Handle and Convert Dates” on page 2-4
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Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

NumDays — Number of days from StartDate
positive or negative integer

Number of days from StartDate, specified an N-by-1 or 1-by-N vector using positive or
negative integers. Enter a negative integer for dates before start date.
Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

18-516



 daysadd

• 13 = BUS/252

For more information, see basis.

Note When using the 30/360 day-count basis, it is not always possible to find the exact
date NewDate number of days away because of a known discontinuity in the method of
counting days. A warning is displayed if this occurs.

Data Types: single | double

Output Arguments

NewDate — Date for given number of days away from StartDate
vector

Date for given number of days away from StartDate, returned as a scalar or an N-by-1
vector containing dates.

If StartDate is a serial date number or date character vector, NewDate is returned as a
date number.

If StartDate is a datetime array, then NewDate is returned as a datetime array.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

References

Stigum, Marcia L. and Franklin Robinson. Money Market and Bond Calculations.
Richard D. Irwin, 1996, ISBN 1-55623-476-7

See Also
datetime | daysdif

18-517



18 Functions — Alphabetical List

Introduced before R2006a
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daysdif
Days between dates for any for any day-count basis

Syntax

NumDays = daysdif(StartDate,EndDate)

NumDays = daysdif(StartDate,EndDate,Basis)

Description

NumDays = daysdif(StartDate,EndDate) returns the number of days between
dates StartDate and EndDate. The first date for StartDate is not included when
determining the number of days between first and last date.

Any input argument can contain multiple values, but if so, the other inputs must
contain the same number of values or a single value that applies to all. For example,
if StartDate is an n-row array of character vector dates, thenEndDate must be an n-
row array of character vector dates or a single date. NumDays is then an n-by-1 vector of
numbers.

NumDays = daysdif(StartDate,EndDate,Basis) returns the number of days
between dates StartDate and EndDate using the given day-count, Basis). The first
date for StartDate is not included when determining the number of days between first
and last date.

Any input argument can contain multiple values, but if so, the other inputs must
contain the same number of values or a single value that applies to all. For example,
if StartDate is an n-row array of character vector dates, thenEndDate must be an n-
row array of character vector dates or a single date. NumDays is then an n-by-1 vector of
numbers.

Examples

Determine the Number of Days Between StartDate and EndDate

Determine the NumDays using date character vectors for StartDate and EndDate.
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NumDays = daysdif('3/1/99', '3/1/00', 1)

NumDays =

   360

Determine the NumDays using a datetime array for StartDate.

NumDays = daysdif(datetime('1-Mar-1999','Locale','en_US'), '3/1/00', 1)

NumDays =

   360

Determine the NumDays using a vector for EndDate.

MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003'];

NumDays = daysdif('3/1/98', MoreDays)

NumDays =

        1096

        1461

        1826

• “Handle and Convert Dates” on page 2-4
• “Format Currency” on page 2-11

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime
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EndDate — End date
serial date number | date character vector | datetime object

End date, specified as a scalar or an N-by-1 or 1-by-N vector using serial date numbers,
date character vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis of the instrument, specified as an integer with a value of 0 through 13 or
a N-by-1 vector of integers with values of 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

Output Arguments

NumDays — Number of days between dates StartDate and EndDate
integer
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Number of days between the StartDate and EndDate. NumDays returns as a double for
serial date number, date character vector, and datetime inputs.

The first date for (StartDate) is not included when determining the number of days
between first and last date.

References

Stigum, Marcia L. and Franklin Robinson. Money Market and Bond Calculations.
Richard D. Irwin, 1996, ISBN 1-55623-476-7

See Also
datetime | dec2thirtytwo

Introduced before R2006a
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dec2thirtytwo

Decimal to thirty-second quotation

Syntax

[OutNumber,Fractions] = dec2thirtytwo(InNumber,Accuracy)

Description

[OutNumber,Fractions] = dec2thirtytwo(InNumber,Accuracy) changes a
decimal price quotation for a bond or bond future to a fraction with a denominator of 32.

Examples

Convert Decimal to Thirty-Second Quotation

This example shows two bonds that are quoted with decimal prices of 101.78 and 102.96.
These prices are converted to fractions with a denominator of 32.

InNumber  = [101.78; 102.96];

[OutNumber, Fractions] = dec2thirtytwo(InNumber)

OutNumber =

   101

   102

Fractions =

    25

    31

• “Format Currency” on page 2-11
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Input Arguments

InNumber — Input number
numeric decimal fraction

Input number, specified as an N-by-1 vector of numeric decimal fractions.

Data Types: double

Accuracy — Rounding
1 (round down to nearest thirty second) (default) | numeric with values 1, 2, 4 or 10

Rounding, specified as an N-by-1 vector of accuracy desired. with numeric values of 1,
2, 4 or 10. The values are: 1, round down to nearest thirty second, 2 (nearest half), 4
(nearest quarter), or 10 (nearest decile).

Data Types: double

Output Arguments

OutNumber — Output number which is InNumber rounded downward to closest integer
numeric

Output number which is InNumber rounded downward to closest integer, returned as a
numeric value.

Fractions — Fractional part in units of thirty-second
numeric

Fractional part in units of thirty-second, returned as a numeric value. The Fractions 
output conforms to accuracy as prescribed by the input Accuracy.

See Also
thirtytwo2dec

Introduced before R2006a
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depfixdb
Fixed declining-balance depreciation schedule

Syntax
Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)

Arguments

Cost Scalar for the initial value of the asset.
Salvage Scalar for the salvage value of the asset.
Life Scalar value for the life of the asset in years.
Period Scalar integer for the number of years to calculate.
Month (Optional) Scalar value for the number of months in the first year of

asset life. Default = 12.

Description

Depreciation = depfixdb(Cost, Salvage, Life, Period, Month) calculates
the fixed declining-balance depreciation for each period.

Examples

Compute the Fixed Declining-Balance Depreciation

This example shows how to calculate the depreciation for the first five years for a car is
purchased for $11,000, with a salvage value of $1500, and a lifetime of eight years.

Depreciation = depfixdb(11000, 1500, 8, 5)

Depreciation =
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   1.0e+03 *

    2.4251    1.8904    1.4737    1.1488    0.8955

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
depgendb | deprdv | depsoyd | depstln

Introduced before R2006a
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depgendb
General declining-balance depreciation schedule

Syntax
Depreciation = depgendb(Cost, Salvage, Life, Factor)

Arguments

Cost Cost of the asset.
Salvage Estimated salvage value of the asset.
Life Number of periods over which the asset is depreciated.
Factor Depreciation factor. Factor = 2 uses the double-declining-balance

method.

Description

Depreciation = depgendb(Cost, Salvage, Life, Factor) calculates the
declining-balance depreciation for each period.

Examples

Calculate the Declining-Balance Depreciation

A car is purchased for $10,000 and is to be depreciated over five years. The estimated
salvage value is $1000. Using the double-declining-balance method, the function
calculates the depreciation for each year and returns the remaining depreciable value at
the end of the life of the car.

Define the depreciation.

Life = 5;

Salvage = 0;
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Cost = 10000;

Factor=2;

Use depgendb to calculate the depreciation.

Depreciation = depgendb(10000, 1000, 5, 2)

Depreciation =

   1.0e+03 *

    4.0000    2.4000    1.4400    0.8640    0.2960

The large value returned at the final year is the sum of the depreciation over
the life time and is equal to the difference between the Cost and Salvage.
The value of the asset in the final year is computed as (Cost - Salvage) =
Sum_Depreciation_Upto_Final_Year.

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
depfixdb | deprdv | depsoyd | depstln

Introduced before R2006a
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deprdv
Remaining depreciable value

Syntax
Value = deprdv(Cost, Salvage, Accum)

Arguments

Cost Cost of the asset.
Salvage Salvage value of the asset.
Accum Accumulated depreciation of the asset for prior periods.

Description

Value = deprdv(Cost, Salvage, Accum) returns the remaining depreciable value
for an asset.

Examples

Compute the Remaining Depreciable Value for an Asset

This example shows how to find the remaining depreciable value after six years for the
cost of an asset for $13,000 with a life of 10 years. The salvage value is $1000.

Accum = depstln(13000, 1000, 10) * 6

Value = deprdv(13000, 1000, 7200)

Accum =

        7200
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Value =

        4800

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
depfixdb | depgendb | depsoyd | depstln

Introduced before R2006a
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depsoyd
Sum of years' digits depreciation

Syntax
Sum = depsoyd(Cost, Salvage, Life)

Arguments

Cost Cost of the asset.
Salvage Salvage value of the asset.
Life Depreciable life of the asset in years.

Description

Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation for an asset
using the sum of years' digits method. Sum is a 1-by-Life vector of depreciation values
with each element corresponding to a year of the asset's life.

Examples

Compute the Depreciation for an Asset Using the Sum of Years' Digits Method

This example shows how to calculate the depreciation for an asset using the sum of years'
digits method where the asset is $13,000 with a life of 10 years. The salvage value of the
asset is $1000.

Sum = depsoyd(13000, 1000, 10)'

Sum =

   1.0e+03 *
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    2.1818

    1.9636

    1.7455

    1.5273

    1.3091

    1.0909

    0.8727

    0.6545

    0.4364

    0.2182

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
depfixdb | depgendb | deprdv | depstln

Introduced before R2006a
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depstln
Straight-line depreciation schedule

Syntax
Depreciation = depstln(Cost, Salvage, Life)

Arguments

Cost Cost of the asset.
Salvage Salvage value of the asset.
Life Depreciable life of the asset in years.

Description

Depreciation = depstln(Cost, Salvage, Life) calculates straight-line
depreciation for an asset.

Examples

Compute the Straight-Line Depreciation for an Asset

This example shows how to calculate the straight-line depreciation for an asset that costs
$13,000 with a life of 10 years. The salvage value of the asset is $1000.

Depreciation = depstln(13000, 1000, 10)

Depreciation =

        1200

• “Analyzing and Computing Cash Flows” on page 2-17
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See Also
depfixdb | depgendb | deprdv | depsoyd

Introduced before R2006a
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diff
Differencing

Syntax
newfts = diff(oldfts)

Description

diff computes the differences of the data series in a financial time series object. It
returns another time series object containing the difference.

newfts = diff(oldfts) computes the difference of all the data in the data series of
the object oldfts and returns the result in the object newfts. newfts is a financial
time series object containing the same data series (names) as the input oldfts.

See Also
diff

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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diffusion class

Diffusion-rate model component

Description

The diffusion constructor specifies the diffusion-rate component of continuous-time
stochastic differential equations (SDEs). The diffusion-rate specification supports the
simulation of sample paths of NVARS state variables driven by NBROWNS Brownian
motion sources of risk over NPERIODS consecutive observation periods, approximating
continuous-time stochastic processes.

The diffusion-rate specification can be any NVARS-by-NBROWNS matrix-valued function G
of the general form:

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

And a diffusion-rate specification is associated with a vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• D is an NVARS-by-NVARS diagonal matrix, in which each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.
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• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.

The diffusion-rate specification is flexible, and provides direct parametric support for
static volatilities and state vector exponents. It is also extensible, and provides indirect
support for dynamic/nonlinear models via an interface. This enables you to specify
virtually any diffusion-rate specification.

Construction
DiffusionRate = diffusion(Alpha,Sigma) constructs a default diffusion object.

For more information on constructing a diffusion object, see drift.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Alpha — Return represents the parameter D
array or deterministic function of time

Alpha represents the parameter D, specified as an array or deterministic function of
time.

If you specify Alpha as an array, it represents an NVARS-by-1 column vector of
exponents.
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As a deterministic function of time, when Alpha is called with a real-valued scalar time t
as its only input, Alpha must produce an NVARS-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVARS-by-1
column vector of exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS 2-dimensional
matrix of instantaneous volatility rates. In this case, each row of Sigma corresponds to
a particular state variable. Each column corresponds to a particular Brownian source of
uncertainty, and associates the magnitude of the exposure of state variables with sources
of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Note: Although the diffusion constructor enforces no restrictions on the signs of these
volatility parameters, each parameter is specified as a positive value.

Properties

Rate — Composite diffusion-rate function
value stored from diffusion-rate function (default) | function accessible by (t, Xt)
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Composite diffusion-rate function, specified as: G(t,Xt)). The function stored in Rate fully
encapsulates the combined effect of Alpha and Sigma where:

• Alpha is the state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma is the volatility rate, V(t,Xt), of G(t,Xt).

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Methods

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a diffusion Object

Create a diffusion-rate function G:

G = diffusion(1, 0.3)  % Diffusion rate function G(t,X)

G = 

   Class DIFFUSION: Diffusion Rate Specification 

   --------------------------------------------- 

       Rate: diffusion rate function G(t,X(t))  

      Alpha: 1

      Sigma: 0.3

The diffusion object displays like a MATLAB® structure and contains supplemental
information, namely, the object's class and a brief description. However, in contrast to
the SDE representation, a summary of the dimensionality of the model does not appear,
because the diffusion class creates a model component rather than a model. G does not
contain enough information to characterize the dimensionality of a problem.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
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• “Parametric Models” on page 17-25

Algorithms

When you specify the input arguments Alpha and Sigma as MATLAB arrays, they are
associated with a specific parametric form. By contrast, when you specify either Alpha or
Sigma as a function, you can customize virtually any diffusion-rate specification.

Accessing the output diffusion-rate parameters Alpha and Sigma with no inputs
simply returns the original input specification. Thus, when you invoke diffusion-rate
parameters with no inputs, they behave like simple properties and allow you to test the
data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

When you invoke diffusion-rate parameters with inputs, they behave like functions,
giving the impression of dynamic behavior. The parameters Alpha and Sigma accept the
observation time t and a state vector Xt, and return an array of appropriate dimension.
Specifically, parameters Alpha and Sigma evaluate the corresponding diffusion-rate
component. Even if you originally specified an input as an array, diffusion treats it as
a static function of time and state, by that means guaranteeing that all parameters are
accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.
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Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
drift | sdeddo

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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diffusion
Construct diffusion-rate model components

Syntax

DiffusionRate = diffusion(Alpha, Sigma)

Class

diffusion

Description

The diffusion constructor specifies the diffusion-rate component of continuous-time
stochastic differential equations (SDEs). The diffusion-rate specification supports the
simulation of sample paths of NVARS state variables driven by NBROWNS Brownian
motion sources of risk over NPERIODS consecutive observation periods, approximating
continuous-time stochastic processes.

The diffusion-rate specification can be any NVARS-by-NBROWNS matrix-valued function G
of the general form:

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

associated with a vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• D is an NVARS-by-NVARS diagonal matrix, in which each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.
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• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.

The diffusion-rate specification is flexible, and provides direct parametric support for
static volatilities and state vector exponents. It is also extensible, and provides indirect
support for dynamic/nonlinear models via an interface. This enables you to specify
virtually any diffusion-rate specification.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Alpha Alpha determines the format of the parameter D. If you specify Alpha
as an array, it must be an NVARS-by-1 column vector of exponents. As a
deterministic function of time, when Alpha is called with a real-valued
scalar time t as its only input, Alpha must produce an NVARS-by-1 column
vector. If you specify Alpha as a function of time and state, it must return
an NVARS-by-1 column vector of exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V.
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If you specify Sigma as an array, it must be an NVARS-by-NBROWNS
2-dimensional matrix of instantaneous volatility rates. In this case,
each row of Sigma corresponds to a particular state variable. Each
column corresponds to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state variables with sources
of uncertainty. As a deterministic function of time, when Sigma is called
with a real-valued scalar time t as its only input, Sigma must produce an
NVARS-by-NBROWNS matrix. If you specify Sigma as a function of time and
state, it must return an NVARS-by-NBROWNS matrix of volatility rates when
invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Note: Although the diffusion constructor enforces no restrictions on the signs of these
volatility parameters, each parameter is usually specified as a positive value.

Output Arguments

DiffusionRate Object of class diffusion that encapsulates the composite
diffusion-rate specification, with the following displayed
parameters:

• Rate: The diffusion-rate function, G. Rate is the diffusion-
rate calculation engine. It accepts the current time t and an
NVARS-by-1 state vector Xt as inputs, and returns an NVARS-
by-1 diffusion-rate vector.

• Alpha: Access function for the input argument Alpha.
• Sigma: Access function for the input argument Sigma.

Examples

Create a diffusion Object

Create a diffusion-rate function G:
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G = diffusion(1, 0.3)  % Diffusion rate function G(t,X)

G = 

   Class DIFFUSION: Diffusion Rate Specification 

   --------------------------------------------- 

       Rate: diffusion rate function G(t,X(t))  

      Alpha: 1

      Sigma: 0.3

The diffusion object displays like a MATLAB® structure and contains supplemental
information, namely, the object's class and a brief description. However, in contrast to
the SDE representation, a summary of the dimensionality of the model does not appear,
because the diffusion class creates a model component rather than a model. G does not
contain enough information to characterize the dimensionality of a problem.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About

Algorithms

When you specify the input arguments Alpha and Sigma as MATLAB arrays, they are
associated with a specific parametric form. By contrast, when you specify either Alpha or
Sigma as a function, you can customize virtually any diffusion-rate specification.

Accessing the output diffusion-rate parameters Alpha and Sigma with no inputs
simply returns the original input specification. Thus, when you invoke diffusion-rate
parameters with no inputs, they behave like simple properties and allow you to test the
data type (double vs. function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.
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When you invoke diffusion-rate parameters with inputs, they behave like functions,
giving the impression of dynamic behavior. The parameters Alpha and Sigma accept the
observation time t and a state vector Xt, and return an array of appropriate dimension.
Specifically, parameters Alpha and Sigma evaluate the corresponding diffusion-rate
component. Even if you originally specified an input as an array, diffusion treats it as
a static function of time and state, by that means guaranteeing that all parameters are
accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
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Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
drift | sdeddo

Introduced in R2008a
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disc2zero
Zero curve given discount curve

Syntax
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,

Compounding, Basis)

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,

Name, Value)

Arguments

DiscRates Column vector of discount factors, as decimal fractions. In
aggregate, the factors in DiscRates constitute a discount curve for
the investment horizon represented by CurveDates.

CurveDates Column vector of maturity dates, specified as serial date numbers,
date character vectors, or datetime arrays, that correspond to the
discount factors in DiscRates.

Settle Settle is specified as a serial date numbers, date character
vectors, or datetime arrays and is the common settlement date for
the discount rates in DiscRates.

Ordered Input or Name–Value Pair Arguments

Enter the following inputs using an ordered syntax or as name-value pair arguments.
You cannot mix ordered syntax with name-value pairs.

Compounding

Scalar value representing the rate at which the output zero rates are compounded when
annualized. Allowed values are:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
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• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Default: 2 (default)

Basis

Day-count basis used for annualizing the output zero rates. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

Description
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,

Compounding, Basis) returns a zero curve given a discount curve and its maturity
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dates. If either inputs for CurveDates or Settle are datetime arrays, the output
CurveDates is returned as datetime arrays.

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,

Name, Value) returns a zero curve given a discount curve and its maturity dates
using optional name-value pair arguments. Specify optional comma-separated pairs of
Name,Value arguments. Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in
ZeroRates constitute a zero curve for the investment horizon
represented by CurveDates. The zero rates are the yields to
maturity on theoretical zero-coupon bonds.

CurveDates Column vector of maturity dates that correspond to the zero rates.
This vector is the same as the input vector CurveDates, but is
sorted by ascending maturity. If either inputs for CurveDates or
Settle are datetime arrays, the output CurveDates is returned
as datetime arrays.

Examples

Determine the Zero Curve Given a Discount Curve and Maturity Dates

Given the following discount factors DiscRates over a set of maturity dates
CurveDates, and a settlement date Settle:

DiscRates = [0.9996

             0.9947

             0.9896

             0.9866

             0.9826

             0.9786

             0.9745

             0.9665

             0.9552

             0.9466];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')
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              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set daily compounding for the output zero curve, on an actual/365 basis.

Compounding = 365;

Basis = 3;

Execute the function disc2zero which returns the zero curve ZeroRates at the
maturity dates CurveDates.

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...

Settle, Compounding, Basis)

ZeroRates =

    0.0487

    0.0510

    0.0523

    0.0524

    0.0530

    0.0526

    0.0530

    0.0532

    0.0549

    0.0536

CurveDates =

      730796

      730831

      730866

      730887

      730914

      730943
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      730971

      731027

      731098

      731167

For readability, DiscRates and ZeroRates are shown here only to the basis point.
However, MATLAB® software computed them at full precision. If you enter DiscRates
as shown, ZeroRates may differ due to rounding.

Determine the Zero Curve Given a Discount Curve and Maturity Dates Using datetime Inputs

Given the following discount factors, DiscRates, over a set of maturity dates,
CurveDates, and a settlement date, Settle, use datetime inputs to return the zero
curve, ZeroRates, at the maturity dates, CurveDates.

DiscRates = [0.9996

             0.9947

             0.9896

             0.9866

             0.9826

             0.9786

             0.9745

             0.9665

             0.9552

             0.9466];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Compounding = 365;

Basis = 3;

CurveDates = datetime(CurveDates,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');
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[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...

Settle, Compounding, Basis)

ZeroRates =

    0.0487

    0.0510

    0.0523

    0.0524

    0.0530

    0.0526

    0.0530

    0.0532

    0.0549

    0.0536

CurveDates = 

  10×1 datetime array

   06-Nov-2000

   11-Dec-2000

   15-Jan-2001

   05-Feb-2001

   04-Mar-2001

   02-Apr-2001

   30-Apr-2001

   25-Jun-2001

   04-Sep-2001

   12-Nov-2001

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21

See Also
datetime | zero2disc
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Introduced before R2006a
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discrate
Bank discount rate of money market security

Syntax
DiscRate = discrate(Settle, Maturity, Face, Price, Basis)

Arguments

Settle Enter as serial date numbers, date character vectors, or datetime
arrays. Settle must be earlier than Maturity.

Maturity Enter as serial date numbers, date character vectors, or datetime
arrays.

Face Redemption (par, face) value.
Price Price of the security.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Description
DiscRate = discrate(Settle, Maturity, Face, Price, Basis) finds the bank
discount rate of a security. The bank discount rate normalizes by the face value of the
security (for example, U. S. Treasury Bills) and understates the true yield earned by
investors.

Examples

Compute the Bank Discount Rate of a Security

This example shows how to find the bank discount rate of a security.

DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

DiscRate =

    0.0501

Compute the Bank Discount Rate of a Security Using datetime Inputs

This example shows how to use datetime inputs to find the bank discount rate of a
security.

DiscRate = discrate(datetime('12-jan-2000','Locale','en_US'), datetime('25-jun-2000','Locale','en_US'), 100, 97.74, 0)

DiscRate =

    0.0501

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21
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References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 1.

See Also
acrudisc | datetime | fvdisc | prdisc | ylddisc

Introduced before R2006a
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drift class

Drift-rate model component

Description

The drift constructor specifies the drift-rate component of continuous-time stochastic
differential equations (SDEs). The drift-rate specification supports the simulation of
sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic processes.

The drift-rate specification can be any NVARS-by-1 vector-valued function F of the general
form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

And a drift-rate specification is associated with a vector-valued SDE of the form

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• A and B are model parameters.

The drift-rate specification is flexible, and provides direct parametric support for static/
linear drift models. It is also extensible, and provides indirect support for dynamic/
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nonlinear models via an interface. This enables you to specify virtually any drift-rate
specification.

Construction

DriftRate = drift(A,B) constructs a default drift object.

For more information on constructing a drift object, see drift.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

A — A represents the parameter A
array or deterministic function of time

A represents the parameter A, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVARS-by-1 column vector of intercepts.

As a deterministic function of time, when A is called with a real-valued scalar time t
as its only input, A must produce an NVARS-by-1 column vector. If you specify A as a
function of time and state, it must generate an NVARS-by-1 column vector of intercepts
when invoked with two inputs:
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• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

B — B represents the parameter B
array or deterministic function of time

B represents the parameter B, specified as an array or deterministic function of time.

If you specify B as an array, it must be an NVARS-by-NVARS 2-dimensional matrix of state
vector coefficients.

As a deterministic function of time, when B is called with a real-valued scalar time t as
its only input, B must produce an NVARS-by-NVARS matrix. If you specify B as a function
of time and state, it must generate an NVARS-by-NVARS matrix of state vector coefficients
when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Properties

Rate — Composite drift-rate function
value stored from drift-rate function (default) | function accessible by F(t,Xt)

Composite drift-rate function, specified as F(t,Xt). The function stored in Rate fully
encapsulates the combined effect of A and B, where A and B are:

The drift object's displayed parameters are:

• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

Attributes:

SetAccess private
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GetAccess public

Data Types: struct | double

Methods

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.
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Examples

Create a drift Object

Create a drift-rate function F:

F = drift(0, 0.1)   % Drift rate function F(t,X)

F = 

   Class DRIFT: Drift Rate Specification  

   -------------------------------------  

      Rate: drift rate function F(t,X(t)) 

         A: 0

         B: 0.1

The drift object displays like a MATLAB® structure and contains supplemental
information, namely, the object's class and a brief description. However, in contrast to
the SDE representation, a summary of the dimensionality of the model does not appear,
because the drift class creates a model component rather than a model. F does not
contain enough information to characterize the dimensionality of a problem.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the input arguments A and B as MATLAB arrays, they are associated
with a linear drift parametric form. By contrast, when you specify either A or B as a
function, you can customize virtually any drift-rate specification.
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Accessing the output drift-rate parameters A and B with no inputs simply returns
the original input specification. Thus, when you invoke drift-rate parameters with no
inputs, they behave like simple properties and allow you to test the data type (double vs.
function, or equivalently, static vs. dynamic) of the original input specification. This is
useful for validating and designing methods.

When you invoke drift-rate parameters with inputs, they behave like functions, giving
the impression of dynamic behavior. The parameters A and B accept the observation
time t and a state vector Xt, and return an array of appropriate dimension. Specifically,
parameters A and B evaluate the corresponding drift-rate component. Even if you
originally specified an input as an array, drift treats it as a static function of time
and state, by that means guaranteeing that all parameters are accessible by the same
interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | sdeddo

More About
• Class Attributes
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• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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drift

Construct drift-rate model components

Syntax

DriftRate = drift(A, B)

Class

drift

Description

This constructor specifies the drift-rate component of continuous-time stochastic
differential equations (SDEs). The drift-rate specification supports the simulation of
sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic processes.

The drift-rate specification can be any NVARS-by-1 vector-valued function F of the general
form:

F t X A t B t Xt t( , ) ( ) ( )= +

associated with a vector-valued SDE of the form

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
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• dWt is an NBROWNS-by-1 Brownian motion vector.
• A and B are model parameters.

The drift-rate specification is flexible, and provides direct parametric support for static/
linear drift models. It is also extensible, and provides indirect support for dynamic/
nonlinear models via an interface. This enables you to specify virtually any drift-rate
specification.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

A This argument represents the parameter A. If you specify A as an array,
it must be an NVARS-by-1 column vector. As a deterministic function of
time, when A is called with a real-valued scalar time t as its only input, A
must produce an NVARS-by-1 column vector. If you specify A as a function
of time and state, it must return an NVARS-by-1 column vector when
invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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B This argument represents the parameter B. If you specify B as an array,
it must be an NVARS-by-NVARS 2-dimensional matrix. As a deterministic
function of time, when B is called with a real-valued scalar time t as its
only input, B must produce an NVARS-by-NVARS matrix. If you specify B as
a function of time and state, it must return an NVARS-by-NVARS column
vector when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Output Arguments

DriftRate Object of class drift that encapsulates the composite drift-rate
specification, with the following displayed parameters:

• Rate: The drift-rate function, F. Rate is the drift-rate calculation
engine. It accepts the current time t and an NVARS-by-1 state vector
Xt as inputs, and returns an NVARS-by-1 drift-rate vector.

• A: Access function for the input argument A.
• B: Access function for the input argument B.

Examples

Create a drift Object

Create a drift-rate function F:

F = drift(0, 0.1)   % Drift rate function F(t,X)

F = 

   Class DRIFT: Drift Rate Specification  

   -------------------------------------  

      Rate: drift rate function F(t,X(t)) 

         A: 0

         B: 0.1
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The drift object displays like a MATLAB® structure and contains supplemental
information, namely, the object's class and a brief description. However, in contrast to
the SDE representation, a summary of the dimensionality of the model does not appear,
because the drift class creates a model component rather than a model. F does not
contain enough information to characterize the dimensionality of a problem.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

More About

Algorithms

When you specify the input arguments A and B as MATLAB arrays, they are associated
with a linear drift parametric form. By contrast, when you specify either A or B as a
function, you can customize virtually any drift-rate specification.

Accessing the output drift-rate parameters A and B with no inputs simply returns
the original input specification. Thus, when you invoke drift-rate parameters with no
inputs, they behave like simple properties and allow you to test the data type (double vs.
function, or equivalently, static vs. dynamic) of the original input specification. This is
useful for validating and designing methods.

When you invoke drift-rate parameters with inputs, they behave like functions, giving
the impression of dynamic behavior. The parameters A and B accept the observation
time t and a state vector Xt, and return an array of appropriate dimension. Specifically,
parameters A and B evaluate the corresponding drift-rate component. Even if you
originally specified an input as an array, drift treats it as a static function of time
and state, by that means guaranteeing that all parameters are accessible by the same
interface.
• “SDEs” on page 17-2

18-568



 drift

• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References
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See Also
diffusion | sdeddo

Introduced in R2008a
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ecmlsrmle

Least-squares regression with missing data

Syntax

[Parameters, Covariance, Resid, Info] = ecmlsrmle(Data, Design,

MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only samples that
are entirely NaNs are ignored. (To ignore samples with at
least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-
by-NUMPARAMS matrix with known values. This structure
is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell
contains a NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed to have the
same Design matrix for each sample. If Design has
more than one cell, each cell contains a Design matrix
for each sample.

MaxIterations (Optional) Maximum number of iterations for the estimation
algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for estimation algorithm
based on changes in model parameter estimates. Default
value is sqrt(eps) which is about 1.0e-8 for double
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precision. The convergence test for changes in model
parameters is

 
Param Param TolParam Paramk k k- < ¥ +( )-1 1

  where Param represents the output Parameters, and
iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam ≤ 0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

TolObj (Optional) Convergence tolerance for estimation algorithm
based on changes in the objective function. Default value is
eps ∧ 3/4 which is about 1.0e-12 for double precision. The
convergence test for changes in the objective function is

Obj Obj TolObj Objk k k- < ¥ +( )-1 1

for iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam ≤ 0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

Param0 (Optional) NUMPARAMS-by-1 column vector that contains
a user-supplied initial estimate for the parameters of the
regression model. Default is a zero vector.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix that contains
a user-supplied initial or known estimate for the covariance
matrix of the regression residuals. Default is an identity
matrix.

For covariance-weighted least-squares calculations, this
matrix corresponds with weights for each series in the
regression. The matrix also serves as an initial guess for
the residual covariance in the expectation conditional
maximization (ECM) algorithm.
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CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. Compute the full covariance
matrix.

• 'diagonal' — Force the covariance matrix to be a
diagonal matrix.

Description

[Parameters, Covariance, Resid, Info] = ecmlsrmle(Data, Design,

MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

estimates a least-squares regression model with missing data. The model has the form

Data N Design Parameters Covariancek k∼ ¥( ),

for samples k = 1, ... , NUMSAMPLES.

ecmlsrmle estimates a NUMPARAMS-by-1 column vector of model parameters called
Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called
Covariance.

ecmlsrmle(Data, Design) with no output arguments plots the log-likelihood function
for each iteration of the algorithm.

To summarize the outputs of ecmlsrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of
the regression model's residuals. For least-squares models, this estimate may not be a
maximum likelihood estimate except under special circumstances.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression.

Another output, Info, is a structure that contains additional information from the
regression. The structure has these fields:
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• Info.Obj — A variable-extent column vector, with no more than MaxIterations
elements, that contain each value of the objective function at each iteration of the
estimation algorithm. The last value in this vector, Obj(end), is the terminal
estimate of the objective function. If you do least-squares, the objective function is the
least-squares objective function.

• Info.PrevParameters — NUMPARAMS-by-1 column vector of estimates for the model
parameters from the iteration just prior to the terminal iteration.

• Info.PrevCovariance — NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance parameters from the iteration just prior to the terminal iteration.

Notes

If doing covariance-weighted least-squares, Covar0 should usually be a diagonal
matrix. Series with greater influence should have smaller diagonal elements in Covar0
and series with lesser influence should have larger diagonal elements. Note that if
doing CWLS, Covar0 do not need to be a diagonal matrix even if CovarFormat =
'diagonal'.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES
≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due to NaN values in
Data are also ignored in the corresponding Design array.

• If Design is a 1-by-1 cell array, which has a single Design matrix for each sample,
no NaN values are permitted in the array. A model with this structure must have
NUMSERIES ≥ NUMPARAMS with rank(Design{1}) = NUMPARAMS.

• ecmlsrmle is more strict than mvnrmle about the presence of NaN values in the
Design array.

Use the estimates in the optional output structure Info for diagnostic purposes.
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Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

References

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd
Edition. John Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

Joe Sexton and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate of
EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

A. P. Dempster, N.M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete
Data via the EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39,
No. 1, 1977, pp. 1–37.

See Also
ecmlsrobj | ecmmvnrmle | ecmmvnrmle

Introduced in R2006a
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ecmlsrobj

Log-likelihood function for least-squares regression with missing data

Syntax

Objective = ecmlsrobj(Data, Design, Parameters, Covariance)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. Missing values are
represented as NaNs. Only samples that are entirely NaNs are
ignored. (To ignore samples with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

Covariance (Optional) NUMSERIES-by-NUMSERIES matrix that contains a user-
supplied estimate for the covariance matrix of the residuals of the
regression. Default is an identity matrix.
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Description

Objective = ecmlsrobj(Data, Design, Parameters, Covariance) computes a
least-squares objective function based on current parameter estimates with missing data.
Objective is a scalar that contains the least-squares objective function.

Notes

ecmlsrobj requires that Covariance be positive-definite.

Note that

ecmlsrobj(Data, Design, Parameters) = ecmmvnrobj(Data, ... 

Design, Parameters, IdentityMatrix)

where IdentityMatrix is a NUMSERIES-by-NUMSERIES identity matrix.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if NUMSERIES
≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

See Also
ecmlsrmle | mvnrmle

Introduced in R2006a
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ecmmvnrfish
Fisher information matrix for multivariate normal regression model

Syntax
Fisher = ecmmvnrfish(Data, Design, Covariance, Method,

MatrixFormat, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are represented as NaNs. Only samples that
are entirely NaNs are ignored. (To ignore samples with at
least one NaN, use mvnrfish.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-
by-NUMPARAMS matrix with known values. This structure
is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell
contains a NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed to have the
same Design matrix for each sample. If Design has
more than one cell, each cell contains a Design matrix
for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the residuals of the regression.

Method (Optional) Character vector that identifies method of
calculation for the information matrix:

• hessian — Default method. Use the expected Hessian
matrix of the observed log-likelihood function. This
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method is recommended since the resultant standard
errors incorporate the increased uncertainties due to
missing data.

• fisher — Use the Fisher information matrix.
MatrixFormat (Optional) Character vector that identifies parameters to be

included in the Fisher information matrix:

• full — Default format. Compute the full Fisher
information matrix for both model and covariance
parameter estimates.

• paramonly — Compute only components of the Fisher
information matrix associated with the model parameter
estimates.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a
full matrix.

• 'diagonal' — The covariance matrix is a diagonal
matrix.

Description

Fisher = ecmmvnrfish(Data, Design, Covariance, Method, MatrixFormat,

CovarFormat) computes a Fisher information matrix based on current maximum
likelihood or least-squares parameter estimates that account for missing data.

Fisher is a NUMPARAMS-by-NUMPARAMS Fisher information matrix or Hessian matrix.
The size of NUMPARAMS depends on MatrixFormat and on current parameter estimates.
If MatrixFormat = 'full',

NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2

If MatrixFormat = 'paramonly',

NUMPARAMS = NUMSERIES

Note ecmmvnrfish operates slowly if you calculate the full Fisher information matrix.
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Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Fisher Information” on page 9-6
• “Multivariate Normal Linear Regression” on page 9-2

See Also
ecmnmle  | ecmnstd

Introduced in R2006a
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ecmmvnrmle

Multivariate normal regression with missing data

Syntax

[Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data, Design,

MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector. Missing
values are represented as NaNs. Only samples that are
entirely NaNs are ignored. (To ignore samples with at least
one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-
by-NUMPARAMS matrix with known values. This structure
is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell
contains a NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed to have the
same Design matrix for each sample. If Design has more
than one cell, each cell contains a Design matrix for each
sample.

MaxIterations (Optional) Maximum number of iterations for the estimation
algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for estimation algorithm
based on changes in model parameter estimates. Default
value is sqrt(eps) which is about 1.0e-8 for double
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precision. The convergence test for changes in model
parameters is

Param Param TolParam Paramk k k- < ¥ +( )-1 1

where Param represents the output Parameters, and
iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam ≤ 0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

TolObj (Optional) Convergence tolerance for estimation algorithm
based on changes in the objective function. Default value is
eps ∧ 3/4 which is about 1.0e-12 for double precision. The
convergence test for changes in the objective function is

Obj Obj TolObj Objk k k- < ¥ +( )-1 1

for iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam  ≤ 0 and TolObj  ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

Param0 (Optional) NUMPARAMS-by-1 column vector that contains
a user-supplied initial estimate for the parameters of the
regression model.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix that contains
a user-supplied initial or known estimate for the covariance
matrix of the regression residuals.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. Compute the full covariance
matrix.

• 'diagonal' — Force the covariance matrix to be a
diagonal matrix.
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Description
[Parameters, Covariance, Resid, Info] = ecmmvnrmle(Data, Design,

MaxIterations, TolParam, TolObj, Param0, Covar0, CovarFormat)

estimates a multivariate normal regression model with missing data. The model has the
form

Data N Design Parameters Covariancek k∼ ¥( ),

for samples k = 1, ... , NUMSAMPLES.

ecmmvnrmle estimates a NUMPARAMS-by-1 column vector of model parameters called
Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called
Covariance.

ecmmvnrmle(Data, Design) with no output arguments plots the log-likelihood
function for each iteration of the algorithm.

To summarize the outputs of ecmmvnrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of
the regression model's residuals.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression. For
any missing values in Data, the corresponding residual is the difference between the
conditionally imputed value for Data and the model, that is, the imputed residual.

Note: The covariance estimate Covariance cannot be derived from the residuals.

Another output, Info, is a structure that contains additional information from the
regression. The structure has these fields:

• Info.Obj — A variable-extent column vector, with no more than MaxIterations
elements, that contain each value of the objective function at each iteration of the
estimation algorithm. The last value in this vector, Obj(end), is the terminal
estimate of the objective function. If you do maximum likelihood estimation, the
objective function is the log-likelihood function.

• Info.PrevParameters — NUMPARAMS-by-1 column vector of estimates
for the model parameters from the iteration just prior to the terminal
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iteration.nfo.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of estimates for
the covariance parameters from the iteration just prior to the terminal iteration.

Notes

ecmmvnrmle does not accept an initial parameter vector, since the parameters are
estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due to NaN values in
Data are also ignored in the corresponding Design array.

• If Design is a 1-by-1 cell array, which has a single Design matrix for each sample,
no NaN values are permitted in the array. A model with this structure must have
NUMSERIES ≥ NUMPARAMS with rank(Design{1}) = NUMPARAMS.

• ecmmvnrmle is more strict than mvnrmle about the presence of NaN values in the
Design array.

Use the estimates in the optional output structure Info for diagnostic purposes.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Multivariate Normal Linear Regression” on page 9-2
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See Also
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ecmmvnrobj
Log-likelihood function for multivariate normal regression with missing data

Syntax
Objective = ecmmvnrobj(Data, Design, Parameters, Covariance,

CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. Missing values are
represented as NaNs. Only samples that are entirely NaNs are
ignored. (To ignore samples with at least one NaN, use mvnrmle.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
of the residuals of the regression.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full
matrix.

18-585



18 Functions — Alphabetical List

• 'diagonal' — The covariance matrix is a diagonal matrix.

Description

Objective = ecmmvnrobj(Data, Design, Parameters, Covariance,

CovarFormat) computes a log-likelihood function based on current maximum likelihood
parameter estimates with missing data. Objective is a scalar that contains the least-
squares objective function.

Notes

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Multivariate Normal Linear Regression” on page 9-2

See Also
ecmmvnrmle | mvnrmle | mvnrobj

Introduced in R2006a
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ecmmvnrstd
Evaluate standard errors for multivariate normal regression model

Syntax
[StdParameters, StdCovariance] = ecmmvnrstd(Data, Design,

Covariance, Method, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. Missing values are
represented as NaNs. Only samples that are entirely NaNs are
ignored. (To ignore samples with at least one NaN, use mvnrstd.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
of the regression residuals.

Method (Optional) Character vector that identifies method of calculation for
the information matrix:

• hessian — Default method. Use the expected Hessian
matrix of the observed log-likelihood function. This method is
recommended since the resultant standard errors incorporate
the increased uncertainties due to missing data.
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• fisher — Use the Fisher information matrix.
CovarFormat (Optional) Character vector that specifies the format for the

covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full
matrix.

• 'diagonal' — The covariance matrix is a diagonal matrix.

Description

[StdParameters, StdCovariance] = ecmmvnrstd(Data, Design,

Covariance, Method, CovarFormat) evaluates standard errors for a multivariate
normal regression model with missing data. The model has the form

Data N Design Parameters Covariancek k∼ ¥( ),

for samples k = 1, ... , NUMSAMPLES.

ecmmvnrstd computes two outputs:

• StdParameters is a NUMPARAMS-by-1 column vector of standard errors for each
element of Parameters, the vector of estimated model parameters.

• StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors for each
element of Covariance, the matrix of estimated covariance parameters.

Note ecmmvnrstd operates slowly when you calculate the standard errors associated
with the covariance matrix Covariance.

Notes

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.
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• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Multivariate Normal Linear Regression” on page 9-2

References

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd
edition, John Wiley & Sons, Inc., 2002.

See Also
ecmmvnrmle | ecmmvnrstd

Introduced in R2006a
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ecmnfish
Fisher information matrix

Syntax
Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate
of Data

InvCovariance (Optional) Inverse of covariance matrix: inv(Covariance)
MatrixFormat (Optional) Character vector that identifies parameters

included in the Fisher information matrix. If
MatrixFormat = [] or '', the default method full is used.
The parameter choices are

• full — (Default) Compute full Fisher information
matrix.

• meanonly — Compute only components of the Fisher
information matrix associated with the mean.

Description

Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)

computes a NUMPARAMS-by-NUMPARAMS Fisher information matrix based on current
parameter estimates, where

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2  

if MatrixFormat = 'full' and
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NUMPARAMS = NUMSERIES 

if MatrixFormat = 'meanonly'.

The data matrix has NaNs for missing observations. The multivariate normal model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Fisher information matrix is of size NUMPARAMS-
by-NUMPARAMS. The first NUMSERIES parameters are estimates for the mean of the
data in Mean and the remaining NUMSERIES*(NUMSERIES + 1)/2 parameters are
estimates for the lower-triangular portion of the covariance of the data in Covariance,
in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS
= NUMSERIES, where the Fisher information matrix is computed for the mean
parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass
in the inverse, the routine computes it. You can obtain an approximation for the lower-
bound standard errors of estimation of the parameters from

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Fisher)));

Because of missing information, these standard errors can be smaller than the estimated
standard errors derived from the expected Hessian matrix. To see the difference,
compare to standard errors calculated with ecmnhess.

More About
• “Fisher Information” on page 9-6

See Also
ecmnhess | ecmnmle

Related Examples
• “Multivariate Normal Regression With Missing Data” on page 9-18

Introduced before R2006a
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ecmnhess
Hessian of negative log-likelihood function

Syntax
Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate
of Data

InvCovariance (Optional) Inverse of covariance matrix: inv(Covariance)
MatrixFormat (Optional) Character vector that identifies parameters

included in the Hessian matrix. If MatrixFormat = [] or
'', the default method full is used. The parameter choices
are:

• full — (Default) Compute full Hessian matrix.
• meanonly — Compute only components of the Hessian

matrix associated with the mean.

Description

Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)

computes a NUMPARAMS -by-NUMPARAMS Hessian matrix of the observed negative log-
likelihood function based on current parameter estimates, where

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2 

if MatrixFormat = 'full' and

NUMPARAMS = NUMSERIES 
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if MatrixFormat = 'meanonly'.

This routine is slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

The data matrix has NaNs for missing observations. The multivariate normal model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Hessian is a NUMPARAMS-by-NUMPARAMS matrix.

The first NUMSERIES parameters are estimates for the mean of the data in Mean and the
remaining NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates for the lower-
triangular portion of the covariance of the data in Covariance, in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS
= NUMSERIES, where the Hessian is computed for the mean parameters only. In this
format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass
in the inverse, the routine computes it.

The equation
Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Hessian)));

provides an approximation for the observed standard errors of estimation of the
parameters.

Because of the additional uncertainties introduced by missing information, these
standard errors can be larger than the estimated standard errors derived from the Fisher
information matrix. To see the difference, compare to standard errors calculated from
ecmnfish.

More About
• “Maximum Likelihood Estimation” on page 9-3

See Also
ecmnfish | ecmnmle

Introduced before R2006a
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ecmninit

Initial mean and covariance

Syntax

[Mean, Covariance] = ecmninit(Data, InitMethod)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. Missing values are
indicated by NaNs.

InitMethod (Optional) Character vector that identifies one of three defined
initialization methods to compute initial estimates for the mean
and covariance of the data. If InitMethod = [] or '', the default
method nanskip is used. The initialization methods are

• nanskip — (Default) Skip all records with NaNs.
• twostage — Estimate mean. Fill NaNs with the mean. Then

estimate the covariance.
• diagonal — Form a diagonal covariance.

Description

[Mean, Covariance] = ecmninit(Data, InitMethod) creates initial mean and
covariance estimates for the function ecmnmle. Mean is a NUMSERIES-by-1 column vector
estimate for the mean of Data. Covariance is a NUMSERIES-by-NUMSERIES matrix
estimate for the covariance of Data.
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More About

Algorithms

Model

The general model is

Z N Mean Covariance∼ , ,( )

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically distributed)
multivariate normal, and missing values are assumed to be missing at random (MAR).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its
advantages and disadvantages.

nanskip

The nanskip method works well with small problems (fewer than 10 series or with
monotone missing data patterns). It skips over any records with NaNs and estimates
initial values from complete-data records only. This initialization method tends to yield
fastest convergence of the ECM algorithm. This routine switches to the twostage
method if it determines that significant numbers of records contain NaN.

twostage

The twostage method is the best choice for large problems (more than 10 series).
It estimates the mean for each series using all available data for each series. It then
estimates the covariance matrix with missing values treated as equal to the mean
rather than as NaNs. This initialization method is robust but tends to result in slower
convergence of the ECM algorithm.
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diagonal

The diagonal method is a worst-case approach that deals with problematic data, such
as disjoint series and excessive missing data (more than 33% missing data). Of the
three initialization methods, this method causes the slowest convergence of the ECM
algorithm.
• “Mean and Covariance Estimation” on page 9-5

See Also
ecmnmle

Introduced before R2006a
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ecmnmle

Mean and covariance of incomplete multivariate normal data

Syntax

[Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations,

Tolerance, Mean0, Covar0)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector.
Missing values are indicated by NaNs. A sample is also
called an observation or a record.

InitMethod (Optional) Character vector that identifies one of three
defined initialization methods to compute initial estimates
for the mean and covariance of the data. If InitMethod
= [] or '', the default method nanskip is used. The
initialization methods are:

• nanskip — (Default) Skip all records with NaNs.
• twostage — Estimate mean. Fill NaNs with mean. Then

estimate covariance.
• diagonal — Form a diagonal covariance.

Note If you supply Mean0 and Covar0, InitMethod is
not executed.

MaxIterations (Optional) Maximum number of iterations for the
expectation conditional maximization (ECM) algorithm.
Default = 50.

Tolerance (Optional) Convergence tolerance for the ECM algorithm
(Default = 1.0e-8.) If Tolerance ≤ 0, perform maximum
iterations specified by MaxIterations and do not evaluate
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the objective function at each step unless in display mode, as
described below.

Mean0 (Optional) Initial NUMSERIES-by-1 column vector estimate
for the mean. If you leave Mean0 unspecified ([]), the
method specified by InitMethod is used. If you specify
Mean0, you must also specify Covar0.

Covar0 (Optional) Initial NUMSERIES-by-NUMSERIES matrix
estimate for the covariance, where the input matrix must
be positive-definite. If you leave Covar0 unspecified ([]),
the method specified by InitMethod is used. If you specify
Covar0, you must also specify Mean0.

Description

[Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations,

Tolerance, Mean0, Covar0) estimates the mean and covariance of a data set. If the
data set has missing values, this routine implements the ECM algorithm of Meng and
Rubin [2] with enhancements by Sexton and Swensen [3]. ECM stands for expectation
conditional maximization, a conditional maximization form of the EM algorithm of
Dempster, Laird, and Rubin [4].

This routine has two operational modes.

Display Mode

With no output arguments, this mode displays the convergence of the ECM algorithm.
It estimates and plots objective function values for each iteration of the ECM algorithm
until termination, as shown in the following plot.
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Display mode can determine MaxIter and Tolerance values or serve as a diagnostic
tool. The objective function is the negative log-likelihood function of the observed data
and convergence to a maximum likelihood estimate corresponds with minimization of the
objective.

Estimation Mode

With output arguments, this mode estimates the mean and covariance via the ECM
algorithm.

Examples

To see an example of how to use ecmnmle, run the program ecmguidemo.
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More About

Algorithms

Model

The general model is

Z N Mean Covariance∼ , ,( )

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent, identically distributed)
multivariate normal, and missing values are assumed to be missing at random (MAR).
See Little and Rubin [1] for a precise definition of MAR.

This routine estimates the mean and covariance from given data. If data values are
missing, the routine implements the ECM algorithm of Meng and Rubin [2] with
enhancements by Sexton and Swensen [3].

If a record is empty (every value in a sample is NaN), this routine ignores the record
because it contributes no information. If such records exist in the data, the number of
nonempty samples used in the estimation is ≤ NumSamples.

The estimate for the covariance is a biased maximum likelihood estimate (MLE). To
convert to an unbiased estimate, multiply the covariance by Count/(Count – 1), where
Count is the number of nonempty samples used in the estimation.

Requirements

This routine requires consistent values for NUMSAMPLES and NUMSERIES with
NUMSAMPLES > NUMSERIES. It must have enough nonmissing values to converge. Finally,
it must have a positive-definite covariance matrix. Although the references provide some
necessary and sufficient conditions, general conditions for existence and uniqueness
of solutions in the missing-data case, do not exist. The main failure mode is an ill-
conditioned covariance matrix estimate. Nonetheless, this routine works for most cases
that have less than 15% missing data (a typical upper bound for financial data).
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Initialization Methods

This routine has three initialization methods that cover most cases, each with its
advantages and disadvantages. The ECM algorithm always converges to a minimum of
the observed negative log-likelihood function. If you override the initialization methods,
you must ensure that the initial estimate for the covariance matrix is positive-definite.

The following is a guide to the supported initialization methods.

nanskip

The nanskip method works well with small problems (fewer than 10 series or with
monotone missing data patterns). It skips over any records with NaNs and estimates
initial values from complete-data records only. This initialization method tends to yield
fastest convergence of the ECM algorithm. This routine switches to the twostage
method if it determines that significant numbers of records contain NaN.

twostage

The twostage method is the best choice for large problems (more than 10 series).
It estimates the mean for each series using all available data for each series. It then
estimates the covariance matrix with missing values treated as equal to the mean
rather than as NaNs. This initialization method is robust but tends to result in slower
convergence of the ECM algorithm.

diagonal

The diagonal method is a worst-case approach that deals with problematic data, such
as disjoint series and excessive missing data (more than 33% of data missing). Of the
three initialization methods, this method causes the slowest convergence of the ECM
algorithm. If problems occur with this method, use display mode to examine convergence
and modify either MaxIterations or Tolerance, or try alternative initial estimates
with Mean0 and Covar0. If all else fails, try

Mean0 = zeros(NumSeries);

Covar0 = eye(NumSeries,NumSeries);

Given estimates for mean and covariance from this routine, you can estimate standard
errors with the companion routine ecmnstd.
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Convergence

The ECM algorithm does not work for all patterns of missing values. Although it works
in most cases, it can fail to converge if the covariance becomes singular. If this occurs,
plots of the log-likelihood function tend to have a constant upward slope over many
iterations as the log of the negative determinant of the covariance goes to zero. In some
cases, the objective fails to converge due to machine precision errors. No general theory
of missing data patterns exists to determine these cases. An example of a known failure
occurs when two time series are proportional wherever both series contain nonmissing
values.
• “Mean and Covariance Estimation” on page 9-5

References

[1] Little, Roderick J. A. and Donald B. Rubin. Statistical Analysis with Missing Data.
2nd Edition. John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe and Anders Rygh Swensen. “ECM Algorithms that Converge at the Rate
of EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society. Series
B, Vol. 39, No. 1, 1977, pp. 1–37.

See Also
ecmnfish | ecmnhess | ecmninit | ecmnobj | ecmnstd

Introduced before R2006a
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ecmnobj
Multivariate normal negative log-likelihood function

Syntax
Objective = ecmnobj(Data, Mean, Covariance, CholCovariance)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix of observed
multivariate normal data

Mean NUMSERIES-by-1 column vector with mean estimate of Data
Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate

of Data
CholCovariance (Optional) Cholesky decomposition of covariance matrix:

chol(Covariance)

Description
Objective = ecmnobj(Data, Mean, Covariance, CholCovariance) computes
the value of the observed negative log-likelihood function over the data given current
estimates for the mean and covariance of the data.

The data matrix has NaNs for missing observations. The inputs Mean and Covariance
are current estimates for model parameters.

This routine expects the Cholesky decomposition of the covariance matrix as an input.
The routine computes the Cholesky decomposition if you do not explicitly specify it.

See Also
chol | ecmnmle

Related Examples
• “Multivariate Normal Regression Without Missing Data” on page 9-18
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• “Multivariate Normal Regression With Missing Data” on page 9-18

Introduced before R2006a
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ecmnstd

Standard errors for mean and covariance of incomplete data

Syntax

[StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. Missing values are
indicated by NaNs.

Mean NUMSERIES-by-1 column vector of maximum-likelihood parameter
estimates for the mean of Data using the expectation conditional
maximization (ECM) algorithm

Covariance NUMSERIES-by-NUMSERIES matrix of maximum-likelihood
covariance estimates for the covariance of Data using the ECM
algorithm

Method (Optional) Character vector indicating method of estimation for
standard error calculations. The methods are:

• hessian — (Default) Hessian of the observed negative log-
likelihood function.

• fisher — Fisher information matrix.

Description

[StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)

computes standard errors for mean and covariance of incomplete data.

StdMean is a NUMSERIES-by-1 column vector of standard errors of estimates for each
element of the mean vector Mean.
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StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors of estimates
for each element of the covariance matrix Covariance.

Use this routine after estimating the mean and covariance of Data with ecmnmle. If the
mean and distinct covariance elements are treated as the parameter θ in a complete-
data maximum-likelihood estimation, then as the number of samples increases, θ attains
asymptotic normality such that

q q q- [ ] ( )( )-
E N I∼ 0

1
, ,

where E[θ] is the mean and I(θ) is the Fisher information matrix.

With missing data, the Hessian H(θ) is a good approximation for the Fisher information
(which can only be approximated when data is missing).

It is usually advisable to use the default Method since the resultant standard errors
incorporate the increased uncertainty due to missing data. In particular, standard errors
calculated with the Hessian are generally larger than standard errors calculated with the
Fisher information matrix.

Note This routine is slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

More About
• “Mean and Covariance Estimation” on page 9-5

See Also
ecmnmle

Introduced before R2006a
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effrr

Effective rate of return

Syntax

Return = effrr(Rate, NumPeriods)

Arguments

Rate Annual percentage rate. Enter as a decimal fraction.
NumPeriods Number of compounding periods per year, an integer.

Description

Return = effrr(Rate, NumPeriods) calculates the annual effective rate of return.
Compounding continuously returns Return equivalent to (e^Rate-1).

Examples

Compute the Annual Effective Rate of Return

This example shows how to find the effective annual rate of return based on an annual
percentage rate of 9% compounded monthly.

Return = effrr(0.09, 12)

Return =

    0.0938

• “Analyzing and Computing Cash Flows” on page 2-17
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See Also
nomrr

Introduced before R2006a
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elpm
Compute expected lower partial moments for normal asset returns

Syntax
elpm(Mean, Sigma)

elpm(Mean, Sigma, MAR)

elpm(Mean, Sigma, MAR, Order)

oment = elpm(Mean, Sigma, MAR, Order)

Arguments

Mean NUMSERIES vector with mean returns for a collection of NUMSERIES
assets.

Sigma NUMSERIES vector with standard deviation of returns for a
collection of NUMSERIES assets.

MAR (Optional) Scalar minimum acceptable return (default MAR = 0).
This is a cutoff level of return such that all returns above MAR
contribute nothing to the lower partial moment.

Order (Optional) Either a scalar or a NUMORDERS vector of nonnegative
integer moment orders. If no order specified, default Order = 0,
which is the shortfall probability. This function will not work for
negative or noninteger orders.

Description

Given NUMSERIES asset returns with a vector of mean returns in a NUMSERIES vector
Mean, a vector of standard deviations of returns in a NUMSERIES vector Sigma, a scalar
minimum acceptable return MAR, and one or more nonnegative integer moment orders in
a NUMORDERS vector Order, compute expected lower partial moments (elpm) relative to
MAR for each asset in a NUMORDERS-by-NUMSERIES matrix Moment.
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The output, Moment, is a NUMORDERS-by-NUMSERIES matrix of expected lower partial
moments with NUMORDERS Orders and NUMSERIES series, that is, each row contains
expected lower partial moments for a given order.

Note: To compute upper partial moments, reverse the signs of both the input Mean and
MAR (do not reverse the signs of either Sigma or the output). This function computes
expected lower partial moments with the mean and standard deviation of normally
distributed asset returns. To compute sample lower partial moments from asset returns
which have no distributional assumptions, use lpm.

Examples

See “Expected Lower Partial Moments” on page 7-16.

More About
• “Performance Metrics Overview” on page 7-2

References

Vijay S. Bawa. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice."
Journal of Financial and Quantitative Analysis. Vol. 13, No. 2, June 1978, pp. 255–271.

W. V. Harlow. "Asset Allocation in a Downside-Risk Framework." Financial Analysts
Journal. Vol. 47, No. 5, September/October 1991, pp. 28–40.

W. V. Harlow and K. S. Rao. "Asset Pricing in a Generalized Mean-Lower Partial
Moment Framework: Theory and Evidence." Journal of Financial and Quantitative
Analysis. Vol. 24, No. 3, September 1989, pp. 285–311.

Frank A. Sortino and Robert van der Meer. "Downside Risk." Journal of Portfolio
Management. Vol. 17, No. 5, Spring 1991, pp. 27–31.

See Also
lpm
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Introduced in R2006b
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emaxdrawdown
Compute expected maximum drawdown for Brownian motion

Syntax

EDD = emaxdrawdown(Mu, Sigma, T)

Arguments

Mu Scalar. Drift term of a Brownian motion with drift.
Sigma Scalar. Diffusion term of a Brownian motion with drift.
T A time period of interest or a vector of times.

Description

EDD = emaxdrawdown(Mu, Sigma, T) computes the expected maximum drawdown
for a Brownian motion for each time period in T using the following equation:

dX t dt dW t( ) = + ( )m s .

If the Brownian motion is geometric with the stochastic differential equation

dS t S t dt S t dW t( ) = ( ) + ( ) ( )m s
0 0

then use Ito's lemma with X(t) = log(S(t)) such that

m m s

s s

= -

=

0 0
2

0

0 5. ,

converts it to the form used here.
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The output argument ExpDrawdown is computed using an interpolation method. Values
are accurate to a fraction of a basis point. Maximum drawdown is nonnegative since it is
the change from a peak to a trough.

Note To compare the actual results from maxdrawdown with the expected results
of emaxdrawdown, set the Format input argument of maxdrawdown to either of the
nondefault values ('arithmetic' or 'geometric'). These are the only two formats
emaxdrawdown supports.

Examples

See “Expected Maximum Drawdown” on page 7-21.

More About
• “Performance Metrics Overview” on page 7-2

References

Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-Mostafa. “On the
Maximum Drawdown of a Brownian Motion.” Journal of Applied Probability. Vol. 41,
Number 1, March 2004, pp. 147–161.

See Also
maxdrawdown

Introduced in R2006b
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end
Last date entry

Syntax
end

Description

end returns the index to the last date entry in a financial time series object.

Examples

Consider a financial time series object called MyFts:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

times]);

myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

myFts = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

Use end to return the last date entry in the financial time series object myFts.

myFts(end)
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ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'

    '03-Jan-2001'    '12:00'          [          6]

See Also
subsasgn | subsref

Introduced before R2006a
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eomdate

Last date of month

Syntax

DayMonth = eomdate(Date)

DayMonth = eomdate(Year,Month,outputType)

Description

DayMonth = eomdate(Date) returns the serial date number of the last date of the
month for the given Date.

DayMonth = eomdate(Year,Month,outputType) returns the serial date number
of the last date of the month for the given year and month. However, if outputType
is 'datetime', then DayMonth is a datetime array. By default, outputType is
'datenum'.

Examples

Determine the Last Day of the Month for Various Dates

Find the last day of the month using Year and Month.

DayMonth = eomdate(2001, 2)

datestr(DayMonth)

DayMonth =

      730910

ans =
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28-Feb-2001

Find the last day of the month using multiples values for Year and a single Month.

Year = [2002 2003 2004 2005];

DayMonth = eomdate(Year, 2);

datestr(DayMonth)

ans =

28-Feb-2002

28-Feb-2003

29-Feb-2004

28-Feb-2005

Find the last day of the month using a datetime array for Date.

DayMonth = eomdate(datetime('1-Jan-2015','Locale','en_US'))

DayMonth = 

  datetime

   31-Jan-2015

Find the last day of the month using an outputType for 'datetime'.

DayMonth = eomdate(2001, 2,'datetime')

DayMonth = 

  datetime

   28-Feb-2001

• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25
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Input Arguments

Date — Date to determine last day of month
serial date number | date character vector | datetime array

Date to determine last day of month, specified as a serial date number, date character
vector, or datetime array.

If Date is a serial date number or a date character vector, DayMonth is returned as
a serial date number. If Date is a datetime array, then DayMonth is returned as a
datetime array.

Use the function datestr to convert serial date numbers to formatted date character
vectors or datenum to convert date and time to a serial date number.

Data Types: single | double | char | datetime

Year — Year to determine last date of month
four-digit nonnegative integer | vector of four-digit nonnegative integers

Year to determine last date of month, specified as a four-digit nonnegative integer.

Either input argument for Year or Month can contain multiple values, but if so, the other
input must contain the same number of values or a single value that applies to all. For
example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of
integers or a single integer. DayMonth output is then a 1-by-n vector of date numbers.

Data Types: single | double

Month — Month to determine last date of month
integer from 1 through 12 | vector of integers from 1 through 12

Month to determine last date of month, specified as an integer from 1 through 12.

Either input argument for Year or Month can contain multiple values, but if so, the other
input must contain the same number of values or a single value that applies to all. For
example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of
integers or a single integer. DayMonth output is then a 1-by-n vector of date numbers.

Data Types: single | double

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'
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Output date format, specified as a character vector with values 'datenum' or
'datetime'. If outputType is 'datenum', then DayMonth is a serial date number.
However, if outputType is 'datetime', then DayMonth is a datetime array.

Data Types: char

Output Arguments

DayMonth — Last day of month
serial date number | datetime array

Last day of the month, returned as a serial date number or datetime array.

See Also
datetime | day | eomday | lbusdate | month | year

Introduced before R2006a
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eq (fts)
Multiple financial times series object equality

Syntax
tsobj_1 == tsobj_2

iseq = eq(tsobj_1, tsobj_2)

Arguments

tsobj_1 Financial time series object.
tsobj_2 Financial time series object.

Description

tsobj_1 == tsobj_2 returns True (1) if both financial time series objects have the
same dates, frequencies, data series names, and data values. Otherwise, eq returns False
(0).

Note: The data series names are case-sensitive, but do not have to be in the same order
within each object.

Examples

Determine Multiple Financial Times Series Object Equality

This example shows how to determine if multiple financial times series objects are equal.

load disney

dis == dis

18-620



 eq (fts)

ans =

  logical

   1

• “Using Time Series to Predict Equity Return” on page 12-25

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
isequal

Introduced before R2006a
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estimateAssetMoments
Estimate mean and covariance of asset returns from data

Use the estimateAssetMoments function with a Portfolio object to estimate mean
and covariance of asset returns from data.

For details on the workflow, see “Portfolio Object Workflow” on page 4-18.

Syntax

obj = estimateAssetMoments(obj,AssetReturns)

obj] = estimateAssetMoments(obj,AssetReturns,Name,Value)

Description

obj = estimateAssetMoments(obj,AssetReturns) estimates mean and covariance
of asset returns from data for a Portfolio object.

obj] = estimateAssetMoments(obj,AssetReturns,Name,Value) estimates mean
and covariance of asset returns from data for a Portfolio object with additional options for
one or more Name,Value pair arguments.

Examples

Estimate Mean and Covariance of Asset Returns from Data for a Portfolio Object

To illustrate using the estimateAssetMoments function, generate random samples
of 120 observations of asset returns for four assets from the mean and covariance of
asset returns in the variables m and C with the portsim function. The default behavior
portsim creates simulated data with estimated mean and covariance identical to the
input moments m and C. In addition to a return series created by the portsim function in
the variable X, a price series is created in the variable Y:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;
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      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

Y = ret2tick(X);

Given asset returns and prices in the variables X and Y from above, the following
examples demonstrate equivalent ways to estimate asset moments for the Portfolio
object. A Portfolio object is created in p with the moments of asset returns set directly
in the Portfolio function and a second Portfolio object is created in q to obtain
the mean and covariance of asset returns from asset return data in X using the
estimateAssetMoments function.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

p = Portfolio('mean',m,'covar',C);

q = Portfolio;

q = estimateAssetMoments(q, X);

[passetmean, passetcovar] = getAssetMoments(p)

[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102
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qassetmean =

    0.0042

    0.0083

    0.0100

    0.0150

qassetcovar =

    0.0005    0.0003    0.0002   -0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

   -0.0000    0.0010    0.0028    0.0102

Notice how either approach yields the same moments. The default behavior of the
estimateAssetMoments function is to work with asset returns. If, instead, you have
asset prices, such as in the variable Y, the estimateAssetMoments function accepts a
parameter name 'DataFormat' with a corresponding value set to 'prices' to indicate
that the input to the method is in the form of asset prices and not returns (the default
parameter value for 'DataFormat' is 'returns'). The following example compares
direct assignment of moments in the Portfolio object p with estimated moments from
asset price data in Y in the Portfolio object q:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

X = portsim(m', C, 120);

Y = ret2tick(X);

p = Portfolio('mean',m,'covar',C);

q = Portfolio;

q = estimateAssetMoments(q, Y, 'dataformat', 'prices');

[passetmean, passetcovar] = getAssetMoments(p)
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[qassetmean, qassetcovar] = getAssetMoments(q)

passetmean =

    0.0042

    0.0083

    0.0100

    0.0150

passetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

qassetmean =

    0.0042

    0.0083

    0.0100

    0.0150

qassetcovar =

    0.0005    0.0003    0.0002   -0.0000

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

   -0.0000    0.0010    0.0028    0.0102

• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-44
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

18-625



18 Functions — Alphabetical List

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see

• Portfolio

AssetReturns — Matrix or fints object that contains asset price data that can be
converted to asset returns
matrix | fints object

Matrix or fints object that contains asset price data that can be converted to asset
returns, specified by a fints object or NumSamples-by-NumAssets matrix for asset
returns. Use the optional 'DataFormat' argument to convert AssetReturns input
data that is asset prices into asset returns. Be careful when using asset price data
because portfolio optimization usually requires total returns and not simply price
returns.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p= estimateAssetMoments(p, Y, 'dataformat', 'prices')

'DataFormat' — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified using a character vector with
the values:

• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char

'MissingData' — Flag indicating whether to use ECM algorithm or exclude samples with
NaN values
false (default) | logical with value true or false
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Flag indicating whether to use ECM algorithm or excludes samples with NaN values,
specified as a logical with a value of true or false.

To handle time series with missing data (indicated with NaN values), the MissingData
flag either uses the ECM algorithm to obtain maximum likelihood estimates in the
presences of NaN values or excludes samples with NaN values. Since the default is false,
it is necessary to specify MissingData as true to use the ECM algorithm.

Acceptable values for MissingData are:

• false — Do not use ECM algorithm to handle NaN values (exclude NaN values).
• true — Use ECM algorithm to handle NaN values.

For more information on the ECM algorithm, see ecmnmle and “Multivariate Normal
Regression” on page 9-2.

Data Types: logical

'GetAssetList' — Flag indicating which asset names to use for asset list
false (default) | logical with value true or false

Flag indicating which asset names to use for the asset list, specified as a logical with a
value of true or false. Acceptable values for GetAssetList are:

• false — Do not extract or create asset names.
• true — Extract or create asset names from fints object.

If a fints object is passed into this function and the GetAssetList flag is true, the
series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are
created based on the AbstractPortfolio property defaultforAssetList, which is
'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.

Data Types: logical

Output Arguments
obj — Updated portfolio object
object for portfolio
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Updated portfolio object, returned as a Portfolio object. For more information on
creating a portfolio object, see

• Portfolio

More About

Tips

You can also use dot notation to estimate the mean and covariance of asset returns from
data.

obj = obj.estimateAssetMoments(AssetReturns);

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateBounds | Portfolio | portsim

Introduced in R2011a
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estimateBounds
Estimate global lower and upper bounds for set of portfolios

Use the estimateBounds function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate global lower and upper bounds for a set of portfolios.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax
[glb,gub,isbounded] = estimateBounds(obj)

[glb,gub,isbounded] = estimateBounds(obj,obtainExactBounds)

Description
[glb,gub,isbounded] = estimateBounds(obj) estimates global lower and upper
bounds for set of portfolios.

[glb,gub,isbounded] = estimateBounds(obj,obtainExactBounds) estimates
global lower and upper bounds for set of portfolios with an additional option specified for
obtainExactBounds.

Examples

Create an Unbounded Portfolio for a Portfolio Object

Create an unbounded portfolio set.

p = Portfolio('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf
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ub =

   1.0e-08 *

   -0.3712

       Inf

isbounded =

  logical

   0

The estimateBounds function returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Create an Unbounded Portfolio for a PortfolioCVaR Object

Create an unbounded portfolio set.

p = PortfolioCVaR('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf

ub =

   1.0e-08 *

   -0.3712

       Inf

isbounded =
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  logical

   0

The estimateBounds function returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Create an Unbounded Portfolio for a PortfolioMAD Object

Create an unbounded portfolio set.

p = PortfolioMAD('AInequality', [1 -1; 1 1 ], 'bInequality', 0);

[lb, ub, isbounded] = estimateBounds(p)

lb =

  -Inf

  -Inf

ub =

   1.0e-08 *

   -0.3712

       Inf

isbounded =

  logical

   0

The estimateBounds function returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Validate the CVaR Portfolio Problem” on page 5-90
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• “Validate the MAD Portfolio Problem” on page 6-87
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

obtainExactBounds — Flag to specify whether to solve for all bounds or to accept specified
bounds whenever available
true  (default) | logical

Flag to specify whether to solve for all bounds or to accept specified bounds whenever
available, specified as a logical with values of true or false. If bounds are known,
set obtainExactBounds to false to accept known bounds. The default for
obtainExactBounds is true.

Data Types: logical

Output Arguments

glb — Global lower bounds for portfolio set
vector

Global lower bounds for portfolio set, returned as vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

gub — Global upper bounds for portfolio set
vector

Global upper bounds for portfolio set, returned as vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).
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isbounded — Indicator for whether portfolio set is empty, bounded, or unbounded
logical

Indicator for whether portfolio set is empty ([]), bounded (true), or unbounded (false),
returned as a logical.

Note: By definition, any portfolio set must be nonempty and bounded:

• If the set is empty, isbounded = [ ].

• If the set is nonempty and unbounded, isbounded = false.
• If the set is nonempty and bounded, isbounded  = true.
• If the set is empty, glb and gub are set to NaN vectors.

An isbounded value is returned for Portfolio, PortfolioCVaR, or PortfolioMAD
input object (obj).

More About

Tips

• You can also use dot notation to estimate the global lower and upper bounds for a
given set of portfolios.

[glb, gub, isbounded] = obj.estimateBounds;

• Estimated bounds are accurate in most cases to within 1.0e-8. If you intend to
use these bounds directly in a portfolio object, ensure that if you impose such bound
constraints, a lower bound of 0 is probably preferable to a lower bound of, for example,
1.0e-10 for portfolio weights.

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
checkFeasibility

Introduced in R2011a
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estimateFrontier
Estimate specified number of optimal portfolios on the efficient frontier

Use the estimateFrontier function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate specified number of optimal portfolios on the efficient
frontier.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[pwgt,pbuy,psell] = estimateFrontier(obj)

[pwgt,pbuy,psell] = estimateFrontier(obj,NumPorts)

Description

[pwgt,pbuy,psell] = estimateFrontier(obj) estimates the specified number
of optimal portfolios on the efficient frontier. When no value is specified for the optional
input argument NumPorts, the default value of 10 is obtained from the hidden property
defaultNumPorts.

[pwgt,pbuy,psell] = estimateFrontier(obj,NumPorts) estimates the specified
number of optimal portfolios on the efficient frontier with an additional option specified
for NumPorts.

Examples

Obtain the Default Number of Efficient Portfolios for a Portfolio Object

Obtain the default number of efficient portfolios over the entire range of the efficient
frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;
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    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

disp(pwgt);

  Columns 1 through 7

    0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0

    0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049

    0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320

    0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630

  Columns 8 through 10

         0         0         0

    0.2314    0.0579         0

    0.1394    0.1468         0

    0.6292    0.7953    1.0000

Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a Portfolio Object

Starting from the initial portfolio, the estimateFrontier function returns purchases
and sales to get from your initial portfolio to each efficient portfolio on the efficient
frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);
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display(psell);

pwgt =

  Columns 1 through 7

    0.8891    0.7215    0.5540    0.3865    0.2190    0.0515         0

    0.0369    0.1289    0.2209    0.3129    0.4049    0.4969    0.4049

    0.0404    0.0567    0.0730    0.0893    0.1056    0.1219    0.1320

    0.0336    0.0929    0.1521    0.2113    0.2705    0.3297    0.4630

  Columns 8 through 10

         0         0         0

    0.2314    0.0579         0

    0.1394    0.1468         0

    0.6292    0.7953    1.0000

pbuy =

  Columns 1 through 7

    0.5891    0.4215    0.2540    0.0865         0         0         0

         0         0         0    0.0129    0.1049    0.1969    0.1049

         0         0         0         0         0         0         0

         0         0    0.0521    0.1113    0.1705    0.2297    0.3630

  Columns 8 through 10

         0         0         0

         0         0         0

         0         0         0

    0.5292    0.6953    0.9000

psell =

  Columns 1 through 7

         0         0         0         0    0.0810    0.2485    0.3000

    0.2631    0.1711    0.0791         0         0         0         0

    0.1596    0.1433    0.1270    0.1107    0.0944    0.0781    0.0680

    0.0664    0.0071         0         0         0         0         0
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  Columns 8 through 10

    0.3000    0.3000    0.3000

    0.0686    0.2421    0.3000

    0.0606    0.0532    0.2000

         0         0         0

Obtain the Default Number of Efficient Portfolios for a PortfolioCVaR Object

Obtain the default number of efficient portfolios over the entire range of the efficient
frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontier(p);

disp(pwgt);

  Columns 1 through 7

    0.8454    0.6847    0.5151    0.3541    0.1902    0.0314    0.0000

    0.0599    0.1427    0.2302    0.3165    0.3980    0.4733    0.3513

    0.0462    0.0639    0.0945    0.1079    0.1345    0.1583    0.1756

    0.0485    0.1087    0.1602    0.2215    0.2773    0.3371    0.4731

  Columns 8 through 10

         0    0.0000    0.0000
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    0.1806         0    0.0000

    0.1916    0.2212    0.0000

    0.6278    0.7788    1.0000

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a PortfolioCVaR Object

Starting from the initial portfolio, the estimateFrontier function returns purchases
and sales to get from your initial portfolio to each efficient portfolio on the efficient
frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

  Columns 1 through 7

    0.8454    0.6847    0.5151    0.3541    0.1902    0.0314    0.0000

    0.0599    0.1427    0.2302    0.3165    0.3980    0.4733    0.3513
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    0.0462    0.0639    0.0945    0.1079    0.1345    0.1583    0.1756

    0.0485    0.1087    0.1602    0.2215    0.2773    0.3371    0.4731

  Columns 8 through 10

         0    0.0000    0.0000

    0.1806         0    0.0000

    0.1916    0.2212    0.0000

    0.6278    0.7788    1.0000

pbuy =

  Columns 1 through 7

    0.5454    0.3847    0.2151    0.0541         0         0         0

         0         0         0    0.0165    0.0980    0.1733    0.0513

         0         0         0         0         0         0         0

         0    0.0087    0.0602    0.1215    0.1773    0.2371    0.3731

  Columns 8 through 10

         0         0         0

         0         0         0

         0    0.0212         0

    0.5278    0.6788    0.9000

psell =

  Columns 1 through 7

         0         0         0         0    0.1098    0.2686    0.3000

    0.2401    0.1573    0.0698         0         0         0         0

    0.1538    0.1361    0.1055    0.0921    0.0655    0.0417    0.0244

    0.0515         0         0         0         0         0         0

  Columns 8 through 10

    0.3000    0.3000    0.3000

    0.1194    0.3000    0.3000

    0.0084         0    0.2000

         0         0         0
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The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain the Default Number of Efficient Portfolios for a PortfolioMAD Object

Obtain the default number of efficient portfolios over the entire range of the efficient
frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

disp(pwgt);

  Columns 1 through 7

    0.8815    0.7151    0.5487    0.3817    0.2170    0.0499    0.0000

    0.0431    0.1282    0.2128    0.2981    0.3825    0.4662    0.3609

    0.0389    0.0605    0.0826    0.1053    0.1241    0.1492    0.1786

    0.0365    0.0963    0.1559    0.2149    0.2764    0.3348    0.4605

  Columns 8 through 10

         0         0    0.0000

    0.1755    0.0000    0.0000

    0.2095    0.2266    0.0000

    0.6150    0.7734    1.0000
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The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain Purchases and Sales for Portfolios on the Efficient Frontier for a PortfolioMAD Object

Starting from the initial portfolio, the estimateFrontier function returns purchases
and sales to get from your initial portfolio to each efficient portfolio on the efficient
frontier. Given an initial portfolio in pwgt0, you can obtain purchases and sales.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setInitPort(p, pwgt0);

[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

  Columns 1 through 7

    0.8815    0.7151    0.5487    0.3817    0.2170    0.0499    0.0000

    0.0431    0.1282    0.2128    0.2981    0.3825    0.4662    0.3609

    0.0389    0.0605    0.0826    0.1053    0.1241    0.1492    0.1786

    0.0365    0.0963    0.1559    0.2149    0.2764    0.3348    0.4605

  Columns 8 through 10

         0         0    0.0000
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    0.1755    0.0000    0.0000

    0.2095    0.2266    0.0000

    0.6150    0.7734    1.0000

pbuy =

  Columns 1 through 7

    0.5815    0.4151    0.2487    0.0817         0         0         0

         0         0         0         0    0.0825    0.1662    0.0609

         0         0         0         0         0         0         0

         0         0    0.0559    0.1149    0.1764    0.2348    0.3605

  Columns 8 through 10

         0         0         0

         0         0         0

    0.0095    0.0266         0

    0.5150    0.6734    0.9000

psell =

  Columns 1 through 7

         0         0         0         0    0.0830    0.2501    0.3000

    0.2569    0.1718    0.0872    0.0019         0         0         0

    0.1611    0.1395    0.1174    0.0947    0.0759    0.0508    0.0214

    0.0635    0.0037         0         0         0         0         0

  Columns 8 through 10

    0.3000    0.3000    0.3000

    0.1245    0.3000    0.3000

         0         0    0.2000

         0         0         0

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104
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• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

NumPorts — Number of points to obtain on efficient frontier
value from hidden property defaultNumPorts (default value is 10) (default) | scalar
integer

Number of points to obtain on the efficient frontier, specified as a scalar integer.

Note: If no value is specified for NumPorts, the default value is obtained from the hidden
property defaultNumPorts (default value is 10). If NumPorts = 1, this function returns
the portfolio specified by the hidden property defaultFrontierLimit (current default
value is 'min').

Data Types: double
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Output Arguments

pwgt — Optimal portfolios on efficient frontier with specified number of portfolios spaced
equally from minimum to maximum portfolio return
matrix

Optimal portfolios on the efficient frontier with specified number of portfolios spaced
equally from minimum to maximum portfolio return, returned as a NumAssets-
by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as a NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).
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More About

Tips

• You can also use dot notation to estimate the specified number of optimal portfolios
over the entire efficient frontier.

  [pwgt, pbuy, psell] = obj.estimateFrontier(NumPorts);

• When introducing transaction costs and turnover constraints to the Portfolio,
PortfolioCVaR, or PortfolioMAD object, the portfolio optimization objective
contains a term with an absolute value. For more information on how Financial
Toolbox handles such cases algorithmically, see Bibliography.

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

References

Cornuejols, G., and R. Tutuncu. Optimization Methods in Finance. Cambridge University
Press, 2007.

See Also
estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Introduced in R2011a
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estimateFrontierByReturn

Estimate optimal portfolios with targeted portfolio returns

Use the estimateFrontierByReturn function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate optimal portfolios with targeted portfolio returns.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn)

Description

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn)

estimates optimal portfolios with targeted portfolio returns.

Examples

Obtain the Portfolio for Targeted Portfolio Returns for a Portfolio Object

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolio returns and
obtains efficient portfolios with the specified returns. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio returns of 6%,
9%, and 12%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];
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p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);

pwgt =

    0.8772    0.5032    0.1293

    0.0434    0.2488    0.4541

    0.0416    0.0780    0.1143

    0.0378    0.1700    0.3022

Obtain the Portfolio for Targeted Portfolio Returns for a PortfolioCVaR Object

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolio returns and
obtains efficient portfolios with the specified returns. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio returns of 7%,
10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioCVaR;

p = simulateNormalScenariosByMoments(p, m, C, 2000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);

pwgt =
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    0.7371    0.3071         0

    0.1504    0.3919    0.4396

    0.0286    0.1011    0.1360

    0.0839    0.1999    0.4244

The function rng( ) is used to reset the random number generator to produce
the documented results. It is not necessary to reset the random number generator to
simulate scenarios.

Obtain the Portfolio for Targeted Portfolio Returns for a PortfolioMAD Object

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolio returns and
obtains efficient portfolios with the specified returns. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio returns of 7%,
10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioMAD;

p = simulateNormalScenariosByMoments(p, m, C, 2000);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);

pwgt =

    0.7436    0.3147    0.0000

    0.1357    0.3835    0.4422

    0.0328    0.0939    0.1324

    0.0879    0.2079    0.4254
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The function rng( ) is used to reset the random number generator to produce
the documented results. It is not necessary to reset the random number generator to
simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

TargetReturn — Target values for portfolio return
vector

Target values for portfolio return, specified as a NumPorts vector.

Note: TargetReturn specifies target returns for portfolios on the efficient frontier. If
any TargetReturn values are outside the range of returns for efficient portfolios, the
TargetReturn is replaced with the minimum or maximum efficient portfolio return,
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depending upon whether the target return is below or above the range of efficient
portfolio returns.

Data Types: double

Output Arguments
pwgt — Optimal portfolios on efficient frontier with specified target returns
matrix

Optimal portfolios on the efficient frontier with specified target returns from
TargetReturn, returned as a NumAssets-by-NumPorts matrix. pwgt is returned for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as a NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).
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More About

Tips

You can also use dot notation to estimate optimal portfolios with targeted portfolio
returns.

[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);

• “Portfolio Optimization Theory” on page 4-3

See Also
estimateFrontier | estimateFrontierByRisk | estimateFrontierLimits

Introduced in R2011a
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estimateFrontierByRisk
Estimate optimal portfolios with targeted portfolio risks

Use the estimateFrontierByRisk function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate optimal portfolios with targeted portfolio risks.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetRisk)

Description

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetRisk) estimates
optimal portfolios with targeted portfolio risks.

Examples

Obtain Portfolios with Targeted Portfolio Risks for a Portfolio Object

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
14%, and 16%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

 p = Portfolio;

 p = setAssetMoments(p, m, C);
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 p = setDefaultConstraints(p);

 pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);

 display(pwgt);

pwgt =

    0.3984    0.2659    0.1416

    0.3064    0.3791    0.4474

    0.0882    0.1010    0.1131

    0.2071    0.2540    0.2979

Obtain Portfolios with Targeted Portfolio Risks for a PortfolioCVaR Object

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
20%, and 30%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioCVaR;

p = simulateNormalScenariosByMoments(p, m, C, 2000);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByRisk(p, [0.12, 0.20, 0.30]);

display(pwgt);

pwgt =

    0.5363    0.1387    0.0000

    0.2655    0.4990    0.3830

    0.0568    0.1240    0.1461
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    0.1413    0.2382    0.4709

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain Portfolios with Targeted Portfolio Risks for a PortfolioMAD Object

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Assume you have a universe of four
assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
20%, and 25%.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioMAD;

p = simulateNormalScenariosByMoments(p, m, C, 2000);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByRisk(p, [0.12, 0.20, 0.25]);

display(pwgt);

pwgt =

    0.1613    0.0000         0

    0.4777    0.2139    0.0037

    0.1118    0.1381    0.1214

    0.2492    0.6480    0.8749

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104
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• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

TargetRisk — Target values for portfolio risk
vector

Target values for portfolio risk, specified as a NumPorts vector.

Note: If any TargetRisk values are outside the range of risks for efficient portfolios, the
target risk is replaced with the minimum or maximum efficient portfolio risk, depending
on whether the target risk is below or above the range of efficient portfolio risks.

Data Types: double

Output Arguments
pwgt — Optimal portfolios on efficient frontier with specified target risks
matrix
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Optimal portfolios on the efficient frontier with specified target returns from
TargetRisk, returned as a NumAssets-by-NumPorts matrix. pwgt is returned for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

pbuy — Purchases relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

psell — Sales relative to initial portfolio for optimal portfolios on efficient frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as a NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

More About

Tips

You can also use dot notation to estimate optimal portfolios with targeted portfolio risks.

[pwgt, pbuy, psell] = obj.estimateFrontierByRisk(TargetRisk);

• “Portfolio Optimization Theory” on page 4-3
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• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierLimits |
rng

Introduced in R2011a
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estimateFrontierLimits
Estimate optimal portfolios at endpoints of efficient frontier

Use the estimateFrontierLimits function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate optimal portfolios at endpoints of efficient frontier.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[pwgt,pbuy,psell] = estimateFrontierLimits(obj)

[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice)

Description

[pwgt,pbuy,psell] = estimateFrontierLimits(obj) estimates optimal
portfolios at endpoints of efficient frontier.

[pwgt,pbuy,psell] = estimateFrontierLimits(obj,Choice) estimates optimal
portfolios at endpoints of efficient frontier with an additional option specified for the
Choice argument.

Examples

Obtain Endpoint Portfolios for a Portfolio Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint
portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];
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p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8891         0

    0.0369         0

    0.0404         0

    0.0336    1.0000

Obtain Endpoint Portfolios for a PortfolioCVaR Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint
portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8454    0.0000

    0.0599    0.0000

    0.0462    0.0000

    0.0485    1.0000
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The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain Endpoint Portfolios for a PortfolioMAD Object

Given portfolio p, the estimateFrontierLimits function obtains the endpoint
portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

disp(pwgt);

    0.8815    0.0000

    0.0431    0.0000

    0.0389    0.0000

    0.0365    1.0000

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
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• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Choice — Indicator for which portfolios to obtain at extreme ends of efficient frontier
[] (default) | character vector with values [], 'Both', 'Min', 'Max'

Indicator which portfolios to obtain at the extreme ends of the efficient frontier, specified
as a character vector with values [], 'Both', 'Min', or 'Max'. Choice specifies various
actions with default value []. The options for a Choice action are:

• [] — Compute both minimum-risk and maximum-return portfolios.
• 'Both' — Compute both minimum-risk and maximum-return portfolios.
• 'Min' — Compute minimum-risk portfolio only.
• 'Max' — Compute maximum-return portfolio only.

Data Types: char

Output Arguments

pwgt — Optimal portfolios at endpoints of efficient frontier
matrix
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Optimal portfolios at the endpoints of the efficient frontier TargetReturn, returned as a
NumAssets-by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR,
or PortfolioMAD input object (obj).

pbuy — Purchases relative to an initial portfolio for optimal portfolios at endpoints of efficient
frontier
matrix

Purchases relative to an initial portfolio for optimal portfolios at the endpoints of the
efficient frontier, returned as NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

psell — Sales relative to an initial portfolio for optimal portfolios at endpoints of efficient
frontier
matrix

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier,
returned as a NumAssets-by-NumPorts matrix.

Note: If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0
such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

More About

Tips

You can also use dot notation to estimate the optimal portfolios at the endpoints of the
efficient frontier.
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[pwgt, pbuy, psell] = obj.estimateFrontierLimits(Choice);

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
rng

Introduced in R2011a
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estimateMaxSharpeRatio

Estimate efficient portfolio to maximize Sharpe ratio for Portfolio object

Use the estimateMaxSharpeRatio function with a Portfolio object to estimate
moments of portfolio returns.

For details on the workflow, see “Portfolio Object Workflow” on page 4-18.

Syntax

[pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj)

Description

[pwgt,pbuy,psell] = estimateMaxSharpeRatio(obj) estimates efficient portfolio
to maximize Sharpe ratio for Portfolio object.

Examples

Estimate Efficient Portfolio that Maximizes the Sharpe Ratio for a Portfolio Object

Estimate the efficient portfolio that maximizes the Sharpe ratio.

p = Portfolio('AssetMean',[0.3, 0.1, 0.5], 'AssetCovar',...

[0.01, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);

p = setDefaultConstraints(p);

plotFrontier(p, 20);

weights = estimateMaxSharpeRatio(p);

[risk, ret] = estimatePortMoments(p, weights);

hold on

plot(risk,ret,'*r');
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• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object.
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Note: The risk-free rate is obtained from the property RiskFreeRate in the Portfolio
object. If you leave the RiskFreeRate unset, it is assumed to be 0.

For more information on creating a portfolio object, see

• Portfolio

Output Arguments

pwgt — Portfolio on efficient frontier with maximum Sharpe ratio
vector

Portfolio on the efficient frontier with a maximum Sharpe ratio, returned as a
NumAssets vector.

pbuy — Purchases relative to initial portfolio for portfolio on efficient frontier with maximum
Sharpe ratio
vector

Purchases relative to an initial portfolio for a portfolio on the efficient frontier with a
maximum Sharpe ratio, returned as a NumAssets vector.

pbuy is returned for a Portfolio input object (obj).

psell — Sales relative to initial portfolio for portfolio on efficient frontier with maximum
Sharpe ratio
vector

Sales relative to an initial portfolio for a portfolio on the efficient frontier with maximum
Sharpe ratio, returned as a NumAssets vector.

psell is returned for a Portfolio input object (obj).

More About

Sharpe Ratio

The Sharpe ratio is the ratio of the difference between the mean of portfolio returns
and the risk-free rate divided by the standard deviation of portfolio returns. The
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estimateMaxSharpeRation function maximizes the Sharpe ratio among portfolios on
the efficient frontier.

Tips

You can also use dot notation to estimate an efficient portfolio that maximizes the Sharpe
ratio.

[pwgt,pbuy,psell] = obj.estimateMaxSharpeRatio;

Algorithms

The maximization of the Sharpe ratio is accomplished by a one-dimensional optimization
using fminbnd to find the portfolio that minimizes the negative of the Sharpe ratio. The
estimateMaxSharpeRation function takes only a fully qualified Portfolio object as its
input and uses all information in the object to solve the problem.
• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk

Introduced in R2011a
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estimatePortMoments
Estimate moments of portfolio returns for Portfolio object

Use the estimatePortMoments function with a Portfolio object to estimate moments
of portfolio returns.

For details on the workflow, see “Portfolio Object Workflow” on page 4-18.

Syntax

[prsk,pret = estimatePortMoments(obj,pwgt)

Description

[prsk,pret = estimatePortMoments(obj,pwgt) estimate moments of portfolio
returns for a Portfolio object.

The estimate of port moments is specific to mean-variance portfolio optimization and
computes the mean and standard deviation (which is the square-root of variance) of
portfolio returns.

Examples

Identify the Range of Risks and Returns for Efficient Portfolios for a Portfolio Object

Given portfolio p, use the estimatePortMoments function to show the range of risks
and returns for efficient portfolios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);
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p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

[prsk, pret] = estimatePortMoments(p, pwgt);

disp([prsk, pret]);

    0.0769    0.0590

    0.3500    0.1800

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see

• Portfolio

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix where
NumAssets is the number of assets in the universe and NumPorts is the number of
portfolios in the collection of portfolios.
Data Types: double

Output Arguments

prsk — Estimates for standard deviations of portfolio returns for each portfolio in pwgt
vector

Estimates for standard deviations of portfolio returns for each portfolio in pwgt, returned
as a NumPorts vector.
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prsk is returned for a Portfolio input object (obj).

pret — Estimates for means of portfolio returns for each portfolio in pwgt
vector

Estimates for means of portfolio returns for each portfolio in pwgt, returned as a
NumPorts vector.

pret is returned for a Portfolio input object (obj).

More About

Tips

You can also use dot notation to estimate the moments of portfolio returns.

[prsk, pret] = obj.estimatePortMoments(pwgt);

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimatePortReturn | estimatePortRisk

Introduced in R2011a
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estimatePortReturn

Estimate mean of portfolio returns

Use the estimatePortReturn function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate mean of portfolio returns.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

pret = estimatePortReturn(obj,pwgt)

Description

pret = estimatePortReturn(obj,pwgt) estimates the mean of portfolio returns (as
the proxy for portfolio return).

Note: Depending on whether costs have been set, the portfolio return is either gross or
net portfolio returns.

Examples

Estimate the Mean of Portfolio Returns for a Portfolio Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of
portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;
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      0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

pret = estimatePortReturn(p, pwgt);

disp(pret)

    0.0590

    0.1800

Estimate the Mean of Portfolio Returns for a PortfolioCVaR Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of
portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

pret = estimatePortReturn(p, pwgt);

disp(pret)

    0.0050

    0.0154
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The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Estimate the Mean of Portfolio Returns for a PortfolioMAD Object

Given portfolio p, use the estimatePortReturn function to estimate the mean of
portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

pret = estimatePortReturn(p, pwgt);

disp(pret)

    0.0048

    0.0154

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
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• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where
NumAssets is the number of assets in the universe and NumPorts is the number of
portfolios in the collection of portfolios.
Data Types: double

Output Arguments

pret — Estimates for means of portfolio returns for each portfolio in pwgt
vector

Estimates for means of portfolio returns for each portfolio in pwgt, returned as a
NumPorts vector.

pret is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).
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More About

Tips

You can also use dot notation to estimate the mean of portfolio returns (as the proxy for
portfolio return).

pret = obj.estimatePortReturn(pwgt);

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontierByReturn | estimateFrontierByRisk | estimatePortRisk |
rng

Introduced in R2011a
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estimatePortRisk
Estimate portfolio risk according to risk proxy associated with corresponding object

Use the estimatePortRisk  function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to estimate portfolio risk according to the risk proxy associated
with the corresponding object.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

prsk = estimatePortRisk(obj,pwgt)

Description

prsk = estimatePortRisk(obj,pwgt) estimates portfolio risk according to the risk
proxy associated with the corresponding object (obj).

Examples

Standard Deviation of Portfolio Returns as the Proxy for Portfolio Risk for a Portfolio Object

Given portfolio p, use the estimatePortRisk function to show the standard deviation of
portfolio returns for each portfolio in pwgt.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

      0.00408 0.0289 0.0204 0.0119;

      0.00192 0.0204 0.0576 0.0336;

      0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);
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prsk = estimatePortRisk(p, pwgt);

disp(prsk)

    0.0769

    0.3500

Conditional Value-at-Risk of Portfolio Returns as the Proxy for Portfolio Risk for a PortfolioCVaR
Object

Given a portfolio pwgt, use the estimatePortRisk function to show the conditional
value-at-risk (CVaR) of portfolio returns for each portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

prsk = estimatePortRisk(p, pwgt);

disp(prsk)

    0.0407

    0.1911

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Mean-Absolute Deviation Returns as the Proxy for Portfolio Risk for a PortfolioMAD Object

Given a portfolio pwgt, use the estimatePortRisk function to show the mean-absolute
deviation of portfolio returns for each portfolio.

18-677



18 Functions — Alphabetical List

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

prsk = estimatePortRisk(p, pwgt);

disp(prsk)

    0.0177

    0.0809

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on
page 4-104

• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Portfolio Optimization Examples” on page 4-139

18-678



 estimatePortRisk

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where
NumAssets is the number of assets in the universe and NumPorts is the number of
portfolios in the collection of portfolios.
Data Types: double

Output Arguments

prsk — Estimates for portfolio risk according to the risk proxy associated with the
corresponding object (obj) for each portfolio in pwgt
vector

Estimates for portfolio risk according to the risk proxy associated with the corresponding
object (obj) for each portfolio in pwgt, returned as a NumPorts vector.

prsk is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object
(obj).

More About

Tips

You can also use dot notation to estimate portfolio risk according to the risk proxy
associated with the corresponding object (obj).
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prsk = obj.estimatePortRisk(pwgt);

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontierByReturn | estimateFrontierByRisk | estimatePortStd |
estimatePortVaR | rng

Introduced in R2011a
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estimatePortStd

Estimate standard deviation of portfolio returns

Use the estimatePortStd function with a PortfolioCVaR or PortfolioMAD objects
to estimate standard deviation of portfolio returns.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17 and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

pstd = estimatePortStd(obj,pwgt)

Description

pstd = estimatePortStd(obj,pwgt) estimate standard deviation of portfolio
returns for PortfolioCVaR or PortfolioMAD objects.

Examples

Estimate Standard Deviations for Portfolio Returns for a PortfolioCVaR Object

Given a portfolio pwgt, use the estimatePortStd function to show the standard
deviation of portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);
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AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

pstd = estimatePortStd(p, pwgt);

disp(pstd)

    0.0223

    0.1010

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Estimate Standard Deviations for Portfolio Returns for a PortfolioMAD Object

Given a portfolio pwgt, use the estimatePortStd function to show the standard
deviation of portfolio returns.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);

pstd = estimatePortStd(p, pwgt);

disp(pstd)
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    0.0222

    0.1010

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMADobject.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where
NumAssets is the number of assets in the universe and NumPorts is the number of
portfolios in the collection of portfolios.
Data Types: double

Output Arguments

pstd — Estimates for standard deviations of portfolio returns for each portfolio in pwgt
vector

Estimates for standard deviations of portfolio returns for each portfolio in pwgt, returned
as a NumPorts vector.
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More About

Tips

You can also use dot notation to estimate the standard deviation of portfolio returns.

pstd = obj.estimatePortStd(pwgt);

• “Portfolio Optimization Theory” on page 4-3
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
estimateFrontierByReturn | estimateFrontierByRisk | estimatePortReturn
| estimatePortVaR | rng

Introduced in R2012b
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estimatePortVaR
Estimate value-at-risk for PortfolioCVaR object

Use the estimatePortVaR function with a PortfolioCVaR object to estimate value-at-
risk.

For details on the workflow, see “PortfolioCVaR Object Workflow” on page 5-17.

Syntax
pvar = estimatePortVaR(obj,pwgt)

Description
pvar = estimatePortVaR(obj,pwgt) estimates value-at-risk for a PortfolioCVaR
object where the probability level used is from the PortfolioCVaR property
ProbabilityLevel.

Examples

Estimate Value-at-Risk for a PortfolioCVaR Object

Given a portfolio pwgt, use the estimatePortVaR function to estimate the value-at-risk
of portfolio.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
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p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);

pvar = estimatePortVaR(p, pwgt);

disp(pvar)

    0.0314

    0.1483

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR object.

For more information on creating a PortfolioCVaR object, see

• PortfolioCVaR

pwgt — Collection of portfolios
matrix

Collection of portfolios, specified as a NumAssets-by-NumPorts matrix, where
NumAssets is the number of assets in the universe and NumPorts is the number of
portfolios in the collection of portfolios.
Data Types: double

Output Arguments

pvar — Estimates for value-at-risk of portfolio returns for each portfolio in pwgt
vector
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Estimates for value-at-risk of portfolio returns for each portfolio in pwgt, returned as a
NumPorts vector.

More About

Tips

You can also use dot notation to estimate the value-at-risk of PortfolioCVaR object.

pvar = obj.estimatePortVaR(pwgt);

• “Conditional Value-at-Risk” on page 5-6
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
estimatePortStd | rng | setProbabilityLevel

Introduced in R2012b
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estimateScenarioMoments
Estimate mean and covariance of asset return scenarios

Use the estimateScenarioMoments function with a PortfolioCVaR or
PortfolioMAD objects to estimate mean and covariance of asset return scenarios.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj)

Description

[ScenarioMean,ScenarioCovar] = estimateScenarioMoments(obj) estimates
mean and covariance of asset return scenarios for PortfolioCVaR or PortfolioMAD
objects.

Examples

Estimate Mean and Covariance of Asset Return Scenarios for a PortfolioCVaR Object

Given PortfolioCVaR object p, use the estimatePortRisk function to estimate mean
and covariance of asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);
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AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)

ScenarioMean =

    0.0039

    0.0082

    0.0102

    0.0154

ScenarioCovar =

    0.0005    0.0003    0.0001   -0.0001

    0.0003    0.0024    0.0017    0.0010

    0.0001    0.0017    0.0048    0.0028

   -0.0001    0.0010    0.0028    0.0102

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Estimate Mean and Covariance of Asset Return Scenarios for a PortfolioMAD Object

Given PortfolioMAD object p, use the estimatePortRisk function to estimate mean
and covariance of asset return scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

18-689



18 Functions — Alphabetical List

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

[ScenarioMean, ScenarioCovar] = estimateScenarioMoments(p)

ScenarioMean =

    0.0039

    0.0082

    0.0102

    0.0154

ScenarioCovar =

    0.0005    0.0003    0.0001   -0.0001

    0.0003    0.0024    0.0017    0.0010

    0.0001    0.0017    0.0048    0.0028

   -0.0001    0.0010    0.0028    0.0102

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD
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Output Arguments

ScenarioMean — Estimate for mean of scenarios
[] (default) | vector

Estimate for mean of scenarios, returned as a NumPorts vector or [].

Note: If no scenarios are associated with the specified object, both ScenarioMean and
ScenarioCovar are set to empty [].

ScenarioCovar — Estimate for covariance of scenarios
[] (default) | matrix

Estimate for covariance of scenarios, returned as a NumAssets-by-NumAssets matrix or
[].

Note: If no scenarios are associated with the specified object, both ScenarioMean and
ScenarioCovar are set to empty [].

More About

Tips

You can also use dot notation to estimate the mean and covariance of asset return
scenarios for a portfolio.

[ScenarioMean, ScenarioCovar] = obj.estimateScenarioMoments

• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
estimatePortRisk | rng | setScenarios |
simulateNormalScenariosByMoments

Introduced in R2012b
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ewstats
Expected return and covariance from return time series

Syntax
[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,

DecayFactor, WindowLength)

Arguments

RetSeries Return Series: number of observations (NUMOBS) by number of
assets (NASSETS) matrix of equally spaced incremental return
observations. The first row is the oldest observation, and the last
row is the most recent.

DecayFactor (Optional) Controls how much less each observation is weighted
than its successor. The kth observation back in time has
weight DecayFactor^k. DecayFactor must lie in the range:
0 < DecayFactor <= 1.

Default = 1, the equally weighted linear moving average model
(BIS).

WindowLength (Optional) Number of recent observations in the computation.
Default = NUMOBS.

Description

[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,

DecayFactor, WindowLength) computes estimated expected returns, estimated
covariance matrix, and the number of effective observations. These are maximum
likelihood estimates which are generally biased.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.

ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The standard
deviations of the asset return processes are given by
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     STDVec = sqrt(diag(ExpCovariance))

The correlation matrix is

     CorrMat = ExpCovariance./( STDVec*STDVec' )

NumEffObs is the number of effective observations = (1-
DecayFactor^WindowLength)/(1-DecayFactor).

A smaller DecayFactor or WindowLength emphasizes recent data more strongly but
uses less of the available data set.

Examples
Compute Estimated Expected Returns and Estimated Covariance Matrix

This example shows how to compute the estimated expected returns and the estimated
covariance matrix.

RetSeries = [ 0.24 0.08

              0.15 0.13

              0.27 0.06

              0.14 0.13 ];

DecayFactor = 0.98;

[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)

ExpReturn =

    0.1995    0.1002

ExpCovariance =

    0.0032   -0.0017

   -0.0017    0.0010

More About
• “Portfolio Optimization Functions” on page 3-4
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See Also
cov | mean

Introduced before R2006a
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exp
Exponential values

Syntax
newfts = exp(tsobj)

Description

newfts = exp(tsobj) calculates the natural exponential (base e) of all the data in the
data series of the financial time series object tsobj and returns the result in the object
newfts.

See Also
log | log10 | log2

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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extfield
Data series extraction

Syntax
ftse = extfield(tsobj, fieldnames)

Arguments

tsobj Financial time series object
fieldnames Data series to be extracted. A cell array of character vectors if a list

of data series names (fieldnames) is supplied. A character vector
if only one is wanted.

Description
ftse = extfield(tsobj, fieldnames) extracts from tsobj the dates and data
series specified by fieldnames into a new financial time series object ftse. ftse has all
the dates in tsobj but contains a smaller number of data series.

Examples
extfield is identical to referencing a field in the object. For example,

ftse = extfield(fts, 'Close')

is the same as

ftse = fts.Close

This function is the complement of the function rmfield.

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
rmfield

Introduced before R2006a
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fanplot

Plot combined historical and forecast data to visualize possible outcomes

Syntax

fanplot(historical,forecast)

fanplot( ___ ,Name,Value)

h = fanplot(historical,forecast)

h = fanplot( ___ ,Name,Value)

Description

fanplot(historical,forecast) generates a fan chart. In time series analysis, a
fan chart is a chart that joins a simple line chart for observed past data with ranges for
possible values of future data. The historical data and possible future data are joined
with a line showing a central estimate or most likely value for the future outcomes.

fanplot supports three plotting scenarios:

• Matching — This scenario occurs when the time period perfectly matches for
historical and forecast data.

• Backtest — This scenario occurs when there are overlaps between historical and
forecast data.

• Gap — This scenario occurs when there are NaN values in the historical or
forecast data.

fanplot( ___ ,Name,Value) generates a fan chart using optional name-value pair
arguments.

h = fanplot(historical,forecast) generates a fan chart and returns the figure
handle h. In time series analysis, a fan chart is a chart that joins a simple line chart for
observed past data with ranges for possible values of future data. The historical data and
possible future data are joined with a line showing a central estimate or most likely value
for the future outcomes.
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fanplot supports three plotting scenarios:

• Matching — This scenario occurs when the time period perfectly matches for
historical and forecast data.

• Backtest — This scenario occurs when there are overlaps between historical and
forecast data.

• Gap — This scenario occurs when there are NaN values in the historical or
forecast data.

h = fanplot( ___ ,Name,Value) generates a fan chart and returns the figure handle
h using optional name-value pair arguments.

Examples

Create a Fan Plot Using Cell Array Data

Define the data inputs for historical as a 5-by-2 cell array and forecast as a 5-by-21
cell array with 20 observations.

historical =  {[2006]    [-0.0110]

               [2007]    [ 0.0120]

               [2008]    [ 0.0090]

               [2009]    [ 0.0120]

               [2010]    [ 0.0150]};

forecast =    {[2011]  [0.0203]      [-0.0155]    [0.0311]     [-0.0026]     [0.0035]    [0.0049]      [0.0026]    [0.0298]    [-0.0212]     [0.0128]    ...

                       [0.0533]      [0.0139]     [0.0037]     [-0.0727]     [-0.0291]   [-0.0058]     [0.0183]    [0.0490]    [0.0072]      [-0.0604];

               [2012]  [0.0430]      [-0.0094]    [0.0587]     [ 0.0095]     [0.0185]    [0.0205]      [0.0172]    [0.0569]    [-0.0177]     [0.0320]    ...

                       [0.0141]      [0.0337]     [0.0187]     [0.0132]      [-0.0292]   [0.0048]      [0.0400]    [0.0126]    [0.0239]      [0.0124];

               [2013]  [0.0518]      [-0.0116]    [0.0708]     [0.0112]      [0.0221]    [0.0246]      [0.0205]    [0.0686]    [-0.0217]     [0.0385]    ...

                       [0.0168]      [0.0405]     [0.0224]     [0.0157]      [-0.0356]   [0.0056]      [0.0482]    [0.0150]    [0.0286]      [0.0148];

               [2014]  [0.0546]      [-0.0171]    [0.0762]     [0.0088]      [0.0210]    [0.0239]      [0.0193]    [0.0737]    [-0.0285]     [0.0396]    ...

                       [0.0151]      [0.0419]     [0.0214]     [0.0139]      [-0.0442]   [0.0024]      [0.0506]    [0.0130]    [0.0284]      [0.0128];

               [2015]  [0.0565]      [-0.0207]    [0.0797]     [0.0072]      [0.0203]    [0.0234]      [0.0185]    [0.0770]    [-0.0329]     [0.0404]    ...

                       [0.0139]      [0.0428]     [0.0207]     [0.0126]      [-0.0499]   [0.0026]      [0.0522]    [0.0117]    [0.0283]      [0.0115]};

Generate the fan plot.

fanplot (historical, forecast);
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The dotted points are the historical lines and the filled lines indicate the mean for the
forecasts. This fanplot represents a matching scenario where the time period perfectly
matches for the historical and forcast data.

Create a Fan Plot Using Matrix Data

Define the data inputs for historical as a 5-by-2 matrix and forecast as a 5-by-21
matrix with 20 observations.

historical =  [ 1.0000    2.8046 ;

                2.0000    4.1040 ;

                3.0000    6.7292 ;

                4.0000    8.6486 ;

                5.0000   10.4747 ];
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forecast  =   [ 3.0000   28.9874   18.3958   19.6376   29.5627    8.3462    7.1502   25.3845    2.2963    8.0517   13.1328   19.5155   14.7369 , ...

                         20.8557   27.0691   23.0803   20.7885   18.0205   17.2294   10.0197   29.4254 ;

                4.0000    4.8933   27.2659    7.2206   24.4703   10.5895   15.0212   29.1137    6.3784   10.2638   11.0671   12.6656    4.3285 , ...

                          8.0007   18.7114   19.1691   24.5963    4.2835    4.0676    3.2612   29.5784 ;

                5.0000   20.9732   19.7069   11.6862   25.7018   31.8940    7.2664   19.2113   10.0001   31.5482   25.7193   13.8881   30.1476 , ...

                         31.7996    3.6419    3.2695   27.1422   10.5487   32.6529   18.8370    6.6373 ;

                6.0000   11.0069   29.1965    4.5551   20.2627   10.9209   15.2675   28.5359   11.4010   14.4001   14.7923    6.0546   12.4509 , ...

                         23.9532   18.4804   25.5484    4.8747    8.0036   11.5329   11.6807   21.7583 ;

                7.0000    5.9699   11.1486   26.0449   13.4619   21.1196   28.8068   26.2525   10.1085   13.9197    8.7470   31.0149   23.4163 , ...

                         21.2390   29.2396   18.4828   28.3945   21.9342   14.4642   17.2613   15.7896 ];

Generate the fan plot and return the figure handle.

h = fanplot(historical, forecast)

h = 

  Figure (1) with properties:

      Number: 1

        Name: ''

       Color: [0.9400 0.9400 0.9400]

    Position: [360 502 560 420]

       Units: 'pixels'

  Use GET to show all properties
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The dotted points are the historical lines and the filled lines indicate the mean for the
forecasts. This fanplot represents a backtest scenario where there is an overlap between
the historical and forecast data.

Create a Fan Plot Using Cell Array Data and Customize the Plot With Name-Value Pair
Arguments

Define the data inputs for historical as a 5-by-2 cell array and forecast as a 5-by-21
cell array with 20 observations.

historical =  {[2006]    [-0.0110]

               [2007]    [ 0.0120]

               [2008]    [ 0.0090]
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               [2009]    [ 0.0120]

               [2010]    [ 0.0150]};

forecast =    {[2011]  [0.0203]      [-0.0155]    [0.0311]     [-0.0026]     [0.0035]    [0.0049]      [0.0026]    [0.0298]    [-0.0212]     [0.0128]    ...

                       [0.0533]      [0.0139]     [0.0037]     [-0.0727]     [-0.0291]   [-0.0058]     [0.0183]    [0.0490]    [0.0072]      [-0.0604];

               [2012]  [0.0430]      [-0.0094]    [0.0587]     [ 0.0095]     [0.0185]    [0.0205]      [0.0172]    [0.0569]    [-0.0177]     [0.0320]    ...

                       [0.0141]      [0.0337]     [0.0187]     [0.0132]      [-0.0292]   [0.0048]      [0.0400]    [0.0126]    [0.0239]      [0.0124];

               [2013]  [0.0518]      [-0.0116]    [0.0708]     [0.0112]      [0.0221]    [0.0246]      [0.0205]    [0.0686]    [-0.0217]     [0.0385]    ...

                       [0.0168]      [0.0405]     [0.0224]     [0.0157]      [-0.0356]   [0.0056]      [0.0482]    [0.0150]    [0.0286]      [0.0148];

               [2014]  [0.0546]      [-0.0171]    [0.0762]     [0.0088]      [0.0210]    [0.0239]      [0.0193]    [0.0737]    [-0.0285]     [0.0396]    ...

                       [0.0151]      [0.0419]     [0.0214]     [0.0139]      [-0.0442]   [0.0024]      [0.0506]    [0.0130]    [0.0284]      [0.0128];

               [2015]  [0.0565]      [-0.0207]    [0.0797]     [0.0072]      [0.0203]    [0.0234]      [0.0185]    [0.0770]    [-0.0329]     [0.0404]    ...

                       [0.0139]      [0.0428]     [0.0207]     [0.0126]      [-0.0499]   [0.0026]      [0.0522]    [0.0117]    [0.0283]      [0.0115]};

Generate the fan plot using name-value pair arguments to customize the presentation.

fanplot(historical,forecast,'FanFaceColor',[1 1 1;1 0 0],'FanLineStyle','--','ForecastMarker','p','ForecastMarkerSize',10)
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Create a Fan Plot Using Table Data

Create table of historical dates and data.

historicalDates = datetime(2006:2010,1,1)';

historicalData = [-0.0110;0.0120;0.0090;0.0120;0.0150];

historical = table(historicalDates,historicalData,'VariableNames',{'Dates','Data'});

Create table of forecast dates and data.

forecastDates = datetime(2011:2015,1,1)';

forecastData =      [0.0203      -0.0155    0.0311     -0.0026     0.0035    0.0049      0.0026    0.0298    -0.0212     0.0128    ...

                     0.0533      0.0139     0.0037     -0.0727     -0.0291   -0.0058     0.0183    0.0490    0.0072      -0.0604;

                     0.0430      -0.0094    0.0587     0.0095      0.0185    0.0205      0.0172    0.0569    -0.0177     0.0320    ...
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                     0.0141      0.0337     0.0187     0.0132      -0.0292   0.0048      0.0400    0.0126    0.0239      0.0124;

                     0.0518      -0.0116    0.0708     0.0112      0.0221    0.0246      0.0205    0.0686    -0.0217     0.0385    ...

                     0.0168      0.0405     0.0224     0.0157      -0.0356   0.0056      0.0482    0.0150    0.0286      0.0148;

                     0.0546      -0.0171    0.0762     0.0088      0.0210    0.0239      0.0193    0.0737    -0.0285     0.0396    ...

                     0.0151      0.0419     0.0214     0.0139      -0.0442   0.0024      0.0506    0.0130    0.0284      0.0128;

                     0.0565      -0.0207    0.0797     0.0072      0.0203    0.0234      0.0185    0.0770    -0.0329     0.0404    ...

                     0.0139      0.0428     0.0207     0.0126      -0.0499   0.0026      0.0522    0.0117    0.0283      0.0115];

forecast = [table(forecastDates,'VariableName',{'Dates'}),array2table(forecastData)];

Plot the data using fanplot.

fanplot(historical,forecast);

• “Charting Financial Data” on page 2-12
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Input Arguments

historical — Historical dates and data
matrix | cell array | table

Historical dates and data, specified as an N-by-2 matrix, cell array, or table, where the
first column is the date, and the second column is the data associated for that date. N
indicates the number of dates. By using the cell array format for the input, you can make
the first column datetime and produce the same plot as would serial date numbers or
date character vectors. For example:

historical(:,1) = num2cell(datetime(2006:2010,1,1));

forecast(:,1) = num2cell(datetime(2011:2015,1,1));

fanplot (historical, forecast);

Data Types: cell | double | table

forecast — Forecast dates and data
matrix | cell array of character vectors | table

Forecast dates and data, specified as an N-by-M matrix, cell array, or table, where the
first column is the date, and the second to the last columns are the data observations.
N indicates the number of the dates and (M – 1) is the number for data observations.
By using the cell array format for the input, you can make the first column datetime
and produce the same plot as would serial date numbers or date character vectors. For
example:

historical(:,1) = num2cell(datetime(2006:2010,1,1));

forecast(:,1) = num2cell(datetime(2011:2015,1,1));

fanplot (historical, forecast);

Data Types: cell | double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
fanplot(historical,forecast,'NumQuantiles',14,'FanLineColor','blue','HistoricalLineWidth',

1.8,'ForecastLineColor','red')
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'NumQuantiles' — Number of quantiles to display
20 (default) | positive integer

Number of quantiles to display in fan chart, specified as a positive integer.
Data Types: double

'FanLineStyle' — Style of the lines separating fans
'none' (default) | character vector

Style of the lines separating fans, specified as a character vector. For more information
on supported character vectors for line styles, see Primitive Line Properties.
Data Types: char

'FanLineColor' — Color of lines separating fans
'black' (default) | character vector for color or RGB triplet

Color of lines separating fans, specified as a character vector for color or a RGB triplet.
For more information on supported color character vectors, see Primitive Line Properties.
Data Types: double | char

'FanFaceColor' — Color of each fan
[1 1 0;1 0 0] (yellow to red) (default) | matrix

Color of each fan, specified as an N-by-3 matrix controlling the color of each fan, where
each row is an RGB triplet. There are three possible values of N:

• When N = NumQuantiles, the color of each fan is specified by the corresponding row
in the matrix.

• When N = ceil(NumQuantiles/2), the specified colors represent the bottom half of
the fans. The colors of the top half are determined by reversing the order of these
colors. For more information, see ceil.

• When N = 2, the colors in the bottom half of the fan are a linear interpolation between
the two specified colors. The pattern is reversed for the top half.

Data Types: double

'HistoricalMarker' — Marker symbol of historical line
'o' (default) | character vector

Marker symbol of historical line, specified as a character vector. For more information on
supported character vectors for markers, see Primitive Line Properties.
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Data Types: char

'HistoricalMarkerSize' — Marker size of historical line
5 (default) | positive value in point units

Marker size of historical line, specified as a positive value in point units.
Data Types: double | char

'HistoricalMarkerFaceColor' — Marker fill color of historical line
'blue' (default) | character vector with a value of 'none', 'auto', color identifier, or
RGB triplet

Marker fill color of historical line, specified as a character vector with a value of 'none',
'auto', a character vector for color, or an RGB triplet. For more information on
supported character vectors for color, see Primitive Line Properties.
Data Types: double | char

'HistoricalMarkerEdgeColor' — Marker outline color of historical line
'blue' (default) | character vector with a value of 'none', 'auto', color identifier, or
RGB triplet

Marker outline color of historical line, specified as a character vector with a value of
'none', 'auto', a character vector for color, or an RGB triplet. For more information on
supported character vectors for color, see Primitive Line Properties.
Data Types: double | char

'HistoricalLineColor' — Color of historical line
'black' (default) | character vector with a value of 'none', color identifier, or RGB
triplet

Color of historical line, specified as a character vector with a value of 'none', a
character vector for color, or an RGB triplet. For more information on supported
character vectors for color, see Primitive Line Properties.
Data Types: double | char

'HistoricalLineStyle' — Style of historical line
'--' (default) | character vector

Style of historical line, specified as a character vector. For more information on supported
character vectors for line styles, see Primitive Line Properties.
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Data Types: char

'HistoricalLineWidth' — Width of historical line
1.5 (default) | positive value in point units

Width of historical line, specified as a positive value in point units.
Data Types: double

'ForcecastMarker' — Marker symbol of forecast line
'none' (default) | character vector

Marker symbol of forecast line, specified as a character vector. For more information on
supported character vectors for marker symbols, see Primitive Line Properties.
Data Types: char

'ForecastMarkerSize' — Marker size of forecast line
5 (default) | positive value in point units

Marker size of forecast line, specified as a positive value in point units.
Data Types: double

'ForecastMarkerFaceColor' — Marker fill color of forecast line
'none' (default) | character vector with a value of 'none', 'auto', color identifier, or
RGB triplet

Marker fill color of forecast line, specified as a character vector with a value of 'none',
'auto', a character vector for color, or an RGB triplet. For more information on
supported character vectors for color, see Primitive Line Properties.
Data Types: double | char

'ForecastMarkerEdgeColor' — Marker outline color of forecast line
'auto' (default) | character vector with a value of 'none', 'auto', color identifier, or
RGB triplet

Marker outline color of forecast line, specified as a character vector with a value of
'none', 'auto', character vector for color, or an RGB triplet. For more information on
supported character vectors for color, see Primitive Line Properties.
Data Types: double | char
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'ForecastLineColor' — Color of forecast line
'black' (default) | character vector with a value of 'none', color identifier, or RGB
triplet

Color of forecast line, specified as a character vector with a value of 'none', a character
vector for color, or an RGB triplet. For more information on supported character vectors
for color, see Primitive Line Properties.
Data Types: double | char

'ForecastLineStyle' — Style of forecast line
'-' (default) | character vector

Style of forecast line, specified as a character vector. For more information on supported
character vectors for line styles, see Primitive Line Properties.
Data Types: char

'ForecastLineWidth' — Width of forecast line
2 (default) | positive value in point units

Width of forecast line, specified as a positive value in point units.
Data Types: double

Output Arguments

h — Figure handle for fanplot
handle object

Figure handle for the fanplot, returned as handle object.

See Also
bolling | candle | ceil | datetime | highlow | linebreak | movavg | pointfig
| priceandvol | renko | volarea

Introduced in R2014b

18-710



 fbusdate

fbusdate
First business date of month

Syntax

Date = fbusdate(Year,Month)

Date = fbusdate(Year,Month,Holiday,Weekend,outputType)

Description

Date = fbusdate(Year,Month) returns the serial date number for the first business
date of the given year and month.

Year and Month can contain multiple values. If one contains multiple values, the
other must contain the same number of values or a single value that applies to all. For
example, ifYear is a 1-by-N vector of integers, then Month must be a 1-by-N vector of
integers or a single integer.Date is then a 1-by-N vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character
vectors.

Date = fbusdate(Year,Month,Holiday,Weekend,outputType) returns the serial
date number for the first business date of the given year and month using optional input
arguments. Holiday specifies nontrading days.

If neither Holiday or outputType are specified, Date is returned as a serial date
number. If Holiday is specified, but not outputType, then the type of the holiday
variable controls the type of date. If Holiday is a serial date number or date character
vector, then Date is returned as a serial date number.

Examples

Return a Serial Date Number for the First Business Date

This example shows how to return serial date numbers for the first business date, given
year and month.
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Date = fbusdate(2001, 11)

datestr(Date)

Year = [2002 2003 2004];

Date = fbusdate(Year, 11)

datestr(Date)

Date =

      731156

ans =

01-Nov-2001

Date =

      731521      731888      732252

ans =

01-Nov-2002

03-Nov-2003

01-Nov-2004

Return a Serial Date Number for the First Business Date Using the Weekend Argument

This example shows how to return serial date numbers for the first business date,
given year and month, and also indicate that Saturday is a business day by setting the
Weekend argument. March 1, 2003, is a Saturday. Use fbusdate to check that this
Saturday is actually the first business day of the month.

Weekend = [1 0 0 0 0 0 0];

Date = datestr(fbusdate(2003, 3, [], Weekend))

Date =

01-Mar-2003
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Return a datetime array for Date for the First Business Date Using the outputType Argument

This example shows how to return a datetime array for Date using an outputType of
'datetime'.

Date = fbusdate(2001, 11,[],[],'datetime')

Date = 

  datetime

   01-Nov-2001

• “Handle and Convert Dates” on page 2-4

Input Arguments

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit
integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers
with values 1 through 12.

Data Types: single | double

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date
number | date character vector | datetime array

Holidays and nontrading-day dates, specified as vector.
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All dates in Holiday must be the same format: either serial date numbers, or date
character vectors, or datetime arrays. (Using serial date numbers improves performance.)
The holidays function supplies the default vector.

If Holiday is a datetime array, then Date is returned as a datetime array. If
outputType is specified, then its value determines the output type of Date. This
overrides any influence of Holiday.

Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length
7, containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates
weekend days and the first element of this vector corresponds to Sunday.
Data Types: double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output Date
is in serial date format if 'datenum' is specified, or datetime format if 'datetime'
is specified. By default the output Date is in serial date format,or match the format of
Holiday, if specified.

Data Types: char

Output Arguments

Date — Date for the first business date of given year and month
serial date number | date character vector | datetime array

Date for the first business date of a given year and month, returned as a serial date
number, date character vector, or datetime array.

If neither Holiday or outputType are specified, Date is returned as a serial date
number. If Holiday is specified, but not outputType, then the type of the holiday
variable controls the type of date:
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• If Holiday is a serial date number or date character vector, then Date is returned as
a serial date number

• If Holiday is a datetime array, then Date is returned as a datetime array.

.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
busdate | datetime | eomdate | holidays | isbusday | lbusdate

Introduced before R2006a
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fetch

Data from financial time series object

Syntax

newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,

delta, dmy_specifier, time_ref) 

Arguments

oldfts Existing financial time series object.
StartDate First date in the range from which data is to be extracted.
StartTime Beginning time on each day. If you do not require specific

times or oldfts does not contain time information, use [].
If you specify StartTime, you must also specify EndTime.

EndDate Last date in the range from which data is to be extracted.
EndTime Ending time on each day. If you do not require specific times

or oldfts does not contain time information, use []. If you
specify EndTime, you must also specify StartTime.

delta Skip interval. Can be any positive integer. Units for the skip
interval specified by dmy_specifier.

dmy_specifier Specifies the units for delta. Can be

• D, d (Days)
• M, m (Months)
• Y, y (Years)

time_ref Time reference intervals or specific times. Valid time
reference intervals are 1, 5, 15, or 60 minutes. Enter specific
times as 'hh:mm'.
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Description

newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,

delta, dmy_specifier, time_ref) requests data from a financial time series object
beginning from the start date and/or start time to the end date and/or end time, skipping
a specified number of days, months, or years.

Note If time information is present in oldfts, using [] for start or end times results in
fetch returning all instances of a specific date.

Examples

Example 1. Create a financial time series object containing both dates and times:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

times]);

myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

myFts = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

To fetch all dates and times from this financial time series, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],1,'d')

or
fetch(myFts,'01-Jan-2001','11:00','03-Jan-2001','12:00',1,'d')

These commands reproduce the entire time series shown above.
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To fetch every other day's data, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],2,'d')

This returns:

ans = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

Example 2. Create a financial time series object with time intervals of less than 1 hour:
dates2 = ['01-Jan-2001';'01-Jan-2001'; '01-Jan-2001';...

'02-Jan-2001'; '02-Jan-2001';'02-Jan-2001'];

times2 = ['11:00';'11:05';'11:06';'12:00';'12:05';'12:06'];

dates_times2 = cellstr([dates2, repmat(' ',size(dates2,1),1),... 

times2]);

myFts2 = fints(dates_times2,(1:6)',{'Data1'},1,'My second 

FINTS')

myFts2 = 

 

    desc:  My second FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '11:05'          [          2]

    '     "     '    '11:06'          [          3]

    '02-Jan-2001'    '12:00'          [          4]

    '     "     '    '12:05'          [          5]

    '     "     '    '12:06'          [          6]

Use fetch to extract data from this time series object at 5-minute intervals for each day
starting at 11:00 o'clock on January 1, 2001.

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',5)

    desc:  My second FINTS

    freq:  Daily (1)
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    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '11:05'          [          2]

    '02-Jan-2001'    '12:00'          [          4]

    '     "     '    '12:05'          [          5]

You can use this version of fetch to extract data at specific times. For example, to fetch
data only at 11:06 and 12:06 from myFts2, enter

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',... 

{'11:06';'12:06'})

ans = 

 

    desc:  My second FINTS

    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'

    '01-Jan-2001'    '11:06'          [          3]

    '02-Jan-2001'    '12:06'          [          6]

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
extfield | ftsbound | getfield | subsref

Introduced before R2006a
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fieldnames
Get names of fields

Syntax
fnames = fieldnames(tsobj)

fnames = fieldnames(tsobj, srsnameonly)

Arguments

tsobj Financial time series object
srsnameonly Field names returned:

0 = All field names (default).

1 = Data series names only.

Description

fieldnames gets field names in a financial time series object.

fnames = fieldnames(tsobj) returns the field names associated with the financial
time series object tsobj as a cell array of character vectors, including the common fields:
desc, freq, dates (and times if present).

fnames = fieldnames(tsobj, srsnameonly) returns field names depending upon
the setting of srsnameonly. If srsnameonly is 0, the function returns all field names,
including the common fields: desc, freq, dates, and times. If srsnameonly is set to 1,
fieldnames returns only the data series in fnames.

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
chfield | getfield | isfield | rmfield | setfield

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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fillts
Fill missing values in time series

Syntax
newfts = fillts(oldfts, fill_method)

newfts = fillts(oldfts, fill_method, newdates)

newfts = fillts(oldfts, fill_method, 

newdates, {'T1','T2',...})

newfts = fillts(oldfts, fill_method, newdates,

'SPAN', {'TS','TE'}, delta)

newfts = fillts(... sortmode)

Arguments

oldfts Financial time series object.
fill_method (Optional) Replaces missing values (NaN) in oldfts using

an interpolation process, a constant, or a zero-order hold.

Valid fill methods (interpolation methods) are:

• linear - 'linear ' - 'l' (default)
• linear with extrapolation - 'linearExtrap' - 'le'
• cubic - 'cubic' - 'c'
• cubic with extrapolation - 'cubicExtrap' - 'ce'
• spline - 'spline' - 's'
• spline with extrapolation - 'splineExtrap' -'se'
• nearest - 'nearest' - 'n'
• nearest with extrapolation - 'nearestExtrap' -'ne'
• pchip - 'pchip' - 'p'
• pchip with extrapolation - 'pchipExtrap' -'pe'
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(See interp1 for a discussion of extrapolation.)

To fill with a constant, enter that constant.

A zero-order hold ('zero') fills a missing value with the
value immediately preceding it. If the first value in the time
series is missing, it remains a NaN.

newdates (Optional) Column vector of serial dates, a date character
vector, or a column cell array of character vector dates. If
oldfts contains time of day information, newdates must
be accompanied by a time vector (newtimes). Otherwise,
newdates is assumed to have times of '00:00'.

T1, T2, TS, TE First time, second time, start time, end time
delta Time interval in minutes to span between the start time and

end time
sortmode (Optional) Default = 0 (unsorted). 1 = sorted.

Description

newfts = fillts(oldfts, fill_method) replaces missing values (represented by
NaN) in the financial time series object oldfts with real values, using either a constant
or the interpolation process indicated by fill_method.

newfts = fillts(oldfts, fill_method, newdates) replaces all the missing
values on the specified dates newdates added to the financial time series oldfts
with new values. The values can be a single constant or values obtained through the
interpolation process designated by fill_method. If any of the dates in newdates exists
in oldfts, the existing one has precedence.

newfts = fillts(oldfts, fill_method,

newdates, {'T1','T2',...}) additionally allows the designation of specific times of
day for addition or replacement of data.

newfts = fillts(oldfts, fill_method, newdates,

'SPAN', {'TS','TE'}, delta) is similar to the previous format except that you
designate only a start time and an end time. You follow these times with a spanning time
interval, delta.
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If you specify only one date for newdates, specifying a start and end time generates only
times for that specific date.

newfts = fillts(... sortmode) additionally denotes whether you want the order
of the dates in the output object to stay the same as in the input object or to be sorted
chronologically.

sortmode = 0 (unsorted) appends any new dates to the end. The interpolation and zero-
order processes that calculate the values for the new dates work on a sorted object. Upon
completion, the existing dates are reordered as they were originally, and the new dates
are appended to the end.

sortmode = 1 sorts the output. After interpolation, no reordering of the date sequence
occurs.

Examples

Example 1. Create a financial time series object with missing data in the fourth and
fifth rows.
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001';...

         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

                       times]);

OpenFts = fints(dates_times,[(1:3)'; nan; nan; 6],{'Data1'},1,... 

'Open Financial Time Series');

OpenFts looks like this:

OpenFts = 

 

    desc:  Open Financial Time Series

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [        NaN]

    '03-Jan-2001'    '11:00'          [        NaN]

    '     "     '    '12:00'          [          6]

Example 2. Fill the missing data in OpenFts using cubic interpolation.
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FilledFts = fillts(OpenFts,'cubic')

FilledFts = 

  

       desc:  Filled Open Financial Time Series

       freq:  Unknown (0)

 

       'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

       '01-Jan-2001'    '11:00'          [          1]

       '     "     '    '12:00'          [          2]

       '02-Jan-2001'    '11:00'          [          3]

       '     "     '    '12:00'          [     3.0663]

       '03-Jan-2001'    '11:00'          [     5.8411]

       '     "     '    '12:00'          [     6.0000]

Example 3. Fill the missing data in OpenFts with a constant value.

FilledFts = fillts(OpenFts,0.3)

FilledFts = 

 

    desc:  Filled Open Financial Time Series

    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [     0.3000]

    '03-Jan-2001'    '11:00'          [     0.3000]

    '     "     '    '12:00'          [          6]

Example 4. You can use fillts to identify a specific time on a specific day for the
replacement of missing data. This example shows how to replace missing data at 12:00
on January 2 and 11:00 on January 3.

FilltimeFts = fillts(OpenFts,'c',... 

{'02-Jan-2001';'03-Jan-2001'}, {'12:00';'11:00'},0)

FilltimeFts = 

  

       desc:  Filled Open Financial Time Series

       freq:  Unknown (0)

 

       'dates:  (6)'    'times:  (6)'    'Data1:  (6)'
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       '01-Jan-2001'    '11:00'          [          1]

       '     "     '    '12:00'          [          2]

       '02-Jan-2001'    '11:00'          [          3]

       '     "     '    '12:00'          [     3.0663]

       '03-Jan-2001'    '11:00'          [     5.8411]

       '     "     '    '12:00'          [     6.0000]

Example 5. Use a spanning time interval to add an additional day to OpenFts.

SpanFts = fillts(OpenFts,'c','04-Jan-2001','span',... 

               {'11:00';'12:00'},60,0)

SpanFts = 

  

       desc:  Filled Open Financial Time Series

       freq:  Unknown (0)

 

       'dates:  (8)'    'times:  (8)'    'Data1:  (8)'

       '01-Jan-2001'    '11:00'          [          1]

       '     "     '    '12:00'          [          2]

       '02-Jan-2001'    '11:00'          [          3]

       '     "     '    '12:00'          [     3.0663]

       '03-Jan-2001'    '11:00'          [     5.8411]

       '     "     '    '12:00'          [     6.0000]

       '04-Jan-2001'    '11:00'          [     9.8404]

       '     "     '    '12:00'          [     9.9994]

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
interp1

Introduced before R2006a
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filter
Linear filtering

Syntax
newfts = filter(B, A, oldfts)

Description

filter filters an entire financial time series object with certain filter specifications. The
filter is specified in a transfer function expression.

newfts = filter(B, A, oldfts) filters the data in the financial time series object
oldfts with the filter described by vectors A and B to create the new financial time
series object newfts. The filter is a “Direct Form II Transposed” implementation of the
standard difference equation. newfts is a financial time series object containing the
same data series (names) as the input oldfts.

See Also
filter2

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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fints
Construct financial time series object

Syntax
tsobj = fints(dates_and_data)

tsobj = fints(dates, data)

tsobj = fints(dates, data, datanames)

tsobj = fints(dates, data, datanames, freq)

tsobj = fints(dates, data, datanames, freq, desc)

Arguments

dates_and_data Column-oriented matrix containing one column of dates
and a single column for each series of data. In this format,
dates must be entered in serial date number format. If the
input serial date numbers encode time-of-day information,
the output object contains a column labeled 'dates'
containing the date information and another labeled
'times' containing the time information.

You can use the MATLAB function today to enter date
information or the MATLAB function now to enter date with
time information.

dates Column vector of dates. Dates can be date character
vectors or serial date numbers and can include time of day
information. When entering time-of-day information as
serial date numbers, the entry must be a column-oriented
matrix when multiple entries are present. If the time-of-day
information is in character vector format, the entry must be
a column-oriented cell array of character vector dates and
times when multiple entries are present.

Valid date and time character vector formats are:
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• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'
• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'
• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'
• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

Dates and times can initially be separate column-oriented
vectors, but they must be concatenated into a single column-
oriented matrix before being passed to fints. You can
use the MATLAB functions today and now to help with
entering date and time information.

data Column-oriented matrix containing a column for each series
of data. The number of values in each data series must
match the number of dates. If a mismatch occurs, MATLAB
does not generate the financial time series object, and you
receive an error message.

datanames Cell array of data series names. Overrides the default data
series names. Default data series names are series1,
series2, and so on.

Note: Not all character vectors are accepted as datanames
parameters. Supported data series names cannot start with
a number and must contain only these characters:

• Lowercase Latin alphabet, a to z

• Uppercase Latin alphabet, A to Z
• Underscore, _
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freq Frequency indicator. Allowed values are:

UNKNOWN, Unknown, unknown, U, u,0

DAILY, Daily, daily, D, d,1

WEEKLY, Weekly, weekly, W, w,2

MONTHLY, Monthly, monthly, M, m, 3

QUARTERLY, Quarterly, quarterly, Q, q,4

SEMIANNUAL, Semiannual, semiannual, S, s,5

ANNUAL, Annual, annual, A, a, 6

Default = Unknown.
desc Character vector providing descriptive name for financial

time series object. Default = ''.

Description

fints constructs a financial time series object. A financial time series object is a
MATLAB object that contains a series of dates and one or more series of data. Before you
perform an operation on the data, you must set the frequency indicator (freq). You can
optionally provide a description (desc) for the time series.

tsobj = fints(dates_and_data) creates a financial time series object containing
the dates and data from the matrix dates_and_data. If the dates contain time-of-day
information, the object contains an additional series of times. The date series and each
data series must each be a column in the input matrix. The names of the data series
default to series1, ..., seriesn. The desc and freq fields are set to their defaults.

tsobj = fints(dates, data) generates a financial time series object containing
dates from the dates column vector of dates and data from the matrix data. If the dates
contain time-of-day information, the object contains an additional series of times. The
data matrix must be column-oriented, that is, each column in the matrix is a data series.
The names of the series default to series1, ..., seriesn, where n is the total number of
columns in data. The desc and freq fields are set to their defaults.
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tsobj = fints(dates, data, datanames) also allows you to rename the data
series. The names are specified in the datanames cell array. The number of character
vectors in datanames must correspond to the number of columns in data. The desc and
freq fields are set to their defaults.

tsobj = fints(dates, data, datanames, freq) also sets the frequency when you
create the object. The desc field is set to its default ''.

tsobj = fints(dates, data, datanames, freq, desc) provides a description
(desc) specified as a character vector for the financial time series object.

Note: fints only supports hourly and minute time series. Seconds are not supported and
will be disregarded when the fints object is created (that is, 01-jan-2001 12:00:01 will
be considered as 01-jan-2001 12:00). If there are duplicate dates and times, the fints
constructor sorts the dates and times and chooses the first instance of the duplicate dates
and times. The other duplicate dates and times are removed from the object along with
their corresponding data.

Examples

Create a Financial Time Series Object Containing Days and Data

Define the data:

data = [1:6]'

data =

     1

     2

     3

     4

     5

     6

Define the dates:

dates = [today:today+5]'
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dates =

      736572

      736573

      736574

      736575

      736576

      736577

Create the financial times series object:

tsobjkt = fints(dates, data)

 

tsobjkt = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (6)'    'series1:  (6)'

    '30-Aug-2016'    [            1]

    '31-Aug-2016'    [            2]

    '01-Sep-2016'    [            3]

    '02-Sep-2016'    [            4]

    '03-Sep-2016'    [            5]

    '04-Sep-2016'    [            6]

Create a Financial Time Series Object Containing Days, Time of Day, and Data

Define the data:

data = [1:6]'

data =

     1

     2

     3

     4

     5

     6
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Define the dates:

dates = [now:now+5]'

dates =

   1.0e+05 *

    7.3657

    7.3657

    7.3657

    7.3658

    7.3658

    7.3658

Create the financial times series object:

tsobjkt = fints(dates, data)

 

tsobjkt = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'    'series1:  (6)'

    '30-Aug-2016'    '15:46'          [            1]

    '31-Aug-2016'    '15:46'          [            2]

    '01-Sep-2016'    '15:46'          [            3]

    '02-Sep-2016'    '15:46'          [            4]

    '03-Sep-2016'    '15:46'          [            5]

    '04-Sep-2016'    '15:46'          [            6]

Create a Financial Time Series Object From a Single Input for Dates and Times

Define the dates and times:

dates_and_times = (now:now+5)'

dates_and_times =

   1.0e+05 *
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    7.3657

    7.3657

    7.3657

    7.3658

    7.3658

    7.3658

Create the financial times series object:

 f = fints(dates_and_times, randn(6,1))

 

f = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'    'series1:  (6)'

    '30-Aug-2016'    '15:43'          [       0.5377]

    '31-Aug-2016'    '15:43'          [       1.8339]

    '01-Sep-2016'    '15:43'          [      -2.2588]

    '02-Sep-2016'    '15:43'          [       0.8622]

    '03-Sep-2016'    '15:43'          [       0.3188]

    '04-Sep-2016'    '15:43'          [      -1.3077]

This generates a financial time series object, f, and obtains the dates and data from the
matrix dates_and_times. The dates and times in the input matrix must be oriented
column-wise (i.e. the date series and each time series are columns in the input matrix).
In addition, the dates entered must be in the serial date format (i.e. 01-Jan-2001 is
730852). You can also use the function now to enter in date information. The names
of the series will default to 'series1', ..., '|seriesN'| where N is the total number of
columns in dates_and_times less 1 (that is the number of data columns). The default
contents of the desc and freq fields are|''| and | 'Unknown'| (0), respectively.

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
datenum | datestr | ftsgui | ftstool

Introduced before R2006a
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floatdiscmargin

Discount margin for floating-rate bond

Syntax

Margin = floatdiscmargin(Price,Spread,Settle,Maturity,

RateInfo,LatestFloatingRate)

Margin = floatdiscmargin(Price,Spread,Settle,Maturity,

RateInfo,LatestFloatingRate,Name,Value)

Description

Margin = floatdiscmargin(Price,Spread,Settle,Maturity,

RateInfo,LatestFloatingRate) calculates the discount margin or zero discount
margin for a floating-rate bond.

Margin = floatdiscmargin(Price,Spread,Settle,Maturity,

RateInfo,LatestFloatingRate,Name,Value) calculates the discount margin or zero
discount margin for a floating-rate bond with additional options specified by one or more
Name,Value pair arguments.

Input Arguments

Price

NINST-by-1 matrix of bond prices where the discount margin is to be computed. The
spread is calculated against the clean price (the function internally does not add the
accrued interest to the price specified by the Price input). If the spread is required
against the dirty price, you must supply the dirty price to this input.

Spread

NINST-by-1 matrix for the number of basis points over the reference rate.
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Settle

Settlement date of the floating-rate bond(s), specified as a serial date number, date
character vector, or datetime array. If supplied as a NINST-by-1 vector of dates, all
settlement dates must be the same (only a single settlement date is supported).

Maturity

NINST-by-1 vector of dates, specified as a serial date number, date character vector, or
datetime array, representing the maturity date of the floating-rate bond.

RateInfo

Interest-rate information. This argument determines if the discount margin or zero
discount margin is calculated. If this input is a NINST-by-2 vector, the discount margin is
calculated where the:

• First column is the stub rate between the settlement date and the first coupon rate.
• Second column is the reference rate for the term of the floating coupons (for example,

the 3-month LIBOR from the settlement date for a bond with a Reset of 4).

Note: If this argument is an annualized zero-rate term structure created by intenvset,
the zero discount margin is calculated.

LatestFloatingRate

NINST-by-1 vector representing the rate for the next floating payment set at the last
reset date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reset'

NINST-by-1 vector representing the frequency of payments per year.
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Default: 1

'Basis'

NINST-by-1 vector representing the basis used for time factor calculations:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

'Principal'

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is
a NUMDATES-by-2 cell array where the first column is dates and the second column is the
associated principal amount. The date indicates the last day that the principal value is
valid.

Default: 100

'EndMonthRule'

NINST-by-1 vector representing the end-of-month rule.

Default: 1 (in effect)
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'AdjustCashFlowsBasis'

NINST-by-1 vector of logicals. Adjusts cash flows according to the accrual amount.

Note: Usually you want to set AdjustCashFlowsBasis to true, so cash flows are
calculated with adjustments on accrual amounts. The default is set to false to be
consistent with floatbyzero.

Default: false

'Holidays'

NHOLIDAYS-by-1 vector of MATLAB dates, specified as serial date numbers, date
character vectors, or datetime arrays. Holidays are used in computing business days.

Default: holidays.m used

'BusinessDayConvention'

NINST-by-1 cell array of business day convention to be used in computing payment dates.
Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Output Arguments

Margin

NINST-by-1 vector of the discount margin if RateInfo is specified as a NINST-by-2
vector of stub and spot rates. NINST-by-NCURVES matrix of the zero discount margin if
RateInfo is specified as an annualized zero rate term structure created by intenvset.
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Examples

Compute the Zero Discount Margin Using a Yield Curve

Use floatdiscmargin to compute the discount margin and zero discount margin for a
floating-rate note.

Define data for the floating-rate note.

Price = 99.99;

Spread = 50;

Settle = '20-Jan-2011';

Maturity = '15-Jan-2012';

LatestFloatingRate = 0.05;

StubRate = 0.049;

SpotRate = 0.05;

Reset = 4;

Basis = 2;

Compute the discount margin.

dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...

[StubRate, SpotRate], LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...

'AdjustCashFlowsBasis', true)

dMargin =

   48.4810

Usually you want to set AdjustCashFlowsBasis to true, so cash flows are calculated
with adjustments on accrual amounts.

Create an annualized zero-rate term structure to calculate the zero discount margin.

Rates = [0.0500;

         0.0505;

         0.0510;

         0.0520];

StartDates = ['20-Jan-2011';

              '15-Apr-2011';

              '15-Jul-2011';

              '15-Oct-2011'];
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EndDates =   ['15-Apr-2011';

              '15-Jul-2011';

              '15-Oct-2011';

              '15-Jan-2012'];

ValuationDate = '20-Jan-2011';

RateSpec = intenvset('Compounding', Reset, 'Rates', Rates,...

'StartDates', StartDates, 'EndDates', EndDates,...

'ValuationDate', ValuationDate, 'Basis', Basis);

Calculate the zero discount margin using the previous yield curve.

dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...

RateSpec, LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...

'AdjustCashFlowsBasis', true)

dMargin =

   46.0688

Compute the Zero Discount Margin Using a Yield Curve With datetime Inputs

Use floatdiscmargin to compute the discount margin and zero discount margin for a
floating-rate note using datetime inputs.

Price = 99.99;

Spread = 50;

Settle = '20-Jan-2011';

Maturity = '15-Jan-2012';

LatestFloatingRate = 0.05;

StubRate = 0.049;

SpotRate = 0.05;

Reset = 4;

Basis = 2;

Settle = datetime(Settle,'Locale','en_US');

Maturity = datetime(Maturity,'Locale','en_US');

dMargin = floatdiscmargin(Price, Spread, Settle, Maturity, ...

[StubRate, SpotRate], LatestFloatingRate,'Reset', Reset, 'Basis', Basis, ...

'AdjustCashFlowsBasis', true)

dMargin =
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   48.4810

More About
• “Fixed-Income Terminology” on page 2-21

References

Fabozzi, Frank J., Mann, Steven V. Floating-Rate Securities. John Wiley and Sons, New
York, 2000.

Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative
Value Analysis, Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

O'Kane, Dominic, Sen, Saurav. “Credit Spreads Explained.” Lehman Brothers Fixed
Income Quantitative Research, March 2004.

See Also
bndspread | datetime | floatbyzero | floatmargin | intenvset

Introduced in R2012b
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floatmargin
Margin measures for floating-rate bond

Syntax
[Margin,AdjPrice] = floatmargin(Price,Spread,Settle,

Maturity)

[Margin,AdjPrice] = floatmargin(Price,Spread,Settle,

Maturity,Name,Value)

Description
[Margin,AdjPrice] = floatmargin(Price,Spread,Settle,

Maturity) calculates margin measures for a floating-rate bond.

[Margin,AdjPrice] = floatmargin(Price,Spread,Settle,

Maturity,Name,Value) calculates margin measures for a floating-rate bond with
additional options specified by one or more Name,Value pair arguments.

Use floatmargin to calculate the following types of margin measures for a floating-rate
bond:

• Spread for life
• Adjusted simple margin
• Adjusted total margin

To calculate the discount margin or zero discount margin, see floatdiscmargin.

Input Arguments

Price

NINST-by-1 matrix of bond prices where spreads are to be computed.

Spread

NINST-by-1 matrix for the number of basis points over the reference rate.
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Settle

Settlement date of the floating-rate bond(s), specified as a serial date number, date
character vector, or datetime array. If supplied as a NINST-by-1 vector of dates, all
settlement dates must be the same (only a single settlement date is supported).

Maturity

NINST-by-1 vector of dates, specified as a serial date number, date character vector, or
datetime array, representing the maturity date of the floating-rate bond.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'SpreadType'

The type of spread to calculate. Values are:

• spreadforlife

• adjustedsimple

• adjustedtotal

Only single SpreadType values are supported.

If the SpreadType is spreadforlife (default), then the Name-Value arguments
LatestFloatingRate and RateInfo are not used. If the SpreadType is
adjustedsimple or adjustedtotal, then the Name-Value arguments
LatestFloatingRate and RateInfo must be specified.

Default: spreadforlife

'LatestFloatingRate'

NINST-by-1 vector representing the rate for the next floating payment set at the last
reset date. This rate must be specified for SpreadType of adjustedsimple and
adjustedtotal.
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Default:

'RateInfo'

NINST-by-2 vector representing the interest-rate information where the:

• First column is the stub rate between the settlement date and the first coupon rate.
• Second column is the reference rate for the term of the floating coupons (for example,

the 3-month LIBOR from settlement date for a bond with a Reset of 4).

Note: The RateInfo must be specified for SpreadType of adjustedsimple and
adjustedtotal.

Default:

'Reset'

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

'Basis'

NINST-by-1 vector representing the basis used for time factor calculations:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

'Principal'

NINST-by-1 of notional principal amounts.

Default: 100

'EndMonthRule'

NINST-by-1 vector representing the end-of-month rule.

Default: 1 (in effect)

'Holidays'

NHOLIDAYS-by-1 vector of MATLAB dates, specified as serial date numbers, date
character vectors, or datetime arrays. Holidays are used in computing business days.

Default: holidays.m used

'BusinessDayConvention'

NINST-by-1 cell array of business day conventions to be used in computing payment
dates. Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual
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Output Arguments

Margin

NINST-by-1 vector of spreads for the floating-rate bond.

AdjPrice

NINST-by-1 vector of the adjusted price used to calculate spreads for SpreadType of
adjustedsimple and adjustedtotal.

Examples

Compute Margin Measures for a Floating-Rate Bond

Use floatmargin to compute margin measures for spreadforlife, adjustedsimple,
and adjustedtotal for a floating-rate note.

Define data for the floating-rate note.

Price = 99.99;

Spread = 50;

Settle = '20-Jan-2011';

Maturity = '15-Jan-2012';

LatestFloatingRate = 0.05;

StubRate = 0.049;

SpotRate = 0.05;

Reset = 4;

Basis = 2;

Calculate spreadforlife.

Margin = floatmargin(Price, Spread, Settle, Maturity, 'Reset', ...

Reset, 'Basis', Basis)

Margin =

   51.0051

Calculate adjustedsimple margin.
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[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...

'SpreadType', 'adjustedsimple', 'RateInfo', [StubRate, SpotRate], ...

'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin =

   53.2830

AdjPrice =

   99.9673

Calculate adjustedtotal margin.

[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...

'SpreadType', 'adjustedtotal', 'RateInfo', [StubRate, SpotRate], ...

'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin =

   53.4463

AdjPrice =

   99.9673

Compute Margin Measures for a Floating-Rate Bond Using datetime Inputs

Use floatmargin to calculate margin measures for spreadforlife,
adjustedsimple, and adjustedtotal for a floating-rate note using datetime inputs.

Price = 99.99;

Spread = 50;

Settle = '20-Jan-2011';

Maturity = '15-Jan-2012';

LatestFloatingRate = 0.05;

StubRate = 0.049;

SpotRate = 0.05;

Reset = 4;
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Basis = 2;

Settle = datetime(Settle,'Locale','en_US');

Maturity = datetime(Maturity,'Locale','en_US');

[Margin, AdjPrice] = floatmargin(Price, Spread, Settle, Maturity, ...

'SpreadType', 'adjustedsimple', 'RateInfo', [StubRate, SpotRate], ...

'LatestFloatingRate', LatestFloatingRate, 'Reset', Reset, 'Basis', Basis)

Margin =

   53.2830

AdjPrice =

   99.9673

More About
• “Fixed-Income Terminology” on page 2-21

References

Fabozzi, Frank J., Mann, Steven V. Floating-Rate Securities. John Wiley and Sons, New
York, 2000.

Fabozzi, Frank J., Mann, Steven V. Introduction to Fixed Income Analytics: Relative
Value Analysis, Risk Measures and Valuation. John Wiley and Sons, New York, 2010.

See Also
bndspread | datetime | floatbyzero | floatdiscmargin

Introduced in R2012b
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fpctkd
Fast stochastics

Syntax
[pctk, pctd] = fpctkd(highp, lowp, closep)

[pctk, pctd] = fpctkd([highp lowp closep])

[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,

 dmamethod)

[pctk, pctd] = fpctkd([highp lowp closep], kperiods, dperiods,

dmamethod)

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, 'ParameterName',

ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
closep Closing price (vector).
kperiods (Optional) %K periods. Default = 10.
dperiods (Optional) %D periods. Default = 3.
damethod (Optional) %D moving average method. Default = 'e'

(exponential).
tsobj Financial time series object.
'ParameterName' Valid parameter names are:

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name
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ParameterValue Parameter values are the character vectors that represent the valid
parameter names.

Description

fpctkd calculates the stochastic oscillator.

[pctk, pctd] = fpctkd(highp, lowp, closep) calculates the fast stochastics
F%K and F%D from the stock price data highp (high prices), lowp (low prices), and
closep (closing prices).

[pctk, pctd] = fpctkd([highp lowp closep]) accepts a three-column matrix of
high (highp), low (lowp), and closing prices (closep), in that order.

[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,

dmamethod) calculates the fast stochastics F%K and F%D from the stock price data
highp (high prices), lowp (low prices), and closep (closing prices). kperiods sets the
%K period. dperiods sets the %D period.

damethod specifies the %D moving average method. Valid moving average methods for
%D are Exponential ('e') and Triangular ('t'). See tsmovavg for explanations of these
methods.

[pctk, pctd]= fpctkd([highp lowp closep], kperiods, dperiods,

dmamethod) accepts a three-column matrix of high (highp), low (lowp), and closing
prices (closep), in that order.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod) calculates the fast
stochastics F%K and F%D from the stock price data in the financial time series object
tsobj. tsobj must minimally contain the series High (high prices), Low (low prices),
and Close (closing prices). pkdts is a financial time series object with similar dates to
tsobj and two data series named PercentK and PercentD.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod,

'ParameterName', ParameterValue, ...) accepts parameter name/parameter
value pairs as input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Parameter values are the character vectors
that represent the valid parameter names.
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Examples

Compute the Stochastic Oscillator

This example shows how to compute the stochastic oscillator for Disney stock and plot
the results.

load disney.mat

dis_FastStoc = fpctkd(dis);

plot(dis_FastStoc)

title('Stochastic Oscillator for Disney')

• “Technical Analysis Examples” on page 16-4
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More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 268–271.

See Also
spctkd | stochosc | tsmovavg

Introduced before R2006a
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frac2cur
Fractional currency value to decimal value

Syntax

Decimal = frac2cur(Fraction,Denominator)

Description

Decimal = frac2cur(Fraction,Denominator) converts a fractional currency value
to a decimal value. Fraction is the fractional currency value input as a character vector,
and Denominator is the denominator of the fraction.

Examples

Convert a Fractional Currency Value to a Decimal Value

This example shows how to convert a fractional currency value to a decimal value.

Decimal = frac2cur('12.1', 8)

Decimal =

   12.1250

• “Format Currency” on page 2-11

Input Arguments

Fraction — Fractional currency values
character vector | cell array of character vectors

Fractional currency values, specified as a character vector or cell array of character
vectors.
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Data Types: char | cell

Denominator — Denominator of the fractions
numeric

Denominator of the fractions, specified as a scalar or vector using numeric values for the
denominator.
Data Types: double

Output Arguments

Decimal — Decimal currency value
numeric decimal

Decimal currency value, returned as a scalar or vector with numeric decimal values.
Data Types: double

See Also
cur2frac | cur2str

Introduced before R2006a
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freqnum
Convert character vector frequency indicator to numeric frequency indicator

Syntax
nfreq = freqnum(sfreq)

Arguments

sfreq UNKNOWN, Unknown, unknown, U, u

DAILY, Daily, daily, D, d

WEEKLY, Weekly, weekly, W, w

MONTHLY, Monthly, monthly, M, m

QUARTERLY, Quarterly, quarterly, Q, q

SEMIANNUAL, Semiannual, semiannual, S, s

ANNUAL, Annual, annual, A, a

Description

nfreq = freqnum(sfreq) converts a character vector frequency indicator into a
numeric value.

Character Vector Frequency Indicator Numeric Representation

UNKNOWN, Unknown, unknown, U, u 0

DAILY, Daily, daily, D, d 1

WEEKLY, Weekly, weekly, W, w 2

MONTHLY, Monthly, monthly, M, m 3

QUARTERLY, ly, quarterly, Q, q 4
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Character Vector Frequency Indicator Numeric Representation

SEMIANNUAL, Semiannual, semiannual,
S, s

5

ANNUAL, Annual, annual, A, a 6

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
freqstr

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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freqstr
Convert numeric frequency indicator to character vector representation

Syntax
sfreq = freqstr(nfreq)

Arguments

nfreq 0

1

2

3

4

5

6

Description

sfreq = freqstr(nfreq) converts a numeric frequency indicator into a character
vector representation.

Numeric Frequency Indicator Character Vector Representation

0 Unknown

1 Daily

2 Weekly

3 Monthly

4 Quarterly
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Numeric Frequency Indicator Character Vector Representation

5 Semiannual

6 Annual

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
freqnum

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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frontier

Rolling efficient frontier

Syntax

[PortWts, AllMean, AllCovariance] = frontier(Universe, Window,

Offset, NumPorts, ActiveMap, ConSet, NumNonNan)

Arguments

Universe Number of observations (NUMOBS) by number of assets plus one
(NASSETS + 1) time series array containing total return data for
a group of securities. Each row represents an observation. Column
1 contains MATLAB serial date numbers. The remaining columns
contain the total return data for each security.

Window Number of data periods used to calculate each frontier.
Offset Increment in number of periods between each frontier.
NumPorts Number of portfolios to calculate on each frontier.
ActiveMap (Optional) Number of observations (NUMOBS) by number of

assets (NASSETS) matrix with Boolean elements corresponding
to the Universe. Each element indicates if the asset is part of
the Universe on the corresponding date. Default = NUMOBS-
by-NASSETS matrix of 1's (all assets active on all dates).

Conset (Optional) Constraint matrix for a portfolio of asset investments,
created using portcons with the 'Default' constraint type. This
single constraint matrix is applied to each frontier.

NumNonNan (Optional) Minimum number of non-NaN points for each active asset
in each window of data needed to perform the optimization. The
default value is Window - NASSETS.
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Description

[PortWts, AllMean, AllCovariance] = frontier(Universe, Window,

Offset, NumPorts, ActiveMap, ConSet, NumNonNan) generates a surface of
efficient frontiers showing how asset allocation influences risk and return over time.

PortWts is a number of curves (NCURVES)-by-1 cell array, where each element is a
NPORTS-by-NASSETS matrix of weights allocated to each asset.

AllMean is a NCURVES-by-1 cell array, where each element is a 1-by-NASSETS vector of
the expected asset returns used to generate each curve on the surface.

AllCovariance is a NCURVES-by-1 cell array, where each element is a NASSETS-
by-NASSETS vector of the covariance matrix used to generate each curve on the surface.

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
portcons | portopt | portstats

Related Examples
• “Portfolio Construction Examples” on page 3-7
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43

Introduced before R2006a
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fts2ascii
Write elements of time series data into ASCII file

Syntax
stat = fts2ascii(filename, tsobj, exttext)

stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

Arguments

filename Name of an ASCII file
tsobj Financial time series object
exttext (Optional) Extra text written after the description line (line 2 in the

file).
dates Column vector containing dates. Dates must be in serial date

number format and can specify time of day.
data Column-oriented matrix. Each column is a series.
colheads (Optional) Cell array of column headers (names); first cell must

always be the one for the dates column. colheads is written to the
file just before the data.

desc (Optional) Description text, which is the first line in the file.

Description

stat = fts2ascii(filename, tsobj, exttext) writes the financial time series
object tsobj into an ASCII file filename. The data in the file is tab delimited.

stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

writes into an ASCII file filename the dates, times, and data contained in the column
vector dates and the column-oriented matrix data. The first column in filename
contains the dates, followed by times (if specified). Subsequent columns contain the
data. The data in the file is tab delimited.
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stat indicates whether file creation is successful (1) or not (0).

Examples

Use fts2ascii to Write a Time Series to an ASCII File

Create a data file with time information.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

serial_dates_times = [datenum(dates), datenum(times)];

data = round(10*rand(6,2));

Use fts2ascii to write the time series to an ascii file.

stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ...

{'dates';'times';'Data1';'Data2'},'My FTS with Time')

stat =

     1

Read the data file back and create a financial time series object using ascii2fts.

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

 

MyFts = 

 

    desc:  My FTS with Time

    freq:  Unknown (0)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'    'Data2:  (6)'

    '01-Jan-2001'    '11:00'          [          8]    [          3]

    '     "     '    '12:00'          [          9]    [          5]

    '02-Jan-2001'    '11:00'          [          1]    [         10]

    '     "     '    '12:00'          [          9]    [         10]

    '03-Jan-2001'    '11:00'          [          6]    [          2]

    '     "     '    '12:00'          [          1]    [         10]
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• “Working with Financial Time Series Objects” on page 12-3
• “Creating a Financial Time Series Object” on page 13-12

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
ascii2fts

Introduced before R2006a
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fts2mat
Convert to matrix

Syntax
tsmat = fts2mat(tsobj)

tsmat = fts2mat(tsobj, datesflag)

tsmat = fts2mat(tsobj, seriesnames)

tsmat = fts2mat(tsobj, datesflag, seriesnames)

Arguments

tsobj Financial time series object
datesflag (Optional) Specifies inclusion of dates vector:

datesflag = 0 (default) excludes dates.

datesflag = 1 includes dates vector.
seriesnames (Optional) Specifies the data series to be included in the matrix.

Can be a cell array of character vectors.

Description
tsmat = fts2mat(tsobj) takes the data series in the financial time series object
tsobj and puts them into the matrix tsmat as columns. The order of the columns is the
same as the order of the data series in the object tsobj.

tsmat = fts2mat(tsobj, datesflag) specifies whether you want the dates vector
included. The dates vector is the first column. The dates are represented as serial date
numbers. Dates can include time-of-day information.

tsmat = fts2mat(tsobj, seriesnames) extracts the data series named in
seriesnames and puts its values into tsmat. The seriesnames argument can be a cell
array of character vectors.
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tsmat = fts2mat(tsobj, datesflag, seriesnames) puts into tsmat the specific
data series named in seriesnames. The datesflag argument must be specified. If
datesflag is set to 1, the dates vector is included. If you specify an empty matrix ([])
for datesflag, the default behavior is adopted.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
subsref

Related Examples
• “Working with Financial Time Series Objects” on page 12-3
• “Creating a Financial Time Series Object” on page 13-12

Introduced before R2006a
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ftsbound
Start and end dates

Syntax
datesbound = ftsbound(tsobj)

datesbound = ftsbound(tsobj, dateform)

Arguments

tsobj Financial time series object
dateform dateform is an integer representing the format of a date character

vector. See datestr for a description of these formats.

Description

ftsbound returns the start and end dates of a financial time series object. If the object
contains time-of-day data, ftsbound also returns the starting time on the first date and
the ending time on the last date.

datesbound = ftsbound(tsobj) returns the start and end dates contained in
tsobj as serial dates in the column matrix datesbound. The first row in datesbound
corresponds to the start date, and the second corresponds to the end date.

datesbound = ftsbound(tsobj, dateform) returns the starting and ending
dates contained in the object, tsobj, as date character vectors in the column matrix,
datesbound. The first row in datesbound corresponds to the start date, and the second
corresponds to the end date. The dateform argument controls the format of the output
dates.

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
datestr

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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ftsgui
Financial time series GUI

Syntax
ftsgui

Description

ftsgui displays the financial time series graphical user interface (GUI) main window.

The use of the financial time series GUI is described in “Using the Financial Time Series
GUI” on page 14-7.

Examples
ftsgui

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
ftstool

Introduced before R2006a
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ftsinfo
Financial time series object information

Syntax
ftsinfo(tsobj)

infofts = ftsinfo(tsobj)

Arguments

tsobj Financial time series object.

Description

ftsinfo(tsobj) displays information about the financial time series object tsobj.

infofts = ftsinfo(tsobj) stores information about the financial time series object
tsobj in the structure infofts.

infofts has these fields.

Field Contents

version Financial time series object version.
desc Description of the time series object (tsobj.desc).
freq Numeric representation of the time series data frequency

(tsobj.freq). See freqstr for list of numeric frequencies and
what they represent.

startdate Earliest date in the time series.
enddate Latest date in the time series.
seriesnames Cell array containing the time series data column names.
ndata Number of data points in the time series.
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Field Contents

nseries Number of columns of time series data.

Examples

Convert the supplied file disney.dat into a financial time series object named dis:

dis = ascii2fts('disney.dat', 1, 3); 

Now use ftsinfo to obtain information about dis:

ftsinfo(dis)

 FINTS version:   2.0

   Description:  Walt Disney Company (DIS)     

     Frequency:  Unknown

    Start date:  29-Mar-1996

      End date:  29-Mar-1999

  Series names:  OPEN

                 HIGH

                 LOW

                 CLOSE

                 VOLUME

     # of data:  782

   # of series:  5

Then, executing

infodis = ftsinfo(dis) 

creates the structure infodis containing the values

infodis = 

            ver: '2.0'

           desc: 'Walt Disney Company (DIS)'

           freq: 0

      startdate: '29-Mar-1996'

        enddate: '29-Mar-1999'

    seriesnames: {5x1 cell}

          ndata: 782

        nseries: 5
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More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
fints | freqnum | freqstr | ftsbound

Introduced before R2006a
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Financial Time Series
Create and manage Financial Time Series

Description
The Financial Time Series app enables you to create and manage Financial Time
Series (fints) objects.

Open the Financial Time Series App

• MATLAB Toolstrip: On the Apps tab, under Financial Time Series, click the app
icon.

• MATLAB command prompt: Enter ftstool.

Examples
• “Loading Data with the Financial Time Series App” on page 13-7
• “Using the Financial Time Series App” on page 13-12
• “Using the Financial Time Series App with GUIs” on page 13-20
• “Getting Started with the Financial Time Series App ” on page 13-4

Programmatic Use

ftstool

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also

Functions
ftsgui
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Introduced in R2006b

18-774



 ftstool

ftstool

Financial Time Series app

Syntax

ftstool

Description

ftstool creates and manages Financial Time Series objects. ftstool allows the
creation and management of Financial Time Series objects via the Financial Time Series
app. ftstool can interface with ftsgui, meaning Line Plots generated with ftstool
can be analyzed with ftsgui. However, ftsgui must be running prior to the generation
of any Line Plots.

The use of the Financial Time Series app is described in “Getting Started with the
Financial Time Series App ” on page 13-4.

Examples

ftstool
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Alternatively, on the MATLAB desktop toolstrip, click the Apps tab and in the apps
gallery, under Computational Finance, click Financial Time Series. The Financial
Time Series app opens. For an overview of the Financial Time Series app, see “What Is
the Financial Time Series App?” on page 13-2.

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
ftsgui

Introduced in R2006b
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ftsuniq

Determine uniqueness

Syntax

uniq = ftsuniq(dates_and_times)

[uniq, dup] = ftsuniq(dates_and_times)

Arguments

dates_and_times A single column vector of serial date numbers. The serial
date numbers can include time-of-day information.

Description

uniq = ftsuniq(dates_and_times) returns 1 if the dates and times within the
financial time series object are unique and 0 if duplicates exist.

[uniq, dup] = ftsuniq(dates_and_times) additionally returns a structure dup.
In the structure

• dup.DT contains the character vectors of the duplicate dates and times and their
locations in the object.

• dup.intIdx contains the integer indices of duplicate dates and times in the object.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
fints
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Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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fvdisc
Future value of discounted security

Syntax
FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

Arguments

Settle Settlement date. Enter as serial date number, date character
vector, or datetime array. Settle must be earlier than Maturity.

Maturity Maturity date. Enter as serial date number, date character vector,
or datetime array.

Price Price (present value) of the security.
Discount Bank discount rate of the security. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Description

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis) finds the
amount received at maturity for a fully vested security.

Examples

Find the Amount Received at Maturity for a Fully-Vested Security

This example shows how to find the amount received at maturity for a fully-vested
security, using the following data.

Settle = '02/15/2001';

Maturity = '05/15/2001';

Price = 100;

Discount = 0.0575;

Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

FutureVal =

  101.4420

Find the Amount Received at Maturity for a Fully-Vested Security Using datetime Inputs

This example shows how to use datetime inputs to find the amount received at maturity
for a fully-vested security, using the following data.

Settle = datetime('02/15/2001','Locale','en_US');

Maturity = datetime('05/15/2001','Locale','en_US');

Price = 100;

Discount = 0.0575;

Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)
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FutureVal =

  101.4420

• “Analyzing and Computing Cash Flows” on page 2-17

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition.

See Also
acrudisc | datetime | discrate | prdisc | ylddisc

Introduced before R2006a
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fvfix
Future value with fixed periodic payments

Syntax
FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)

Arguments

Rate Periodic interest rate, as a decimal fraction.
NumPeriods Number of periods.
Payment Periodic payment.
PresentVal (Optional) Initial value. Default = 0.
Due (Optional) When payments are due or made: 0 = end of period

(default), or 1 = beginning of period.

Description

FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due) returns
the future value of a series of equal payments.

Examples

Return the Future Value of a Series of Equal Payments

This example shows how to compute the future value of a series of equal payments using
a savings account that has a starting balance of $1500. $200 is added at the end of each
month for 10 years and the account pays 9% interest compounded monthly.

FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0)

FutureVal =
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   4.2380e+04

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
fvvar | pvfix | pvvar

Introduced before R2006a
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fvvar

Future value of varying cash flow

Syntax

FutureVal = fvvar(CashFlow, Rate, CFDates)

Arguments

CashFlow A vector of varying cash flows. Include the initial investment as the
initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.
CFDates (Optional) For irregular (nonperiodic) cash flows, a vector of dates

on which the cash flows occur. Enter dates as serial date numbers,
date character vectors, or datetime arrays. Default assumes
CashFlow contains regular (periodic) cash flows.

Description

FutureVal = fvvar(CashFlow, Rate, CFDates) returns the future value of a
varying cash flow.

Examples

This cash flow represents the yearly income from an initial investment of $10,000. The
annual interest rate is 8%.

Year 1 $2000
Year 2 $1500
Year 3 $3000
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Year 4 $3800
Year 5 $5000

For the future value of this regular (periodic) cash flow

FutureVal = fvvar([-10000 2000 1500 3000 3800 5000], 0.08)

returns

FutureVal =

            2520.47

An investment of $10,000 returns this irregular cash flow. The original investment and
its date are included. The periodic interest rate is 9%.

Cash Flow Dates

($10000) January 12, 2000
$2500 February 14, 2001
$2000 March 3, 2001
$3000 June 14, 2001
$4000 December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CFDates = ['01/12/2000'

            '02/14/2001'

            '03/03/2001'

            '06/14/2001'

            '12/01/2001'];

FutureVal = fvvar(CashFlow, 0.09, CFDates)

returns

FutureVal =

            170.66
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See Also
datetime | fvfix | irr | payuni | pvfix | pvvar

Introduced before R2006a
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fwd2zero

Zero curve given forward curve

Syntax

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,

Settle)

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,

Settle, Name, Value)

Compatibility

In R2015b, the specification of optional input arguments has changed. While the
previous ordered inputs syntax is still supported, it may no longer be supported in a
future release. Use the new optional name-value pair inputs: InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.

Input Arguments

ForwardRates A number of bonds (NUMBONDS)-by-1 vector of annualized implied
forward rates, as decimal fractions. In aggregate, the rates in
ForwardRates constitute an implied forward curve for the
investment horizon represented by CurveDates. The first element
pertains to forward rates from the settlement date to the first curve
date.

CurveDates A NUMBONDS-by-1 vector of maturity dates, specified as a serial date
number, date character vector, or datetime array, that correspond
to the forward rates.

Settle Settle, specified as a serial date number, date character vector,
or datetime array, is the common settlement date for the forward
rates.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [ZeroRates,CurveDates] =
fwd2zero(ForwardRates,CurveDates,Settle,'InputCompounding',3,'InputBasis',5,'OutputCompounding',4,'OutputBasis',5)

'InputCompounding' — Compounding frequency of input forward rates
if InputCompounding is not specified, it is assigned the value specified for
OutputCompounding. If neither InputCompounding nor OutputCompounding are
specified, the default is 2 (semiannual) for both. (default) | scalar

Compounding frequency of the input forward rates, specified as a scalar with allowed
values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Data Types: single | double

'InputBasis' — Day count basis of input forward rates
if InputBasis is not specified, it is assigned the value specified for OutputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of input forward rates, specified as a scalar with possible values:

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

'OutputCompounding' — Compounding frequency of output zero rates
if OutputCompounding is not specified, it is assigned the value specified for
InputCompounding. If neither InputCompounding nor OutputCompounding are
specified, the default is 2 (semiannual) for both. (default) | scalar

Compounding frequency of the output zero rates, specified as a scalar with allowed
values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding
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Data Types: single | double

'OutputBasis' — Day count basis of output zero rates
if OutputBasis is not specified, it is assigned the value specified for InputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of output zero rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

Description

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, Settle)

returns a zero curve given an implied forward rate curve and its maturity dates. If both
inputs for CurveDates and Settle are serial date numbers or date character vectors,
CurveDates is returned as serial date numbers. However, if either of the inputs for
CurveDates and Settle are a datetime array, CurveDates is returned as a datetime
array.
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[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, Settle,

Name, Value) returns a zero curve given an implied forward rate curve and its
maturity dates using optional name-value arguments for InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.

ZeroRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the
rates in ZeroRates constitute a zero curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates that correspond to the
zero rates in ZeroRates. This vector is the same as the input
vector CurveDates, but is sorted by ascending maturity. If both
inputs for CurveDates and Settle are serial date numbers or
date character vectors, CurveDates is returned as serial date
numbers. However, if either of the inputs for CurveDates and
Settle are a datetime array, CurveDates is returned as a
datetime array.

Examples

Compute the Zero Curve Given the Forward Curve

This example shows how to compute the zero curve, given an implied forward rate curve
over a set of maturity dates, a settlement date, and a compounding rate.

ForwardRates = [0.0469

                0.0519

                0.0549

                0.0535

                0.0558

                0.0508

                0.0560

                0.0545

                0.0615

                0.0486];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')
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              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;

Execute the function fwd2zero to return the zero-rate curve ZeroRates at the maturity
dates CurveDates.

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...

Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ZeroRates =

    0.0469

    0.0515

    0.0531

    0.0532

    0.0538

    0.0532

    0.0536

    0.0539

    0.0556

    0.0543

CurveDates =

      730796

      730831

      730866

      730887

      730914

      730943

      730971

      731027

      731098
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      731167

Compute the Zero Curve Given the Forward Curve Using datetime Inputs

This example shows how to use datetime inputs compute the zero curve, given an
implied forward rate curve over a set of maturity dates, a settlement date, and a
compounding rate.

ForwardRates = [0.0469

                0.0519

                0.0549

                0.0535

                0.0558

                0.0508

                0.0560

                0.0545

                0.0615

                0.0486];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;CurveDates = datetime(CurveDates,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...

Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ZeroRates =

    0.0469
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    0.0515

    0.0531

    0.0532

    0.0538

    0.0532

    0.0536

    0.0539

    0.0556

    0.0543

CurveDates = 

  10×1 datetime array

   06-Nov-2000

   11-Dec-2000

   15-Jan-2001

   05-Feb-2001

   04-Mar-2001

   02-Apr-2001

   30-Apr-2001

   25-Jun-2001

   04-Sep-2001

   12-Nov-2001

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21

See Also
zero2fwd

Introduced before R2006a
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gbm class

Geometric Brownian motion model

Description

Geometric Brownian motion (GBM) models allow you to simulate sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time GBM stochastic
processes. Specifically, this model allows the simulation of vector-valued GBM processes
of the form

dX t X dt D t X V t dW
t t t t

= +m( ) ( , ) ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector Xt.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Construction

GBM = gbm(Return,Sigma) constructs a default gbm object.

GBM = gbm(Return,Sigma,Name,Value) constructs a gbm object with additional
options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a gbm object, see gbm.
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Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Return — Return represents the parameter µ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of
time.

If you specify Return as an array, it must be an NVARS-by-NVARS matrix representing
the expected (mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar
time t as its only input, Return must produce an NVARS-by-NVARS matrix. If you specify
Return as a function of time and state, it must return an NVARS-by-NVARS matrix when
invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state
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Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Although the gbm constructor enforces no restrictions on the sign of Sigma volatilities,
they are specified as positive values.
Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see gbm.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.
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The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to emphasize
the functional (t, Xt) interface. However, you can specify the components A and B
as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public
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Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.
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Note: You can expressdrift anddiffusion classes in the most general form to emphasize
the functional (t, Xt) interface. However, you can specify the components A and B
as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, thegbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:
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SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle

Methods

simBySolution Simulate approximate solution of diagonal-
drift GBM processes

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a gbm Object

Create a univariate gbm object to represent the model:

dX X dt X dW
t t t t

= +0 25 0 3. .

obj = gbm(0.25, 0.3)  % (B = Return, Sigma)

obj = 
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   Class GBM: Generalized Geometric Brownian Motion

   ------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   ------------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.25

          Sigma: 0.3

gbm objects display the parameter B as the more familiar Return

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
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state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, gbm treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
bm | cev | diffusion | drift | interpolate | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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gbm
Construct GBM model

Syntax

GBM = gbm(Return, Sigma)

GBM = gbm(Return, Sigma, Name, Value)

Class

gbm

Description

This function creates and displays geometric Brownian motion (GBM) models, which
derive from the cev (constant elasticity of variance) class. Use GBM models to simulate
sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
GBM stochastic processes.

This function allows simulation of vector-valued GBM processes of the form:

dX t X dt D t X V t dW
t t t t

= +m( ) ( , ) ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector Xt.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
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• dWt is an NBROWNS-by-1 Brownian motion vector.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Return Return represents the parameter μ. If you specify Return as an array
and it must be an NVARS-by-NVARS matrix representing the expected
(mean) instantaneous rate of return. As a deterministic function of
time, when Return is called with a real-valued scalar time t as its only
input, Return must produce an NVARS-by-NVARS matrix. If you specify
Return as a function of time and state, it must return an NVARS-
by-NVARS matrix when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an array,
it must be an NVARS-by-NBROWNS matrix of instantaneous volatility
rates or as a deterministic function of time. In this case, each row
of Sigma corresponds to a particular state variable. Each column
corresponds to a particular Brownian source of uncertainty, and
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associates the magnitude of the exposure of state variables with
sources of uncertainty. As a deterministic function of time, when
Sigma is called with a real-valued scalar time t as its only input,
Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-
by-NBROWNS matrix of volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Although the gbm constructor enforces no restrictions on the sign of
Sigma volatilities, they are specified as positive values.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/
value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply
when specifying parameter-name pairs:

• Specify the parameter name as a character vector, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, gbm applies the same initial value to all
state variables on all trials.

If StartState is a column vector, gbm applies a unique initial
value to each state variable on all trials.
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If StartState is a matrix, gbm applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

GBM Geometric Brownian motion model with the following displayed
parameters:

• StartTime: Initial observation time
• StartState: Initial state at StartTime
• Correlation: Access function for the Correlation input, callable

as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
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• Simulation: A simulation function or method
• Return: Access function for the input argument Return, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state

Examples

• “Creating Geometric Brownian Motion (GBM) Models” on page 17-27
• “Representing Market Models Using SDELD, CEV, and GBM Objects” on page 17-37

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, the gbm constructor treats it as a static function of time
and state, by that means guaranteeing that all parameters are accessible by the same
interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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See Also
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simBySolution
Class: gbm

Simulate approximate solution of diagonal-drift GBM processes

Syntax

[Paths,Times,Z] = simBySolution(MDL,NPERIODS)

[Paths,Times,Z] = simBySolution(MDL,NPERIODS,Name,Value)

Description

[Paths,Times,Z] = simBySolution(MDL,NPERIODS) simulates approximate
solution of diagonal-drift for geometric Brownian motion (GBM) processes.

[Paths,Times,Z] = simBySolution(MDL,NPERIODS,Name,Value) simulates
approximate solution of diagonal-drift for GBM processes with additional options
specified by one or more Name,Value pair arguments.

The simBySolution method simulates NTRIALS sample paths of NVARS correlated
state variables, driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time GBM short-rate models
by an approximation of the closed-form solution.

Consider a separable, vector-valued GBM model of the form:

dX t X dt D t X V t dW
t t t t

= +m( ) ( , ) ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• μ is an NVARS-by-NVARS generalized expected instantaneous rate of return matrix.
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

The simBySolution method simulates the state vector Xt using an approximation of the
closed-form solution of diagonal-drift models.
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When evaluating the expressions, simBySolution assumes that all model parameters
are piecewise-constant over each simulation period.

In general, this is not the exact solution to the models, because the probability
distributions of the simulated and true state vectors are identical only for piecewise-
constant parameters.

When parameters are piecewise-constant over each observation period, the simulated
process is exact for the observation times at which Xt is sampled.

Input Arguments

MDL — Geometric Brownian motion (GBM) model
gbm object

Geometric Brownian motion (GBM) model, specified as a gbm object that is created using
the gbm constructor.

Data Types: struct

NPERIODS — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of this
argument determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NTRIALS' — Number of simulated trials (sample paths)
1 (default) | positive scalar integer

Number of simulated trials (sample paths), specified as positive scalar integer of
NPERIODS observations each. If you do not specify a value for this argument, the default
is 1, indicating a single path of correlated state variables.
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Data Types: double

'DeltaTime' — Time increments between observations
1 (default) | positive scalar

Time increments between observations, specified as scalar or NPERIODS-by-1 column
vector of positive values. DeltaTime represents the familiar dt found in stochastic
differential equations, and determines the times at which simBySolution reports
the simulated paths of the output state variables. If you do not specify a value for this
argument, the default is 1.

Data Types: double

'NSTEPS' — Number of intermediate time steps within each time increment
1 (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (defined as
DeltaTime), specified positive scalar integer. simBySolution partitions each time
increment dt into NSTEPS subintervals of length dt/NSTEPS, and refines the simulation
by evaluating the simulated state vector at NSTEPS - 1 intermediate points. Although
simBySolution does not report the output state vector at these intermediate points, the
refinement improves accuracy by allowing the simulation to more closely approximate
the underlying continuous-time process. If you do not specify a value for NSTEPS, the
default is 1, indicating no intermediate evaluation.

Data Types: double

'Antithetic' — Flag that indicates whether antithetic sampling is used
0 (default) | scalar logical with values 0 or 1

Flag that indicates whether antithetic sampling is used to generate the Gaussian random
variates that drive the Brownian motion vector (Wiener processes), specified using a
scalar logical with values 0 or 1. When Antithetic is TRUE (logical 1), simBySolution
performs sampling such that all primary and antithetic paths are simulated and stored
in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian paths
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by

negating the Gaussian draws of the corresponding primary (odd) trial.

If you specify Antithetic to be any value other than TRUE, simBySolution assumes
that it is FALSE (logical 0) by default, and does not perform antithetic sampling.
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When you specify an input noise process (see Z), simBySolution ignores the value of
Antithetic.

Data Types: logical

'Z' — Direct specification of the dependent random noise process
if you do not specify Z, simBySolution generates correlated Gaussian variates based on
the Correlation member of the sde object (default) | array

Direct specification of the dependent random noise process used to generate the
Brownian motion vector (Wiener process) that drives the simulation, specified as an
(NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS array of dependent random variates.
If you specify Z as a function, it must return an NBROWNS-by-1 column vector, and you
must call it with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double

'StorePaths' — Flag that indicates how output array Paths is stored
1 (default) | scalar logical with values 0 or 1

Flag that indicates how output array Paths is stored, specified as a scalar logical
with values 0 or 1. If StorePaths is TRUE (the default value) or is unspecified,
simBySolution returns Paths as a three-dimensional time series array. If StorePaths
is FALSE (logical 0), simBySolution returns the Paths output array as an empty
matrix.
Data Types: logical

'Processes' — Function or cell array of functions indicating a sequence of end-of-period
processes or state vector adjustments
if you do not specify a processing function, simBySolution makes no adjustments and
performs no processing (default) | function or cell array of functions

Function or cell array of functions indicating a sequence of end-of-period processes or
state vector adjustments of the form

X P t X
t t

= ( , )

specified as function or cell array of functions.
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simBySolution applies processing functions at the end of each observation period.
These functions must accept the current observation time t and the current state vector
Xt, and return a state vector that may be an adjustment to the input state. If you specify
more than one processing function, simBySolution invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary
conditions, prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: double

Output Arguments

Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPERIODS + 1)-by-NVARS-
by-NTRIALS three-dimensional time series array. For a given trial, each row of Paths is
the transpose of the state vector Xt at time t. When the input flag StorePaths = FALSE,
simBySolution returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NPERIODS + 1)-
by-1 column vector. Each element of Times is associated with the corresponding row of
Paths.

Z — Array of dependent random variates used to generate the Brownian motion vector
array

Array of dependent random variates used to generate the Brownian motion vector,
returned as a (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional time
series array.

Examples

Simulating Equity Markets Using GBM Simulation Methods

Use GBM simulation methods. Separable GBM models have two specific simulation
methods:
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• An overloaded Euler simulation method, designed for optimal performance.
• A simBySolution method that provides an approximate solution of the underlying

stochastic differential equation, designed for accuracy.

Load the Data_GlobalIdx2 data set and specify the SDE model as in “Representing
Market Models Using SDE Objects”, and the GBM model as in “Representing Market
Models Using SDELD, CEV, and GBM Objects”.

load Data_GlobalIdx2

prices  = [Dataset.TSX Dataset.CAC Dataset.DAX ...

    Dataset.NIK Dataset.FTSE Dataset.SP];

returns =  tick2ret(prices);

nVariables  = size(returns,2);

expReturn   = mean(returns);

sigma       = std(returns);

correlation = corrcoef(returns);

t           = 0;

X           = 100;

X           = X(ones(nVariables,1));

F = @(t,X) diag(expReturn)* X;

G = @(t,X) diag(X) * diag(sigma);

SDE = sde(F, G, 'Correlation', ...

    correlation, 'StartState', X);

GBM = gbm(diag(expReturn),diag(sigma), 'Correlation', ...

    correlation, 'StartState', X);

To illustrate the performance benefit of the overloaded Euler approximation method,
increase the number of trials to 10000.

nPeriods = 249;      % # of simulated observations

dt       =   1;      % time increment = 1 day

rng(142857,'twister')

[X,T] = simulate(GBM, nPeriods, 'DeltaTime', dt, ...

    'nTrials', 10000);

whos X

  Name        Size                     Bytes  Class     Attributes
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  X         250x6x10000            120000000  double              

Using this sample size, examine the terminal distribution of Canada's TSX Composite to
verify qualitatively the lognormal character of the data.

histogram(squeeze(X(end,1,:)), 30), xlabel('Price'), ylabel('Frequency')

title('Histogram of Prices after One Year: Canada (TSX Composite)')

Simulate 10 trials of the solution and plot the first trial:

rng('default')

[S,T] = simulate(SDE, nPeriods, 'DeltaTime', dt, 'nTrials', 10);

rng('default')
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[X,T] = simBySolution(GBM, nPeriods,...

    'DeltaTime', dt, 'nTrials', 10);

subplot(2,1,1)

plot(T, S(:,:,1)), xlabel('Trading Day'),ylabel('Price')

title('1st Path of Multi-Dim Market Model:Euler Approximation')

subplot(2,1,2)

plot(T, X(:,:,1)), xlabel('Trading Day'),ylabel('Price')

title('1st Path of Multi-Dim Market Model:Analytic Solution')

In this example, all parameters are constants, and simBySolution does indeed sample
the exact solution. The details of a single index for any given trial show that the price
paths of the Euler approximation and the exact solution are close, but not identical.

The following plot illustrates the difference between the two methods:
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subplot(1,1,1)

plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')

xlabel('Trading Day'), ylabel('Price Difference')

title('Euler Approx Minus Exact Solution:Canada(TSX Composite)')

The simByEuler Euler approximation literally evaluates the stochastic differential
equation directly from the equation of motion, for some suitable value of the dt time
increment. This simple approximation suffers from discretization error. This error can be
attributed to the discrepancy between the choice of the dt time increment and what in
theory is a continuous-time parameter.

The discrete-time approximation improves as DeltaTime approaches zero. The Euler
method is often the least accurate and most general method available. All models
shipped in the simulation suite have this method.
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In contrast, the simBySolution method provides a more accurate description of the
underlying model. This method simulates the price paths by an approximation of the
closed-form solution of separable models. Specifically, it applies a Euler approach to a
transformed process, which in general is not the exact solution to this GBM model. This is
because the probability distributions of the simulated and true state vectors are identical
only for piecewise constant parameters.

When all model parameters are piecewise constant over each observation period, the
simulated process is exact for the observation times at which the state vector is sampled.
Since all parameters are constants in this example, simBySolution does indeed sample
the exact solution.

For an example of how to use simBySolution to optimize the accuracy of solutions, see
“Optimizing Accuracy: About Solution Precision and Error”.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms
• The input argument Z allows you to directly specify the noise generation process.

This process takes precedence over the Correlation parameter of the sde object
and the value of the Antithetic input flag. If you do not specify a value for Z,
simBySolution generates correlated Gaussian variates, with or without antithetic
sampling as requested.

• Gaussian diffusion models, such as HWV, allow negative states. By default,
simBySolution does nothing to prevent negative states, nor does it guarantee that
the model be strictly mean-reverting. Thus, the model may exhibit erratic or explosive
growth.

• The end-of-period Processes argument allows you to terminate a given trial early.
At the end of each time step, simBySolution tests the state vector Xt for an all-NaN
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condition. Thus, to signal an early termination of a given trial, all elements of the
state vector Xt must be NaN. This test enables a user-defined Processes function to
signal early termination of a trial, and offers significant performance benefits in some
situations (for example, pricing down-and-out barrier options).

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
gbm | simByEuler | simBySolution | simulate

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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simBySolution

Class: hwv

Simulate approximate solution of diagonal-drift HWV processes

Syntax

[Paths,Times,Z] = simBySolution(MDL,NPERIODS)

[Paths,Times,Z] = simBySolution(MDL,NPERIODS,Name,Value)

Description

[Paths,Times,Z] = simBySolution(MDL,NPERIODS) simulates approximate
solution of diagonal-drift for Hull-White/Vasicek Gaussian Diffusion (HWV) processes.

[Paths,Times,Z] = simBySolution(MDL,NPERIODS,Name,Value) simulates
approximate solution of diagonal-drift for Hull-White/Vasicek Gaussian Diffusion (HWV)
processes with additional options specified by one or more Name,Value pair arguments.

The simBySolution method simulates NTRIALS sample paths of NVARS correlated
state variables, driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time Hull-White/Vasicek
(HWV) by an approximation of the closed-form solution.

Consider a separable, vector-valued HWV model of the form:

dX S t L t X dt V t dWt t t= - +( )[ ( ) ] ( )

where:

• X is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS matrix of mean reversion speeds (the rate of mean

reversion).
• L is an NVARS-by-1 vector of mean reversion levels (long-run mean or level).
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• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• W is an NBROWNS-by-1 Brownian motion vector.

The simBySolution method simulates the state vector Xt using an approximation of the
closed-form solution of diagonal-drift models.

When evaluating the expressions, simBySolution assumes that all model parameters
are piecewise-constant over each simulation period.

In general, this is not the exact solution to the models, because the probability
distributions of the simulated and true state vectors are identical only for piecewise-
constant parameters.

When parameters are piecewise-constant over each observation period, the simulated
process is exact for the observation times at which Xt is sampled.

Input Arguments

MDL — Hull-White/Vasicek (HWV) model
hwv object

Hull-White/Vasicek (HWV) model, specified as a hwv object that is created using the hwv
constructor.
Data Types: struct

NPERIODS — Number of simulation periods
positive scalar integer

Number of simulation periods, specified as a positive scalar integer. The value of this
argument determines the number of rows of the simulated output series.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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'NTRIALS' — Number of simulated trials (sample paths)
1 (default) | positive scalar integer

Number of simulated trials (sample paths), specified as positive scalar integer of
NPERIODS observations each. If you do not specify a value for this argument, the default
is 1, indicating a single path of correlated state variables.

Data Types: double

'DeltaTime' — Time increments between observations
1 (default) | positive scalar

Time increments between observations, specified as scalar or NPERIODS-by-1 column
vector of positive values. DeltaTime represents the familiar dt found in stochastic
differential equations, and determines the times at which simBySolution reports
the simulated paths of the output state variables. If you do not specify a value for this
argument, the default is 1.

Data Types: double

'NSTEPS' — Number of intermediate time steps within each time increment
1 (default) | positive scalar integer

Number of intermediate time steps within each time increment dt (defined as
DeltaTime), specified positive scalar integer. simBySolution partitions each time
increment dt into NSTEPS subintervals of length dt/NSTEPS, and refines the simulation
by evaluating the simulated state vector at NSTEPS - 1 intermediate points. Although
simBySolution does not report the output state vector at these intermediate points, the
refinement improves accuracy by allowing the simulation to more closely approximate
the underlying continuous-time process. If you do not specify a value for NSTEPS, the
default is 1, indicating no intermediate evaluation.

Data Types: double

'Antithetic' — Flag that indicates whether antithetic sampling is used
0 (default) | scalar logical with values 0 or 1

Flag that indicates whether antithetic sampling is used to generate the Gaussian random
variates that drive the Brownian motion vector (Wiener processes), specified using a
scalar logical with values 0 or 1. When Antithetic is TRUE (logical 1), simBySolution
performs sampling such that all primary and antithetic paths are simulated and stored
in successive matching pairs:
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• Odd trials (1,3,5,...) correspond to the primary Gaussian paths
• Even trials (2,4,6,...) are the matching antithetic paths of each pair derived by

negating the Gaussian draws of the corresponding primary (odd) trial.

If you specify Antithetic to be any value other than TRUE, simBySolution assumes
that it is FALSE (logical 0) by default, and does not perform antithetic sampling.
When you specify an input noise process (see Z), simBySolution ignores the value of
Antithetic.

Data Types: logical

'Z' — Direct specification of the dependent random noise process
if you do not specify Z, simBySolution generates correlated Gaussian variates based on
the Correlation member of the sde object (default) | array

Direct specification of the dependent random noise process used to generate the
Brownian motion vector (Wiener process) that drives the simulation, specified as an
(NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS array of dependent random variates.
If you specify Z as a function, it must return an NBROWNS-by-1 column vector, and you
must call it with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double

'StorePaths' — Flag that indicates how output array Paths is stored
1 (default) | scalar logical with values 0 or 1

Flag that indicates how output array Paths is stored, specified as a scalar logical
with values 0 or 1. If StorePaths is TRUE (the default value) or is unspecified,
simBySolution returns Paths as a three-dimensional time series array. If StorePaths
is FALSE (logical 0), simBySolution returns the Paths output array as an empty
matrix.
Data Types: logical

'Processes' — Function or cell array of functions indicating a sequence of end-of-period
processes or state vector adjustments
if you do not specify a processing function, simBySolution makes no adjustments and
performs no processing (default) | function or cell array of functions
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Function or cell array of functions indicating a sequence of end-of-period processes or
state vector adjustments of the form

X P t X
t t

= ( , )

specified as function or cell array of functions.

simBySolution applies processing functions at the end of each observation period.
These functions must accept the current observation time t and the current state vector
Xt, and return a state vector that may be an adjustment to the input state. If you specify
more than one processing function, simBySolution invokes the functions in the order
in which they appear in the cell array. You can use this argument to specify boundary
conditions, prevent negative prices, accumulate statistics, plot graphs, and more.
Data Types: double

Output Arguments

Paths — Simulated paths of correlated state variables
array

Simulated paths of correlated state variables, returned as a (NPERIODS + 1)-by-NVARS-
by-NTRIALS three-dimensional time series array. For a given trial, each row of Paths is
the transpose of the state vector Xt at time t. When the input flag StorePaths = FALSE,
simBySolution returns Paths as an empty matrix.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NPERIODS + 1)-
by-1 column vector. Each element of Times is associated with the corresponding row of
Paths.

Z — Array of dependent random variates used to generate the Brownian motion vector
array

Array of dependent random variates used to generate the Brownian motion vector,
returned as a (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional time
series array.
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Examples

Use simBySolution with an hwv Object

Create an hwv object to represent the model:

dX X dt dW
t t t

= - +0 2 0 1 0 05. ( . ) . .

hwv = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

hwv = 

   Class HWV: Hull-White/Vasicek

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

The simBySolution method simulates the state vector Xt using an approximation of
the closed-form solution of diagonal drift HWV models. Each element of the state vector
Xt is expressed as the sum of NBROWNS correlated Gaussian random draws added to a
deterministic time-variable drift.

nPeriods = 100

[Paths,Times,Z] = simBySolution(hwv, nPeriods,'nTrials', 10);

• “Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 17-30
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
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• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

• The input argument Z allows you to directly specify the noise generation process.
This process takes precedence over the Correlation parameter of the sde object
and the value of the Antithetic input flag. If you do not specify a value for Z,
simBySolution generates correlated Gaussian variates, with or without antithetic
sampling as requested.

• Gaussian diffusion models, such as HWV, allow negative states. By default,
simBySolution does nothing to prevent negative states, nor does it guarantee that
the model be strictly mean-reverting. Thus, the model may exhibit erratic or explosive
growth.

• The end-of-period Processes argument allows you to terminate a given trial early.
At the end of each time step, simBySolution tests the state vector Xt for an all-NaN
condition. Thus, to signal an early termination of a given trial, all elements of the
state vector Xt must be NaN. This test enables a user-defined Processes function to
signal early termination of a trial, and offers significant performance benefits in some
situations (for example, pricing down-and-out barrier options).

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.
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Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
hwv | simByEuler | simBySolution | simulate

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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geom2arith
Geometric to arithmetic moments of asset returns

Syntax
[ma, Ca] = geom2arith(mg, Cg)

[ma, Ca] = geom2arith(mg, Cg, t)

Arguments

mg Continuously compounded or “geometric” mean of asset returns
(positive n-vector).

Cg Continuously compounded or “geometric” covariance of asset
returns, a n-by-n symmetric, positive-semidefinite matrix.

t (Optional) Target period of arithmetic moments in terms of
periodicity of geometric moments with default value 1 (positive
scalar).

Description

geom2arith transforms moments associated with a continuously compounded geometric
Brownian motion into equivalent moments associated with a simple Brownian motion
with a possible change in periodicity.

[ma, Ca] = geom2arith(mg, Cg, t) returns ma, arithmetic mean of asset returns
over the target period (n-vector), andCa, which is an arithmetric covariance of asset
returns over the target period (n-by-n matrix).

Geometric returns over period tG are modeled as multivariate lognormal random
variables with moments

E G[ ]Y m= +1
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and

cov( )Y C= G

Arithmetic returns over period tA are modeled as multivariate normal random variables
with moments

E
A

[ ]X m=

cov( )X C=
A

Given t = tA / tG, the transformation from geometric to arithmetic moments is
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2

For i,j = 1,..., n.

Note: If t = 1, then X = log(Y).

This function requires that the input mean must satisfy 1 + mg > 0 and that the input
covariance Cg must be a symmetric, positive, semidefinite matrix.

The functions geom2arith and arith2geom are complementary so that, given m, C, and
t, the sequence

[ma, Ca] = geom2arith(m, C, t);

[mg, Cg] = arith2geom(ma, Ca, 1/t);

yields mg = m and Cg = C.
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Examples

Example 1. Given geometric mean m and covariance C of monthly total returns, obtain
annual arithmetic mean ma and covariance Ca. In this case, the output period (1 year) is
12 times the input period (1 month) so that t = 12 with

[ma, Ca] = geom2arith(m, C, 12);

Example 2. Given annual geometric mean m and covariance C of asset returns, obtain
monthly arithmetic mean ma and covariance Ca. In this case, the output period (1 month)
is 1/12 times the input period (1 year) so that t = 1/12 with

[ma, Ca] = geom2arith(m, C, 1/12);

Example 3. Given geometric means m and standard deviations s of daily total returns
(derived from 260 business days per year), obtain annualized arithmetic mean ma and
standard deviations sa with

[ma, Ca] = geom2arith(m, diag(s .^2), 260);

sa = sqrt(diag(Ca));

Example 4. Given geometric mean m and covariance C of monthly total returns, obtain
quarterly arithmetic return moments. In this case, the output is 3 of the input periods so
that t = 3 with

[ma, Ca] = geom2arith(m, C, 3);

Example 5. Given geometric mean m and covariance C of 1254 observations of daily total
returns over a 5-year period, obtain annualized arithmetic return moments. Since the
periodicity of the geometric data is based on 1254 observations for a 5-year period, a 1-
year period for arithmetic returns implies a target period of t = 1254/5 so that

[ma, Ca] = geom2arith(m, C, 1254/5);

See Also
arith2geom

Introduced before R2006a
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getAssetMoments
Obtain mean and covariance of asset returns from Portfolio object

Use the getAssetMoments function with a Portfolio object to obtain mean and
covariance of asset returns.

For details on the workflow, see “Portfolio Object Workflow” on page 4-18.

Syntax

[AssetMean,AssetCovar] = getAssetMoments(obj)

Description

[AssetMean,AssetCovar] = getAssetMoments(obj) obtains mean and covariance
of asset returns for a Portfolio object.

Examples

Obtain Asset Moment Properties for a Portfolio Object

Given the mean and covariance of asset returns in the variables m and C, the asset
moment properties can be set and then obtained using the getAssetMoments function:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

p = Portfolio;

p = setAssetMoments(p, m, C);

[assetmean, assetcovar] = getAssetMoments(p)
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assetmean =

    0.0042

    0.0083

    0.0100

    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-44
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see

• Portfolio

Output Arguments

AssetMean — Mean of asset returns
vector

Mean of asset returns, returned as a vector.

AssetCovar — Covariance of asset returns
matrix

Covariance of asset returns, returned as a matrix.
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More About

Tips

You can also use dot notation to obtain the mean and covariance of asset returns from a
Portfolio object:

[AssetMean, AssetCovar] = obj.getAssetMoments;

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setAssetMoments

Introduced in R2011a
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getBounds
Obtain bounds for portfolio weights from portfolio object

Use the getBounds function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain bounds for portfolio weights from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[LowerBound,UpperBound] = getBounds(obj)

Description

[LowerBound,UpperBound] = getBounds(obj) obtains bounds for portfolio weights
from portfolio objects.

Examples

Obtain Values for Lower and Upper Bounds for a Portfolio Object

Given portfolio p with the default constraints set, obtain the values for LowerBound and
UpperBound.

p = Portfolio;

p = setDefaultConstraints(p, 5);

[LowerBound, UpperBound] = getBounds(p)

LowerBound =

     0

     0
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     0

     0

     0

UpperBound =

     []

Obtain Values for Lower and Upper Bounds for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the default constraints set, obtain the values for
LowerBound and UpperBound.

p = PortfolioCVaR;

p = setDefaultConstraints(p, 5);

[LowerBound, UpperBound] = getBounds(p)

LowerBound =

     0

     0

     0

     0

     0

UpperBound =

     []

Obtain Values for Lower and Upper Bounds for a PortfolioMAD Object

Given a PortfolioMAD object p with the default constraints set, obtain the values for
LowerBound and UpperBound.

p = PortfolioMAD;

p = setDefaultConstraints(p, 5);

[LowerBound, UpperBound] = getBounds(p)

LowerBound =
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     0

     0

     0

     0

     0

UpperBound =

     []

• “Working with Bound Constraints Using Portfolio Object” on page 4-68
• “Working with Bound Constraints Using PortfolioCVaR Object” on page 5-63
• “Working with Bound Constraints Using PortfolioMAD Object” on page 6-62
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

LowerBound — Lower-bound weight for each asset
vector

Lower-bound weight for each asset, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj). For more information on creating
a portfolio object, see
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• Portfolio
• PortfolioCVaR
• PortfolioMAD

UpperBound — Upper-bound weight for each asset
vector

Upper-bound weight for each asset, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj). For more information on creating
a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to obtain bounds for portfolio weights from portfolio objects.

[LowerBound, UpperBound] = obj.getBounds;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setBounds

Introduced in R2011a
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getBudget
Obtain budget constraint bounds from portfolio object

Use the getBudget function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain budget constraint bounds from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[LowerBudget,UpperBudget] = getBudget(obj)

Description

[LowerBudget,UpperBudget] = getBudget(obj) obtains budget constraint bounds
from portfolio objects.

Examples

Obtain Values for Lower and Upper Budgets for a Portfolio Object

Given portfolio p with the default constraints set, obtain the values for LowerBudget
and UpperBudget.

p = Portfolio;

p = setDefaultConstraints(p, 5);

[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget =

     1

UpperBudget =
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     1

Obtain Values for Lower and Upper Budgets for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the default constraints set, obtain the values for
LowerBudget and UpperBudget.

p = PortfolioCVaR;

p = setDefaultConstraints(p, 5);

[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget =

     1

UpperBudget =

     1

Obtain Values for Lower and Upper Budgets for a PortfolioMAD Object

Given a PortfolioMAD object p with the default constraints set, obtain the values for
LowerBudget and UpperBudget.

p = PortfolioMAD;

p = setDefaultConstraints(p, 5);

[LowerBudget, UpperBudget] = getBudget(p)

LowerBudget =

     1

UpperBudget =

     1

• “Working with Budget Constraints Using Portfolio Object” on page 4-71
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• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-65
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

LowerBudget — Lower-bound weight for each asset
scalar

Lower bound for budget constraint, returned as a scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

UpperBudget — Upper bound for budget constraint
scalar

Upper bound for budget constraint, returned as a scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

More About

Tips

You can also use dot notation to obtain the budget constraint bounds from portfolio
objects.
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[LowerBudget, UpperBudget] = obj.getBudget;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setBudget

Introduced in R2011a
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getCosts
Obtain buy and sell transaction costs from portfolio object

Use the getCosts function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain buy and sell transaction costs from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[BuyCost,SellCost] = getCosts(obj)

Description

[BuyCost,SellCost] = getCosts(obj) obtains buy and sell transaction costs from
portfolio objects.

Examples

Obtain Buy and Sell Costs for a Portfolio Object

Given portfolio p with the costs set, obtain the values for BuyCost and SellCost.

p = Portfolio;

p = setCosts(p, 0.001, 0.001, 5);

[BuyCost, SellCost] = getCosts(p)

BuyCost =

   1.0000e-03

SellCost =
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   1.0000e-03

Obtain Buy and Sell Costs for a PortfolioCVaR Object

Given a PortfolioCVaR object p with the costs set, obtain the values for BuyCost and
SellCost.

p = PortfolioCVaR;

p = setCosts(p, 0.001, 0.001, 5);

[BuyCost, SellCost] = getCosts(p)

BuyCost =

   1.0000e-03

SellCost =

   1.0000e-03

Obtain Buy and Sell Costs for a PortfolioMAD Object

Given a PortfolioMAD object p with the costs set, obtain the values for BuyCost and
SellCost.

p = PortfolioMAD;

p = setCosts(p, 0.001, 0.001, 5);

[BuyCost, SellCost] = getCosts(p)

BuyCost =

   1.0000e-03

SellCost =

   1.0000e-03

• “Working with Transaction Costs” on page 4-58
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• “Working with Transaction Costs” on page 5-53
• “Working with Transaction Costs” on page 6-52
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

BuyCost — Proportional transaction cost to purchase each asset
vector

Proportional transaction cost to purchase each asset, returned as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

SellCost — Proportional transaction cost to sell each asset
vector

Proportional transaction cost to sell each asset, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

More About

Tips

You can also use dot notation to obtain the buy and sell transaction costs from portfolio
objects.
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[BuyCost, SellCost] = obj.getCosts;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setCosts

Introduced in R2011a
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getEquality
Obtain equality constraint arrays from portfolio object

Use the getEquality function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain equality constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[AEquality,bEquality] = getEquality(obj)

Description

[AEquality,bEquality] = getEquality(obj) obtains equality constraint arrays
from portfolio objects.

Examples

Obtain Equality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are exactly 50% of your portfolio. Given a Portfolio object p, set the linear equality
constraints and obtain the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;

p = setEquality(p, A, b);

[AEquality, bEquality] = getEquality(p)

AEquality =
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     1     1     1     0     0

bEquality =

    0.5000

Obtain Equality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioCVaR object p, set the linear equality
constraints and obtain the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setEquality(p, A, b);

[AEquality, bEquality] = getEquality(p)

AEquality =

     1     1     1     0     0

bEquality =

    0.5000

Obtain Equality Contraintsfor a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioMAD object p, set the linear equality
constraints and obtain the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setEquality(p, A, b);

[AEquality, bEquality] = getEquality(p)

AEquality =
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     1     1     1     0     0

bEquality =

    0.5000

• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page

5-76
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page

6-75
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

AEquality — Matrix to form linear equality constraints
matrix

Matrix to form linear equality constraints, returned as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

bEquality — Vector to form linear equality constraints
vector
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Vector to form linear equality constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

More About

Tips

You can also use dot notation to obtain the equality constraint arrays from portfolio
objects.

[AEquality, bEquality] = obj.getEquality;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setEquality

Introduced in R2011a
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getGroupRatio
Obtain group ratio constraint arrays from portfolio object

Use the getGroupRatio function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to obtain group ratio constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj)

Description

[GroupA,GroupB,LowerRatio,UpperRatio] = getGroupRatio(obj) obtains
equality constraint arrays from portfolio objects.

Examples

Obtain Group Ratio Constraints for a Portfolio Object

Suppose you want to make sure that the ratio of financial to nonfinancial companies
in your portfolios never goes above 50%. Assume you have 6 assets with 3 financial
companies (assets 1-3) and 3 nonfinancial companies (assets 4-6). After setting group
ratio constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = Portfolio;

p = setGroupRatio(p, GA, GB, [], 0.5);

[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA =
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     1     1     1     0     0     0

GroupB =

     0     0     0     1     1     1

LowerRatio =

     []

UpperRatio =

    0.5000

Obtain Group Ratio Constraints for a PortfolioCVaR Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your
portfolios never exceeds 50%. Assume you have six assets with three financial companies
(assets 1-3) and three nonfinancial companies (assets 4-6). After setting group ratio
constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = PortfolioCVaR;

p = setGroupRatio(p, GA, GB, [], 0.5);

[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA =

     1     1     1     0     0     0

GroupB =

     0     0     0     1     1     1

LowerRatio =

     []
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UpperRatio =

    0.5000

Obtain Group Ratio Constraints for a PortfolioMAD Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your
portfolios never exceeds 50%. Assume you have six assets with three financial companies
(assets 1-3) and three nonfinancial companies (assets 4-6). After setting group ratio
constraints, obtain the values for GroupA, GroupB, LowerRatio, and UpperRatio.

GA = [ true true true false false false ];   % financial companies

GB = [ false false false true true true ];   % nonfinancial companies

p = PortfolioMAD;

p = setGroupRatio(p, GA, GB, [], 0.5);

[GroupA, GroupB, LowerRatio, UpperRatio] = getGroupRatio(p)

GroupA =

     1     1     1     0     0     0

GroupB =

     0     0     0     1     1     1

LowerRatio =

     []

UpperRatio =

    0.5000

• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
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• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

GroupA — Matrix that forms base groups for comparison
matrix

Matrix that forms base groups for comparison, returned as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

GroupB — Matrix that forms comparison groups
matrix

Matrix that forms comparison groups, returned as a matrix Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

LowerRatio — Lower bound for ratio of GroupB groups to GroupA groups
vector

Lower bound for ratio of GroupB groups to GroupA groups, returned as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

UpperRatio — Upper bound for ratio of GroupB groups to GroupA groups
vector

Upper bound for ratio of GroupB groups to GroupA groups, returned as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).
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More About

Tips

You can also use dot notation to obtain group ratio constraint arrays from portfolio
objects.

[GroupA, GroupB, LowerRatio, UpperRatio] = obj.getGroupRatio;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setGroupRatio

Introduced in R2011a
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getGroups
Obtain group constraint arrays from portfolio object

Use the getGroups function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to obtain group constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj)

Description

[GroupMatrix,LowerGroup,UpperGroup] = getGroups(obj) obtains group
constraint arrays from portfolio objects.

Examples

Obtain Group Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute no more than 30% of your portfolio. Given a Portfolio object p with
the group constraints set, obtain the values for GroupMatrix, LowerGroup, and
UpperGroup.

G = [ true true true false false ];

p = Portfolio;

p = setGroups(p, G, [], 0.3);

[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix =

     1     1     1     0     0
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LowerGroup =

     []

UpperGroup =

    0.3000

Obtain Group Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute at most 30% of your portfolio. Given a PortfolioCVaR object p with
the group constraints set, obtain the values for GroupMatrix, LowerGroup, and
UpperGroup.

G = [ true true true false false ];

p = PortfolioCVaR;

p = setGroups(p, G, [], 0.3);

[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix =

     1     1     1     0     0

LowerGroup =

     []

UpperGroup =

    0.3000

Obtain Group Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute at most 30% of your portfolio. Given a PortfolioMAD object p with
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the group constraints set, obtain the values for GroupMatrix, LowerGroup, and
UpperGroup.

G = [ true true true false false ];

p = PortfolioMAD;

p = setGroups(p, G, [], 0.3);

[GroupMatrix, LowerGroup, UpperGroup] = getGroups(p)

GroupMatrix =

     1     1     1     0     0

LowerGroup =

     []

UpperGroup =

    0.3000

• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

18-860



 getGroups

Output Arguments

GroupMatrix — Group constraint matrix
matrix

Group constraint matrix, returned as a matrix for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

UpperGroup — Upper bound for group constraints
vector

Upper bound for group constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

More About

Tips

You can also use dot notation to obtain the group constraint arrays from portfolio objects.

[GroupMatrix, LowerGroup, UpperGroup] = obj.getGroups;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setGroups

Introduced in R2011a
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getScenarios
Obtain scenarios from portfolio object

Use the getScenarios function with a PortfolioCVaR or PortfolioMAD objects to
obtain scenarios.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

Y = getScenarios(obj)

Description

Y = getScenarios(obj) obtains scenarios for PortfolioCVaR or PortfolioMAD
objects.

Examples

Obtain Scenarios for a CVaR Portfolio Object

For a given PortfolioCVaR object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

rng(11);

AssetScenarios = mvnrnd(m, C, 10);
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p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

Y = getScenarios(p)

Y =

   -0.0056    0.0440    0.1186    0.0488

   -0.0368   -0.0753    0.0087    0.1124

    0.0025    0.0856    0.0484    0.1404

    0.0318    0.0826    0.0377    0.0404

    0.0013   -0.0561   -0.1466   -0.0621

    0.0035    0.0310   -0.0183    0.1225

   -0.0519   -0.1634   -0.0526    0.1528

    0.0029   -0.1163   -0.0627   -0.0760

    0.0192   -0.0182   -0.1243   -0.1346

    0.0440    0.0189    0.0098    0.0821

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

Obtain Scenarios for a MAD Portfolio Object

For a given PortfolioMAD object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 10);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);
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Y = getScenarios(p)

Y =

   -0.0056    0.0440    0.1186    0.0488

   -0.0368   -0.0753    0.0087    0.1124

    0.0025    0.0856    0.0484    0.1404

    0.0318    0.0826    0.0377    0.0404

    0.0013   -0.0561   -0.1466   -0.0621

    0.0035    0.0310   -0.0183    0.1225

   -0.0519   -0.1634   -0.0526    0.1528

    0.0029   -0.1163   -0.0627   -0.0760

    0.0192   -0.0182   -0.1243   -0.1346

    0.0440    0.0189    0.0098    0.0821

The function rng( ) resets the random number generator to produce the documented
results. It is not necessary to reset the random number generator to simulate scenarios.

• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

Output Arguments

Y — Scenarios matrix
matrix
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Scenarios matrix, returned as a NumScenarios-by-NumAssets matrix for a
PortfolioCVaR or PortfolioMAD object.

More About

Tips

You can also use dot notation to obtain scenarios from a PortfolioCVaR or
PortfolioMAD object.

Y = obj.getScenarios;

• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
rng | setScenarios

Introduced in R2012b
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getfield
Content of specific field

Syntax
fieldval = getfield(tsobj, field)

fieldval = getfield(tsobj, field, {dates})

Arguments

tsobj Financial time series object.
field Field name within tsobj.
dates Date range. Dates can be expanded to include time-of-day

information.

Description

getfield treats the contents of a financial times series object tsobj as fields in a
structure.

fieldval = getfield(tsobj, field) returns the contents of the specified field.
This is equivalent to the syntax fieldval = tsobj field.

fieldval = getfield(tsobj, field, {dates}) returns the contents of the
specified field for the specified dates. dates can be individual cells of date character
vectors or a cell of a date character vector range using the :: operator, such as
'03/01/99::03/31/99'.

Examples

Create a financial time series object containing both date and time-of-day information:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ... 

         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
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times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

times]);

AnFts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...     

              'Yet Another Financial Time Series')

AnFts = 

 

    desc:  Yet Another Financial Time Series

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [        NaN]

    '     "     '    '12:00'          [          6]

Example 1. Get the contents of the times field in AnFts:

F = datestr(getfield(AnFts, 'times'))

F =

11:00 AM

12:00 PM

11:00 AM

12:00 PM

11:00 AM

12:00 PM

Example 2. Extract the contents of specific data fields within AnFts:

FF = getfield(AnFts,'Data1',...

             '01-Jan-2001 12:00::02-Jan-2001 12:00')

FF =

     2

     3

     4

More About
• “What Is the Financial Time Series App?” on page 13-2
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See Also
chfield | fieldnames | isfield | rmfield | setfield

Introduced before R2006a
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getInequality
Obtain inequality constraint arrays from portfolio object

Use the getInequality function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to obtain inequality constraint arrays from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[AInequality,bInequality] = getInequality(obj)

Description

[AInequality,bInequality] = getInequality(obj) obtains equality constraint
arrays from portfolio objects.

Examples

Obtain Inequality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are no more than 50% of your portfolio. Given a Portfolio object p, set the linear
inequality constraints and then obtain values for AInequality and bInequality.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;

p = setInequality(p, A, b);

[AInequality, bInequality] = getInequality(p)

AInequality =
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     1     1     1     0     0

bInequality =

    0.5000

Obtain Inequality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first
three assets constitute at most 50% of your portfolio. Given a PortfolioCVaR object
p, set the linear inequality constraints and then obtain values for AInequality and
bInequality.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setInequality(p, A, b);

[AInequality, bInequality] = getInequality(p)

AInequality =

     1     1     1     0     0

bInequality =

    0.5000

Obtain Inequality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first
three assets constitute at most 50% of your portfolio. Given a PortfolioMAD object p,
set the linear inequality constraints and then obtain values for AInequality and
bInequality.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setInequality(p, A, b);

[AInequality, bInequality] = getInequality(p)
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AInequality =

     1     1     1     0     0

bInequality =

    0.5000

• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-84
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page

5-79
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page

6-78
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Output Arguments

AInequality — Matrix to form linear inequality constraints
matrix

Matrix to form linear inequality constraints, returned as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).
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bInequality — Vector to form linear inequality constraints
vector

Vector to form linear inequality constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

More About

Tips

You can also use dot notation to obtain the inequality constraint arrays from portfolio
objects.

[AInequality, bInequality] = obj.getInequality;

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setInequality

Introduced in R2011a
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getOneWayTurnover

Obtain one-way turnover constraints from portfolio object

Use the getOneWayTirnover function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to obtain one-way turnover constraints from portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[BuyTurnover,SellTurnover] = getOneWayTurnover(obj)

Description

[BuyTurnover,SellTurnover] = getOneWayTurnover(obj) obtain one-way
turnover constraints from portfolio objects.

Examples

Obtain One-Way Turnover Costs for a Portfolio Object

Set one-way turnover costs.

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...

[ 0.005, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);

p = setBudget(p, 1, 1);

p = setOneWayTurnover(p, 1.3, 0.3, 0);    %130-30 portfolio

plotFrontier(p);
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Obtain one-way turnover costs.

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover =

    1.3000

SellTurnover =

    0.3000
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Obtain One-Way Turnover Costs for a PortfolioCVaR Object

Set one-way turnover costs and obtain the buy and sell turnover values.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

p = setBudget(p, 1, 1);

p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover =

    1.3000

SellTurnover =

    0.3000

Obtain One-Way Turnover Costs for a PortfolioMAD Object

Set one-way turnover costs and obtain the buy and sell turnover values.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;
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    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setBudget(p, 1, 1);

p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio

[BuyTurnover,SellTurnover] = getOneWayTurnover(p)

BuyTurnover =

    1.3000

SellTurnover =

    0.3000

• “Working with One-way Turnover Constraints Using Portfolio Object” on page 4-91
• “Working with One-way Turnover Constraints Using PortfolioCVaR Object” on page

5-86
• “Working with One-way Turnover Constraints Using PortfolioMAD Object” on page

6-84
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
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• PortfolioCVaR
• PortfolioMAD

Output Arguments

BuyTurnover — Turnover constraint on purchases
scalar

Turnover constraint on purchases, returned as a scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

SellTurnover — Turnover constraint on sales
scalar

Turnover constraint on sales, returned as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

More About

One-way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales.

The constraints take the form

1 0 0
T

B
x xmax , -{ } £ t

1 0 0
T

Sx xmax , -{ } £ t

with

• x — The portfolio (NumAssets vector)
• x0 — Initial portfolio (NumAssets vector)
• τB — Upper-bound for turnover constraint on purchases (scalar)
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• τS — Upper-bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using the following properties in a supported
portfolio object: BuyTurnover for τB, SellTurnover for τS, and InitPort for x0.

Note: The average turnover constraint (which is set using setTurnover) is not just the
combination of the one-way turnover constraints with the same value for the constraint.

Tips

You can also use dot notation to get the one-way turnover constraint for portfolio objects.

[BuyTurnover,SellTurnover] = obj.getOneWayTurnover

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setOneWayTurnover | setTurnover

Introduced in R2011a
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getnameidx
Find name in list

Syntax
nameidx = getnameidx(list, name)

Arguments

list Cell array of name character vectors.
name Character vector or cell array of name character vectors.

Description

nameidx = getnameidx(list, name) finds the occurrence of a name or set of names
in a list. It returns an index (order number) indicating where the specified names are
located within the list. If name is not found, nameidx returns 0.

If name is a cell array of names, getnameidx returns a vector containing the indices
(order number) of the name character vectors within list. If none of the names in the
name cell array is in list, it returns zero. If some of the names in name are not found,
the indices for these names are zeros.

getnameidx finds only the first occurrence of the name in the list of names. This
function is meant to be used on a list of unique names (character vectors) only. It does
not find multiple occurrences of a name or a list of names within list.

Examples

Given

poultry = {'duck', 'chicken'}

animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}

nameidx = getnameidx(animals, poultry)
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ans =

    1   5

Given

poultry = {'duck', 'goose', 'chicken'}

animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}

nameidx = getnameidx(animals, poultry)

ans =

    1  0  5

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
strcmp | strfind

Introduced before R2006a
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heston class

Heston model

Description

heston objects derive from the sdeddo (SDE from drift and diffusion objects) class. Use
heston objects to simulate sample paths of two state variables. Each state variable
is driven by a single Brownian motion source of risk over NPERIODS consecutive
observation periods, approximating continuous-time stochastic volatility processes.

Heston models are bivariate composite models. Each Heston model consists of two
coupled univariate models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function.

dX B t X dt X X dW
t t t t t1 1 2 1 1= +( )

This model usually corresponds to a price process whose volatility (variance rate) is
governed by the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX S t L t X dt V t X dWt t t t2 2 2 2= - +( )[ ( ) ] ( )

This model describes the evolution of the variance rate of the coupled GBM price
process.

Construction

heston = heston(Return,Speed,Level,Volatility) constructs a default heston
object.

heston = heston(Return,Speed,Level,Volatility,Name,Value) constructs
a heston object with additional options specified by one or more Name,Value pair
arguments.
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Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a heston object, see heston.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Return — Return represents the parameter µ
array or deterministic function of time or deterministic function of time and state

Return represents the parameter μ, specified as an array or deterministic function of
time.

If you specify Return as an array, it must be an NVARS-by-NVARS matrix representing
the expected (mean) instantaneous rate of return.

As a deterministic function of time, when Return is called with a real-valued scalar
time t as its only input, Return must produce an NVARS-by-NVARS matrix. If you specify
Return as a function of time and state, it must return an NVARS-by-NVARS matrix when
invoked with two inputs:

• A real-valued scalar observation time t.
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• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of
time.

If you specify Level as an array, it must be an NVARS-by-1 column vector of reversion
levels.

As a deterministic function of time, when Level is called with a real-valued scalar time
t as its only input, Level must produce an NVARS-by-1 column vector. If you specify
Level as a function of time and state, it must generate an NVARS-by-1 column vector of
reversion levels when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of
time.

If you specify Speed as an array, it must be an NVARS-by-NVARS matrix of mean-
reversion speeds (the rate at which the state vector reverts to its long-run average
Level).

As a deterministic function of time, when Speed is called with a real-valued scalar
time t as its only input, Speed must produce an NVARS-by-NVARS matrix. If you specify
Speed as a function of time and state, it calculates the speed of mean reversion. This
function must generate an NVARS-by-NVARS matrix of reversion rates when called with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Data Types: double | function_handle

Volatility — Volatility represents the instantaneous volatility of the CIR stochastic
variance model
scalar or deterministic function of time or deterministic function of time and state

Volatility (often called the volatility of volatility  or volatility of variance) represents
the instantaneous volatility of the CIR stochastic variance model, specified as a scalar or
deterministic function of time.

If you specifyVolatility as a scalar, it represents the instantaneous volatility of the
CIR stochastic variance model.

As a deterministic function of time, when Volatility is called with a real-valued
scalar time t as its only input, Volatility must produce a scalar. If you specify it as a
function time and state, Volatility generates a scalar when invoked with two inputs:

• A real-valued scalar observation time t.
• A 2-by-1 state vector Xt.

Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see heston.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.
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The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private
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GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
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Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.
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If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle

Methods

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler
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Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a heston Object

The Heston (heston) class derives directly from SDE from Drift and Diffusion (sdeddo).
Each Heston model is a bivariate composite model, consisting of two coupled univariate
models:
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dX B t X dt X X dW
t t t t t1 1 2 1 1= +( )

dX S t L t X dt V t X dWt t t t2 2 2 2= - +( )[ ( ) ] ( )

Create a heston object to represent the model:

dX X dt X X dW

dX X dt X dW

t t t t t

t t t t

1 1 2 1 1

2 2 2 2

0 1

0 2 0 1 0 05

= +

= - +

.

. [ . ] .

obj = heston (0.1, 0.2, 0.1, 0.05)  % (Return, Speed, Level, Volatility)

obj = 

   Class HESTON: Heston Bivariate Stochastic Volatility

   ----------------------------------------------------

     Dimensions: State = 2, Brownian = 2

   ----------------------------------------------------

      StartTime: 0

     StartState: 1 (2x1 double array) 

    Correlation: 2x2 diagonal double array 

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

         Return: 0.1

          Speed: 0.2

          Level: 0.1

     Volatility: 0.05

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25
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Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, heston treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | interpolate | sdeddo | simByEuler | simulate
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More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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heston
Construct Heston model

Syntax

heston = heston(Return, Speed, Level, Volatility)

heston = heston(Return, Speed, Level, Volatility, 'Name1', Value1,

'Name2', Value2, ...)

Class

heston

Description

This constructor creates and displays heston objects, which derive from thesdeddo (SDE
from drift and diffusion objects) class. Use heston objects to simulate sample paths of
two state variables. Each state variable is driven by a single Brownian motion source
of risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic volatility processes.

Heston models are bivariate composite models. Each Heston model consists of two
coupled univariate models:

• A geometric Brownian motion (gbm) model with a stochastic volatility function.

dX B t X dt X X dW
t t t t t1 1 2 1 1= +( )

This model usually corresponds to a price process whose volatility (variance rate) is
governed by the second univariate model.

• A Cox-Ingersoll-Ross (cir) square root diffusion model.

dX S t L t X dt V t X dWt t t t2 2 2 2= - +( )[ ( ) ] ( )
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This model describes the evolution of the variance rate of the coupled GBM price
process.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Return If you specify Return as a scalar, it represents the expected (mean)
instantaneous rate of return of the univariate GBM price model. As
a deterministic function of time, when Return is called with a real-
valued scalar time t as its only input, Return must produce a scalar.
If you specify it as a function of time and state, Return calculates the
instantaneous rate of return of the GBM price model. This function
generates a scalar when invoked with two inputs:

• A real-valued scalar observation time t.
• A 2-by-1 bivariate state vector Xt.

Speed If you specify Speed as a scalar, it represents the mean-reversion speed
of the univariate CIR stochastic variance model (the speed at which the
CIR variance reverts to its long-run average level). As a deterministic
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function of time, when Speed is called with a real-valued scalar time
t as its only input, Speed must produce a scalar. If you specify it as a
function time and state, Speed calculates the speed of mean reversion of
the CIR variance model. This function generates a scalar when invoked
with two inputs:

• A real-valued scalar observation time t.
• A 2-by-1 state vector Xt.

Level If you specify Level as a scalar, it represents the reversion level of the
univariate CIR stochastic variance model. As a deterministic function
of time, when Level is called with a real-valued scalar time t as its
only input, Level must produce a scalar. If you specify it as a function
time and state, Level calculates the reversion level of the CIR variance
model. This function generates a scalar when invoked with two inputs:

• A real-valued scalar observation time t.
• A 2-by-1 state vector Xt.

Volatility If you specify Volatility as a scalar, it represents the instantaneous
volatility of the CIR stochastic variance model, often called the volatility
of volatility  or volatility of variance. As a deterministic function of time,
when Volatility is called with a real-valued scalar time t as its only
input, Volatility must produce a scalar. If you specify it as a function
time and state, Volatility generates a scalar when invoked with two
inputs:

• A real-valued scalar observation time t.
• A 2-by-1 state vector Xt.

Note: Although the constructor does not enforce restrictions on the signs of any of these
input arguments, each argument is specified as a positive value.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/
value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply
when specifying parameter-name pairs:

18-895



18 Functions — Alphabetical List

• Specify the parameter name as a character vector, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

The following table lists valid parameter names.

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, 2-by-1 column vector, or 2-by-NTRIALS matrix of initial
values of the state variables.

If StartState is a scalar, heston applies the same initial value to
both state variables on all trials.

If StartState is a bivariate column vector, heston applies a
unique initial value to each state variable on all trials.

If StartState is a matrix, heston applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as a scalar, a 2-by-2 positive semidefinite matrix, or
as a deterministic function C(t) that accepts the current time t and
returns a 2-by-2 positive semidefinite correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is a 2-
by-2 identity matrix representing independent Gaussian processes.
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Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

heston Object of class heston with the following displayed parameters:

• StartTime: Initial observation time
• StartState: Initial state at StartTime
• Correlation: Access function for the Correlation input, callable as

a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
• Simulation: A simulation function or method
• Return: Access function for the input argument Return, callable as a

function of time and state
• Speed: Access function for the input argument Speed, callable as a

function of time and state
• Level: Access function for the input argument Level, callable as a

function of time and state
• Volatility: Access function for the input argument Volatility,

callable as a function of time and state

Examples

See “Creating Heston Stochastic Volatility Models” on page 17-32.

More About
• “SDEs” on page 17-2
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• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References
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See Also
cir | gbm | sdeddo

Introduced in R2008b
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hhigh
Highest high

Syntax

hhv = hhigh(data)

hhv = hhigh(data, nperiods, dim)

hhvts = hhigh(tsobj, nperiods)

hhvts = hhigh(tsobj, nperiods, 'ParameterName', ParameterValue, ...)

Arguments

data Data series matrix.
nperiods (Optional) Number of periods. Default = 14.
dim (Optional) Dimension.
tsobj Financial time series object.
'ParameterName' The valid parameter name is:

• HighName: high prices series name
ParameterValue The parameter value is a character vector that represents

the valid parameter name.

Description

hhv = hhigh(data) generates a vector of highest high values for the past 14 periods
from the matrix data.

hhv = hhigh(data, nperiods, dim) generates a vector of highest high values for
the past nperiods periods. dim indicates the direction in which the highest high is to be
searched. If you input [] for nperiods, the default is 14.
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hhvts = hhigh(tsobj, nperiods) generates a vector of highest high values from
tsobj, a financial time series object. tsobj must include at least the series High. The
output hhvts is a financial time series object with the same dates as tsobj and data
series named HighestHigh. If nperiods is specified, hhigh generates a financial time
series object of highest high values for the past nperiods periods.

hhvts = hhigh(tsobj, nperiods, 'ParameterName', ParameterValue, ...)

specifies the name for the required data series when it is different from the default name.
The valid parameter name isHighName. The parameter value is a character vector that
represents the valid parameter name.

Examples

Compute the Highest High Price

This example shows how to compute the highest high price for Disney stock and plot the
results.

load disney.mat

dis_HHigh = hhigh(dis);

plot(dis_HHigh)

title('Highest High for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
llow

Introduced before R2006a
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highlow (fts)

Time series High-Low plot

Syntax

highlow(tsobj)

highlow(tsobj, color)

highlow(tsobj, color, dateform)

highlow(tsobj, color, dateform, 'ParameterName', ParameterValue, ...)

hll = highlow(tsobj, color, dateform, 'ParameterName',

ParameterValue, ...)

Arguments

tsobj Financial time series object.
color (Optional) A three-element row vector representing RGB or a

color identifier. (See plot in the MATLAB documentation.)
dateform (Optional) Date format used as the x-axis tick labels. (See

datetick in the MATLAB documentation.) You can specify
a dateform only when tsobj does not contain time-of-
day data. If tsobj contains time-of-day data, dateform is
restricted to 'dd-mmm-yyyy HH:MM'.

'ParameterName' 'ParameterName' can be:

• HighName: high prices series name
• LowName: low prices series name
• OpenName: open prices series name
• CloseName: closing prices series name

ParameterValue The parameter value is a character vector that represents the
valid parameter name.
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Description

highlow(tsobj) generates a High-Low plot of the data in the financial time series
object tsobj. tsobj must contain at least four data series representing the high, low,
open, and closing prices. These series must have the names High, Low, Open, and Close
(case-insensitive).

highlow(tsobj, color) additionally specifies the color of the plot.

highlow(tsobj, color, dateform) additionally specifies the date format used as
the x-axis tick labels. See datestr for a list of date formats.

highlow(tsobj, color, dateform, 'ParameterName',

ParameterValue, ...) indicates the actual names of the required data series if the
data series do not have the default names.

You can specify open prices as optional by providing the parameter name 'OpenName'
and the parameter value ''.

highlow(tsobj, color, dateform, 'OpenName', '')

hhll = highlow(tsobj, color, dateform, 'ParameterName',

ParameterValue, ...) returns the handle to the line object that makes up the High-
Low plot.

Examples

Generate a High-Low Plot

This example shows how to generate a High-Low plot for Disney stock for the dates May
28 to June 18, 1998.

load disney.mat

highlow(dis('28-May-1998::18-Jun-1998'))

title('High-Low Plot for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
candle

Introduced before R2006a
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highlow
High, low, open, close chart

Syntax
highlow(High, Low, Close, Open, Color)

highlow(High, Low, Close, Open, Color, Dates, Dateform)

Handles = highlow(High, Low, Close, Open, Color, Dates, Dateform)

Arguments

High High prices for a security. A column vector.
Low Low prices for a security. A column vector.
Close Closing prices for a security. A column vector.
Open (Optional) Opening prices for a security. A column vector. To

specify Color when Open is unknown, enter Open as an empty
matrix [].

Color (Optional) Vertical line color, specified as a character vector.
MATLAB software supplies a default color if none is specified. The
default color differs depending on the background color of the figure
window. See ColorSpec in the MATLAB documentation for color
names.

Dates (Optional) User-defined dates, specified as a serial date number or
datetime array. A column vector.

Dateform (Optional) Format of the date character vector as tick labels. For
more information on date formats, see dateaxis.

Description
highlow(High, Low, Close, Open, Color) plots the high, low, opening, and
closing prices of an asset. Plots are vertical lines whose top is the high, bottom is the low,
open is a short horizontal tick to the left, and close is a short horizontal tick to the right.
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highlow(High, Low, Close, Open, Color, Dates, Dateform) plots the high,
low, opening, and closing prices of an asset. Plots are vertical lines whose top is the high,
bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal
tick to the right. The plot also contains user-defined dates and date character vector
format for tick labels.

Handles = highlow(High, Low, Close, Open, Color, Dates, Dateform)

plots the figure and returns the handles of the lines.

Examples

Create a HighLow Chart

The high, low, open, and closing prices for the equity DIS are stored in equal-length
vectors dis_HIGH, dis_LOW, dis_OPEN, and dis_CLOSE respectively and highlow plots
the price data using blue lines.

load disney.mat

range = 1:25;

highlow(dis_HIGH(range), dis_LOW(range), dis_CLOSE(range),...

    dis_OPEN(range),'blue',dis.dates(range));

18-906



 highlow

Create a HighLow Chart Using datetime Input

The high, low, open, and closing prices for the equity DIS are stored in equal-length
vectors dis_HIGH, dis_LOW, dis_OPEN, and dis_CLOSE respectively and highlow plots
the price data using blue lines.

load disney.mat

range = 1:25;

highlow(dis_HIGH(range), dis_LOW(range), dis_CLOSE(range),...

dis_OPEN(range),'blue',datetime(dis.dates(range),'ConvertFrom','datenum','Locale','en_US'));
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• “High-Low-Close Chart” on page 2-13
• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
bolling | candle | dateaxis | datetime | highlow | movavg | pointfig

Introduced before R2006a

18-908



 hist

hist
Histogram

Syntax
hist(tsobj, numbins)

ftshist = hist(tsobj, numbins)

[ftshist, binpos] = hist(tsobj, numbins)

Arguments

tsobj Financial time series object.
numbins (Optional) Number of histogram bins. Default = 10.

Description

hist(tsobj, numbins) calculates and displays the histogram of the data series
contained in the financial time series object tsobj.

ftshist = hist(tsobj, numbins) calculates, but does not display, the histogram of
the data series contained in the financial time series object tsobj. The output ftshist
is a structure with field names similar to the data series names of tsobj.

[ftshist, binpos] = hist(tsobj, numbins) additionally returns the bin
positions binpos. The positions are the centers of each bin. binpos is a column vector.

Examples

Create a Histogram

This example shows how to generate a histogram of Disney open, high, low, and close
prices.
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load disney.mat

dis = rmfield(dis,'VOLUME'); % Remove VOLUME field

hist(dis)

title('Disney Histogram')

• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
histogram | mean | std

Introduced before R2006a
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hwv class

Hull-White/Vasicek Gaussian Diffusion model

Description

hwv objects derive from the sdemrd (SDE with drift rate expressed in mean-reverting
form) class. Use hwv objects to simulate sample paths of NVARS state variables expressed
in mean-reverting drift-rate form. These state variables are driven by NBROWNS
Brownian motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time Hull-White/Vasicek stochastic processes with Gaussian
diffusions.

This model allows you to simulate vector-valued Hull-White/Vasicek processes of the
form:

dX S t L t X dt V t dWt t t= - +( )[ ( ) ] ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS of mean reversion speeds (the rate of mean reversion).
• L is an NVARS-by-1 vector of mean reversion levels (long-run mean or level).
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWtis an NBROWNS-by-1 Brownian motion vector.

Construction

HWV = hwv(Speed,Level,Sigma) constructs a default hwv object.

HWV = hwv(Speed,Level,Sigma,Name,Value) constructs a hwv object with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.
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For more information on constructing a hwv object, see hwv.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Speed — Return represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of
time.

If you specify Speed as an array, it must be an NVARS-by-NVARS matrix of mean-
reversion speeds (the rate at which the state vector reverts to its long-run average
Level).

As a deterministic function of time, when Speed is called with a real-valued scalar
time t as its only input, Speed must produce an NVARS-by-NVARS matrix. If you specify
Speed as a function of time and state, it calculates the speed of mean reversion. This
function must generate an NVARS-by-NVARS matrix of reversion rates when called with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of
time.

If you specify Level as an array, it must be an NVARS-by-1 column vector of reversion
levels.

As a deterministic function of time, when Level is called with a real-valued scalar time
t as its only input, Level must produce an NVARS-by-1 column vector. If you specify
Level as a function of time and state, it must generate an NVARS-by-1 column vector of
reversion levels when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Although thehwv constructor does not enforce restrictions on the signs of any of these
input arguments, each argument is specified as a positive value.
Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see hwv.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
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• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a
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where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar
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Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle
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Methods

simBySolution Simulate approximate solution of diagonal-
drift HWV processes

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a hwv Object

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-
reverting drift (that is, SDEMRD):

dX S t L t X dt V t dWt t t= - +( )[ ( ) ] ( )

Create a hwv object to represent the model:

dX X dt dW
t t t

= - +0 2 0 1 0 05. ( . ) . .

obj = hwv(0.2, 0.1, 0.05)  % (Speed, Level, Sigma)

obj = 

   Class HWV: Hull-White/Vasicek

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

• “Simulating Equity Prices” on page 17-34
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• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, hwv treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.
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Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | interpolate | sdeddo | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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hwv
Construct HWV model

Syntax

HWV = hwv(Speed, Level, Sigma)

HWV = hwv(Speed, Level, Sigma, 'Name1', Value1, 'Name2',

Value2, ...)

Class

hwv

Description

This constructor creates and displays hwv objects, which derive from thesdemrd (SDE
with drift rate expressed in mean-reverting form) class. Use hwv objects to simulate
sample paths of NVARS state variables expressed in mean-reverting drift-rate form.
These state variables are driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time Hull-White/
Vasicek stochastic processes with Gaussian diffusions.

This method allows you to simulate vector-valued Hull-White/Vasicek processes of the
form:

dX S t L t X dt V t dWt t t= - +( )[ ( ) ] ( )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS of mean reversion speeds (the rate of mean reversion).
• L is an NVARS-by-1 vector of mean reversion levels (long-run mean or level).
• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWtis an NBROWNS-by-1 Brownian motion vector.

18-922



 hwv

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Speed Speed represents the function S. If you specify Speed as an array, it
must be an NVARS-by-NVARS matrix of mean-reversion speeds (the rate
at which the state vector reverts to its long-run average Level). As a
deterministic function of time, when Speed is called with a real-valued
scalar time t as its only input, Speed must produce an NVARS-by-NVARS
matrix. If you specify Speed as a function of time and state, it calculates
the speed of mean reversion. This function must generate an NVARS-
by-NVARS matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Level Level represents the function L. If you specify Level as an array,
it must be an NVARS-by-1 column vector of reversion levels. As a
deterministic function of time, when Level is called with a real-valued
scalar time t as its only input, Level must produce an NVARS-by-1
column vector. If you specify Level as a function of time and state, it
must generate an NVARS-by-1 column vector of reversion levels when
called with two inputs:
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• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an array, it
must be an NVARS-by-NBROWNS matrix of instantaneous volatility rates.
In this case, each row of Sigma corresponds to a particular state variable.
Each column corresponds to a particular Brownian source of uncertainty,
and associates the magnitude of the exposure of state variables with
sources of uncertainty. As a deterministic function of time, when Sigma
is called with a real-valued scalar time t as its only input, Sigma must
produce an NVARS-by-NBROWNS matrix. If you specify it as a function
of time and state, Sigma must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Note: Although the constructor does not enforce restrictions on the signs of any of these
input arguments, each argument is specified as a positive value.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/
value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply
when specifying parameter-name pairs:

• Specify the parameter name as a character vector, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.
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StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, hwv applies the same initial value to all
state variables on all trials.

If StartState is a column vector, hwv applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, hwv applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

HWV Object of class hwv with the following displayed parameters:

• StartTime: Initial observation time
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• StartState: Initial state at StartTime
• Correlation: Access function for the Correlation input, callable as

a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
• Simulation: A simulation function or method
• Speed: Access function for the input argument Speed, callable as a

function of time and state
• Level: Access function for the input argument Level, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state

Examples

“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page 17-30

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
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state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, hwv treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Springer-Verlag, 2004.

See Also
diffusion | drift | sdeddo

Introduced in R2008a
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holdings2weights

Portfolio holdings into weights

Syntax

Weights = holdings2weights(Holdings, Prices, Budget)

Arguments

Holdings Number of portfolios (NPORTS) by number of assets (NASSETS)
matrix with the holdings of NPORTS portfolios containing NASSETS
assets.

Prices NASSETS vector of asset prices.
Budget (Optional) Scalar or NPORTS vector of nonzero budget constraints.

Default = 1.

Description

Weights = holdings2weights(Holdings, Prices, Budget) converts portfolio
holdings into portfolio weights. The weights must satisfy a budget constraint such that
the weights sum to Budget for each portfolio.

Weights is a NPORTS by NASSETS matrix containing the normalized weights of NPORTS
portfolios containing NASSETS assets.

Notes

• Holdings may be negative to indicate a short position, but the overall portfolio
weights must satisfy a nonzero budget constraint.

• The weights in each portfolio sum to the Budget value (which is 1 if Budget is
unspecified.)
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See Also
weights2holdings

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12

Introduced before R2006a
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holidays

Holidays and nontrading days

Syntax

H = holidays

H = holidays(StartDate,EndDate)

H = holidays(StartDate,EndDate,AltHolidays)

Description

H = holidays returns a vector of serial date numbers corresponding to all holidays and
nontrading days.

H = holidays(StartDate,EndDate) returns a vector of serial date numbers
corresponding to the holidays and nontrading days betweenStartDate and EndDate,
inclusive.

H = holidays(StartDate,EndDate,AltHolidays) returns a vector of serial date
numbers corresponding to the alternate list of holidays and nontrading days.

Examples

Determine Holidays for a Given StartDate and EndDate

Create a vector of serial date numbers corresponding to all holidays and nontrading
dates between a specified StartDate and EndDate:

H = holidays('jan 1 2001', 'jun 23 2001')

datestr(H)

H =

      730852
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      730866

      730901

      730954

      730999

ans =

01-Jan-2001

15-Jan-2001

19-Feb-2001

13-Apr-2001

28-May-2001

Alternatively, using a datetime array for StartDate and EndDate returns a datetime
array for H.

H = holidays(datetime('1-Jan-2001','Locale','en_US'),...

datetime('23-Jun-2001','Locale','en_US'))

H = 

  5×1 datetime array

   01-Jan-2001

   15-Jan-2001

   19-Feb-2001

   13-Apr-2001

   28-May-2001

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime
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EndDate — End date
serial date number | date character vector | datetime object

End date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

AltHolidays — Alternate list of holidays and nontrading days
serial date number | date character vector | datetime object

Alternate list of holidays and nontrading days, specified using a serial date number, date
character vector, or datetime array.
Data Types: double | char | datetime

Output Arguments

H — Dates corresponding to all holidays and nontrading days
vector

Dates corresponding to all holidays and nontrading days, returned as a vector of dates.
If StartDate, EndDate, and AltHolidays are all either serial date numbers or date
character vectors, H is returned as serial date numbers. If either StartDate, EndDate,
or AltHolidays are datetime arrays, H is returned as a datetime array.

More About

Definition of holidays

holidays is based on a modern 5-day workweek. This function contains all holidays
and special nontrading days for the New York Stock Exchange from January 1, 1885 to
December 31, 2050.

Since the New York Stock Exchange was open on Saturdays before September 29, 1952,
exact closures from 1885 to 2070 should include Saturday trading days. To capture these
dates, use the function nyseclosures. The results from holidays and nyseclosures
are identical if the WorkWeekFormat in nyseclosures is 'Modern'.
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4
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See Also
busdate | createholidays | datetime | isbusday | lbusdate | nyseclosures

Introduced before R2006a
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horzcat
Concatenate financial time series objects horizontally

Syntax
horzcat

Description

horzcat implements horizontal concatenation of financial time series objects. horzcat
essentially merges the data columns of the financial time series objects. The time series
objects must contain the exact same dates and times.

When multiple instances of a data series name occur, concatenation adds a suffix to
the current names of the data series. The suffix has the format _objectname<n>,
where n is a number indicating the position of the time series, from left to right, in the
concatenation command. The n part of the suffix appears only when there is more than
one instance of a particular data series name.

The description fields are concatenated as well. They are separated by two forward
slashes (//).

Examples

Construct three financial time series, each containing a data series named DataSeries:
firstfts  = fints((today:today+4)', (1:5)','DataSeries','d');

secondfts = fints((today:today+4)', (11:15)','DataSeries','d');

thirdfts  = fints((today:today+4)', (21:25)','DataSeries','d');

Concatenate the time series horizontally into a new financial time series newfts:

newfts  = [firstfts secondfts thirdfts secondfts];

The resulting object newfts has data series names DataSeries_firstfts,
DataSeries_secondfts2, DataSeries_thirdfts, and DataSeries_secondfts4.

Verify this with the command
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fieldnames(newfts)

ans = 

 

     'desc'

     'freq'

     'dates'

     'DataSeries_firstfts'

     'DataSeries_secondfts2'

     'DataSeries_thirdfts'

     'DataSeries_secondfts4'

     'times'

Use chfield to change the data series names.

Note If all input objects have the same frequency, the new object has that frequency
as well. However, if one of the objects concatenated has a different frequency from the
others, the frequency indicator of the resulting object is set to Unknown (0).

See Also
busdate | createholidays | isbusday | lbusdate | nyseclosures

Introduced before R2006a
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hour
Hour of date or time

Syntax

Hour = hour(Date)

Hour = hour(Date,F)

Description

Hour = hour(Date) returns the hour of the day given a serial date number or a date
character vector.

Hour = hour(Date,F) returns the hour of one or more date character vectors using
format defined by the optional input F. Date can be an array of date character vectors,
where each row corresponds to one date character vector, or a one-dimensional cell array
of character vectors. All the character vectors in Date must have the same format F. F
must designate a supported date format symbol. For more information on supported date
formats, see datestr.

Examples

Determine the Hour of the Day for Various Dates

Find the hour of the day for Date using a serial date number.

Hour = hour(730473.5584278936)

Hour =

    13

Find the hour of the day for Date using a date character vector format.

Hour = hour('19-dec-1999, 13:24:08.17')
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Hour =

    13

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine hour
serial date number | date character vector | cell array of date character vectors

Date to determine hour, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date
character vector, or a one-dimensional cell array of character vectors. All of the character
vectors in Date must have the same format F. F must designate a supported date format
symbol. For more information on supported date formats, see datestr

Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol
for input argument Date. For more information on supported date character vector
formats, see datestr. Note, formats with 'Q' are not accepted.

Data Types: char

Output Arguments

Hour — Hour of day
serial date number | datetime array

Hour of the day, returned as a serial date number or date character vector.

See Also
datevec | minute | second
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Introduced before R2006a
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inforatio
Calculate information ratio for one or more assets

Syntax
inforatio(Asset, Benchmark)

Ratio = inforatio(Asset, Benchmark)

[Ratio, TE] = inforatio(Asset, Benchmark)

Arguments

Asset NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES observations
of asset returns for NUMSERIES asset return series.

Benchmark NUMSAMPLES vector of returns for a benchmark asset. The
periodicity must be the same as the periodicity of Asset. For
example, if Asset is monthly data, then Benchmark must be
monthly returns.

Description

Given NUMSERIES assets with NUMSAMPLES returns for each asset in a NUMSAMPLES
x NUMSERIES matrix Asset and given a NUMSAMPLES vector of benchmark returns in
Benchmark, inforatio computes the information ratio and tracking error for each asset
relative to the Benchmark.

To summarize the outputs of inforatio:

• Ratio is a 1 x NUMSERIES row vector of information ratios for each series in Asset.
Any series in Asset with a tracking error of 0 has a NaN value for its information
ratio.

• TE is a 1 x NUMSERIES row vector of tracking errors, that is, the standard deviation
of Asset relative to Benchmark returns, for each series.
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Note: NaN values in the data are ignored. If the Asset and Benchmark series are
identical, the information ratio is NaN since the tracking error is 0. The information
ratio and the Sharpe ratio of an Asset versus a riskless Benchmark (a Benchmark
with standard deviation of returns equal to 0) are equivalent. This equivalence is not
necessarily true if the Benchmark is risky.

Examples

See “Information Ratio” on page 7-8.

More About
• “Performance Metrics Overview” on page 7-2

References

Richard C. Grinold and Ronald N. Kahn. Active Portfolio Management. 2nd. Edition.
McGraw-Hill, 2000.

Jack Treynor and Fischer Black. "How to Use Security Analysis to Improve Portfolio
Selection." Journal of Business. Vol. 46, No. 1, January 1973, pp. 66–86.

See Also
portalpha | sharpe

Introduced in R2006b
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interpolate
Brownian interpolation of stochastic differential equations

Syntax
[XT, T] = interpolate(MDL, T, Paths)

[XT, T] = interpolate(MDL, Paths, 'Name1', Value1, 'Name2',

Value2, ...)

Classes
All classes in “SDE Class Hierarchy” on page 17-5.

Description
This method performs a Brownian interpolation into a user-specified time series array,
based on a piecewise-constant Euler sampling approach.

Consider a vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• X is an NVARS-by-1 state vector.
• F is an NVARS-by-1 drift-rate vector-valued function.
• G is an NVARS-by-NBROWNS diffusion-rate matrix-valued function.
• W is an NBROWNS-by-1 Brownian motion vector.

Given a user-specified time series array associated with this equation, this method
performs a Brownian (stochastic) interpolation by sampling from a conditional Gaussian
distribution. This sampling technique is sometimes called a Brownian bridge.

Note: Unlike simulation methods, the interpolate method does not support user-
specified noise processes.

18-941



18 Functions — Alphabetical List

Input Arguments

MDL Stochastic differential equation model.
T NTIMES element vector of interpolation times. The length of this vector

determines the number of rows in the interpolated output time series XT.
Paths NPERIODS-by-NVARS-by-NTRIALS time series array of sample paths of

correlated state variables. For a given trial, each row of this array is the
transpose of the state vector Xt at time t. Paths is the initial time series
array into which interpolate performs the Brownian interpolation.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/
value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply
when specifying parameter-name pairs:

• Specify the parameter name as a character vector, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

Times Vector of monotonically increasing observation times associated with
the time series input Paths. If you do not specify a value for this
parameter, Times is a zero-based, unit-increment column vector of
length NPERIODS.

Refine Scalar logical flag that indicates whether interpolate uses the
interpolation times you request (see T) to refine the interpolation as
new information becomes available. If you do not specify a value for this
argument or set it to FALSE (the default value), interpolate bases the
interpolation only on the state information specified in Paths. If you
set Refine to TRUE, interpolate inserts all new interpolated states
into the existing Paths array as they become available. This refines the
interpolation grid available to subsequent interpolation times during
the current trial.
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Processes Function or cell array of functions that indicates a sequence of
background processes or state vector adjustments of the form

X P t X
t t

= ( , )

The interpolate method runs processing functions at each
interpolation time. They must accept the current interpolation time t,
and the current state vector Xt, and return a state vector that may be an
adjustment to the input state.

If you specify more than one processing function, interpolate invokes
the functions in the order in which they appear in the cell array. You
can use this argument to specify boundary conditions, prevent negative
prices, accumulate statistics, plot graphs, and so on.

If you do not specify a processing function, interpolate makes no
adjustments and performs no processing.

Output Arguments

XT NTIMES-by-NVARS-by-NTRIALS time series array of interpolated state
variables. For a given trial, each row of this array is the transpose of the
interpolated state vector Xt at time t. XT is the interpolated time series
formed by interpolating into the input Paths time series array.

T NTIMES-by-1 column vector of interpolation times associated with the
output time series XT. If the input interpolation time vector T contains
no missing observations (NaNs), this output is the same time vector
as T, but with the NaNs removed. This reduces the length of T and the
number of rows of XT.

Examples

Stochastic Interpolation Without Refinement

Many applications require knowledge of the state vector at intermediate sample times
that are initially unavailable. One way to approximate these intermediate states is to
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perform a deterministic interpolation. However, deterministic interpolation techniques
fail to capture the correct probability distribution at these intermediate times. Brownian
(or stochastic) interpolation captures the correct joint distribution by sampling from a
conditional Gaussian distribution. This sampling technique is sometimes referred to as a
Brownian Bridge.

The default stochastic interpolation technique is designed to interpolate into an
existing time series and ignore new interpolated states as additional information
becomes available. This technique is the usual notion of interpolation, which is called
Interpolation without refinement.

Alternatively, the interpolation technique may insert new interpolated states into
the existing time series upon which subsequent interpolation is based, by that means
refining information available at subsequent interpolation times. This technique is called
interpolation with refinement.

Interpolation without refinement is a more traditional technique, and is most useful
when the input series is closely spaced in time. In this situation, interpolation without
refinement is a good technique for inferring data in the presence of missing information,
but is inappropriate for extrapolation. Interpolation with refinement is more suitable
when the input series is widely spaced in time, and is useful for extrapolation.

The stochastic interpolation method is available to any model. It is best illustrated,
however, by way of a constant-parameter Brownian motion process. Consider a
correlated, bivariate Brownian motion (BM) model of the form:

dX dt dW dW

dX dt dW dW

E dW

t t t

t t t

t

1 1 2

2 1 2

1

0 3 0 2 0 1

0 4 0 1 0 2

= + -

= + -

. . .

. . .

[ ddW dt dtt2 0 5] .= =r

1 Create a bm object to represent the bivariate model:

mu    = [0.3; 0.4];

sigma = [0.2 -0.1; 0.1 -0.2];

rho   = [1 0.5; 0.5 1];

obj   = bm(mu,sigma,'Correlation',rho);

2 Assuming that the drift (Mu) and diffusion (Sigma) parameters are annualized,
simulate a single Monte Carlo trial of daily observations for one calendar year (250
trading days):
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rng default                 % make output reproducible

dt    = 1/250;  % 1 trading day = 1/250 years

[X,T] = simulate(obj,250,'DeltaTime',dt);

3 It is helpful to examine a small interval in detail.

a Interpolate into the simulated time series with a Brownian bridge:

t = ((T(1) + dt/2):(dt/2):(T(end) - dt/2));

x = interpolate(obj,t,X,'Times',T);

b Plot both the simulated and interpolated values:

plot(T,X(:,1),'.-r',T,X(:,2),'.-b')

grid on;

hold on;

plot(t,x(:,1),'or',t,x(:,2),'ob')

hold off;

xlabel('Time (Years)')

ylabel('State')

title('Bi-Variate Brownian Motion: \rho = 0.5')

axis([0.4999 0.6001 0.25 0.4])
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In this plot:

• The solid red and blue dots indicate the simulated states of the bivariate
model.

• The straight lines that connect the solid dots indicate intermediate states
that would be obtained from a deterministic linear interpolation.

• Open circles indicate interpolated states.
• Open circles associated with every other interpolated state encircle solid dots

associated with the corresponding simulated state. However, interpolated
states at the midpoint of each time increment typically deviate from the
straight line connecting each solid dot.
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Simulation of Conditional Gaussian Distributions

You can gain additional insight into the behavior of stochastic interpolation by regarding
a Brownian bridge as a Monte Carlo simulation of a conditional Gaussian distribution.

This example examines the behavior of a Brownian bridge over a single time increment.

1 Divide a single time increment of length dt into 10 subintervals:

mu    = [0.3; 0.4];

sigma = [0.2 -0.1; 0.1 -0.2];

rho   = [1 0.5; 0.5 1];

obj   = bm(mu,sigma,'Correlation',rho);

rng default; % make output reproducible

dt    = 1/250;  % 1 trading day = 1/250 years

[X,T] = simulate(obj,250,'DeltaTime',dt);

n        = 125;    % index of simulated state near middle

times    = (T(n):(dt/10):T(n + 1));

nTrials  = 25000;  % # of Trials at each time

2 In each subinterval, take 25000 independent draws from a Gaussian distribution,
conditioned on the simulated states to the left, and right:

average  = zeros(length(times),1);

variance = zeros(length(times),1);

for i = 1:length(times)

    t = times(i);

    x = interpolate(obj,t(ones(nTrials,1)),...

        X,'Times',T);

    average(i)  = mean(x(:,1));

    variance(i) = var(x(:,1));

end

3 Plot the sample mean and variance of each state variable:

Note: The following graph plots the sample statistics of the first state variable only,
but similar results hold for any state variable.

subplot(2,1,1);

hold on;

grid on;
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plot([T(n) T(n + 1)],[X(n,1) X(n + 1,1)],'.-b')

plot(times, average, 'or')

hold off;

title('Brownian Bridge without Refinement: Sample Mean')

ylabel('Mean')

limits = axis;

axis([T(n) T(n + 1) limits(3:4)]);

subplot(2,1,2)

hold on;

grid on;

plot(T(n),0,'.-b',T(n + 1),0,'.-b')

plot(times, variance, '.-r')

hold('off');

title('Brownian Bridge without Refinement: Sample Variance')

xlabel('Time (Years)')

ylabel('Variance')

limits = axis;

axis([T(n) T(n + 1) limits(3:4)]);
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The Brownian interpolation within the chosen interval, dt, illustrates the following:

• The conditional mean of each state variable lies on a straight-line segment
between the original simulated states at each endpoint.

• The conditional variance of each state variable is a quadratic function. This
function attains its maximum midway between the interval endpoints, and is zero
at each endpoint.

• The maximum variance, although dependent upon the actual model diffusion-
rate function G(t,X), is the variance of the sum of NBROWNS correlated Gaussian
variates scaled by the factor dt/4.
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The previous plot highlights interpolation without refinement, in that none of the
interpolated states take into account new information as it becomes available. If you
had performed interpolation with refinement, new interpolated states would have
been inserted into the time series and made available to subsequent interpolations
on a trial-by-trial basis. In this case, all random draws for any given interpolation
time would be identical. Also, the plot of the sample mean would exhibit greater
variability, but would still cluster around the straight-line segment between the
original simulated states at each endpoint. The plot of the sample variance, however,
would be zero for all interpolation times, exhibiting no variability.

More About

Algorithms

• The interpolate method assumes that all model parameters are piecewise-
constant, and evaluates them from the most recent observation time in Times
that precedes a specified interpolation time in T. This is consistent with the Euler
approach of Monte Carlo simulation.

• When an interpolation time falls outside the interval specified by Times, a Euler
simulation extrapolates the time series by using the nearest available observation.

• The user-defined time series Paths and corresponding observation Times must be
fully observed (no missing observations denoted by NaNs).

• The interpolate method assumes that the user-specified time series array Paths
is associated with thesde object. For example, the Times/Paths input pair is the
result of an initial course-grained simulation. However, the interpolation ignores the
initial conditions of thesde object (StartTime and StartState), allowing the user-
specified Times/Paths input series to take precedence.

• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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irr
Internal rate of return

Syntax

Return = irr(CashFlow)

[Return, AllRates] = irr(CashFlow)

Description

Return = irr(CashFlow) calculates the internal rate of return for a series of periodic
cash flows.

[Return, AllRates] = irr(CashFlow) calculates the internal rate of return and a
vector of all internal rates for a series of periodic cash flows.

Input Arguments

CashFlow

A vector containing a stream of periodic cash flows. The first entry in CashFlow is the
initial investment. If CashFlow is a matrix, irr handles each column of CashFlow as a
separate cash-flow stream.

Output Arguments

Return

An internal rate of return associated to CashFlow. If CashFlow is a matrix, then
Return is a vector whose entry j is an internal rate of return for column j in CashFlow.

AllRates

A vector containing all the internal rates of return associated with CashFlow. If
CashFlow is a matrix, then AllRates is also a matrix, with the same number of
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columns as CashFlow and one less row. Also, column j in AllRates contains all the
rates of return associated to column j in CashFlow (including complex-valued rates).

Definitions

irr uses the following conventions:

• If one or more internal rates of returns (warning if multiple) are strictly positive
rates, Return sets to the minimum.

• If there is no strictly positive rate of returns, but one or multiple (warning if multiple)
returns are nonpositive rates, Return sets to the maximum.

• If no real-valued rates exist, Return sets to NaN (no warnings).

Examples

Find the internal rate of return for a simple investment with a unique positive rate of
return. The initial investment is $100,000 and the following cash flows represent the
yearly income from the investment.

• Year 1 — $10,000
• Year 2 — $20,000
• Year 3 — $30,000
• Year 4 — $40,000
• Year 5 — $50,000

Calculate the internal rate of return on the investment:

Return = irr([-100000 10000 20000 30000 40000 50000])

This returns:

Return =

    0.1201

If the cash flow payments were monthly, then the resulting rate of return is multiplied
by 12 for the annual rate of return.
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Find the internal rate of return for multiple rates of return. The project has the following
cash flows and a market rate of 10%.

 CashFlow = [-1000 6000 -10900 5800]

Use irr with a single output argument:

Return = irr(CashFlow)

A warning appears and irr returns a 100% rate of return. The 100% rate on the project
looks attractive:

Warning: Multiple rates of return

 

> In irr at 166

Return =

    1.0000

Use irr with two output arguments:

[Return, AllRates] = irr(CashFlow)

This returns:

>> [Return, AllRates] = irr(CashFlow)

Return =

    1.0000

AllRates =

   -0.0488

    1.0000

    2.0488

The rates of return in AllRates are -4.88%, 100%, and 204.88%. Though some rates
are lower and some higher than the market rate, based on the work of Hazen, any rate
gives a consistent recommendation on the project. However, you can use a present value
analysis in these kinds of situations. To check the present value of the project, use
pvvar:

PV = pvvar(CashFlow,0.10)
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This returns:

PV =

 -196.0932

The second argument is the 10% market rate. The present value is -196.0932, negative,
so the project is undesirable.

More About
• “Performance Metrics Overview” on page 7-2

References

Brealey and Myers. Principles of Corporate Finance. McGraw-Hill Higher Education,
Chapter 5, 2003.

Hazen G. “A New Perspective on Multiple Internal Rates of Return.” The Engineering
Economist. Vol. 48-1, 2003, pp. 31–51.

See Also
effrr | mirr | nomrr | pvvar | xirr

Introduced before R2006a
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isbusday

True for dates that are business days

Syntax

Busday = isbusday(Date)

Busday = isbusday(Date,Holiday,Weekend)

Description

Busday = isbusday(Date) returns logical true (1) if Date is a business day and
logical false (0) otherwise.

Busday = isbusday(Date,Holiday,Weekend), using optional input arguments,
returns logical true (1) if Date is a business day and logical false (0) otherwise.

Examples

Determine If a Given Date Is a Business Day

Determine if Date is a business day.

Busday = isbusday('16 jun 2001')

Busday =

  logical

   0

Determine if a Date vector are business days.

Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];
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Busday = isbusday(Date)

Busday =

  3×1 logical array

   1

   1

   0

Determine if a Date vector are business days using a datetime array.

Date = ['15-feb-2001'; '16-feb-2001'; '17-feb-2001'];

Busday = isbusday(datetime(Date,'Locale','en_US'))

Busday =

  3×1 logical array

   1

   1

   0

Set June 21, 2003 (a Saturday) as a business day.

Weekend = [1 0 0 0 0 0 0];

isbusday('June 21, 2003', [], Weekend)

ans =

  logical

   1

If the second argument, Holiday, is empty ([ ]), the default Holidays vector
(generated with holidays and then associated to the NYSE calendar) is used.

• “Handle and Convert Dates” on page 2-4
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Input Arguments

Date — Date being checked
serial date number | date character vector | datetime array

Date being checked, specified as a serial date number, date character vector, or datetime
array. Date can contain multiple dates, but they must all be in the same format. Dates
are assumed to be whole date numbers or date stamps with no fractional or time values.
Data Types: double | char | datetime

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date
number | date character vector | datetime array

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date
character vectors, or datetime arrays. (Using serial date numbers improves performance.)
The holidays function supplies the default vector.

Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length
7, containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates
weekend days and the first element of this vector corresponds to Sunday.
Data Types: double

Output Arguments

Busday — Logical true if a business day
logical 0 or 1

Logical true if a business day, returned as a logical true (1) if Date is a business day and
logical false (0) otherwise.
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More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
busdate | datetime | fbusdate | holidays | lbusdate

Introduced before R2006a
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iscompatible
Structural equality

Syntax
iscomp = iscompatible(tsobj_1, tsobj_2)

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.

Description

iscomp = iscompatible(tsobj_1, tsobj_2) returns 1 if both financial time series
objects tsobj_1 and tsobj_2 have the same dates and data series names. It returns 0 if
any component is different.

iscomp = 1 indicates that the two objects contain the same number of data points and
equal number of data series. However, the values contained in the data series can be
different.

Note Data series names are case-sensitive.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
isequal

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25
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Introduced before R2006a
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isequal
Multiple object equality

Syntax
iseq = isequal(tsobj_1, tsobj_2, ...)

Arguments

tsobj_1 ... A list of financial time series objects.

Description

iseq = isequal(tsobj_1, tsobj_2, ...) returns 1 if all listed financial time
series objects have the same dates, data series names, and values contained in the data
series. It returns 0 if any of those components is different.

Note Data series names are case-sensitive.

iseq = 1 implies that each object contains the same number of dates and the same
data. Only the descriptions can differ.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
eq | iscompatible

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25
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Introduced before R2006a
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isempty
True for empty financial time series objects

Syntax
tf = isempty(fts)

Arguments

fts Financial time series object.

Description

isempty for financial times series objects is based on the MATLAB isempty function.
See isempty in the MATLAB documentation.

tf = isempty(fts) returns true (1) if fts is an empty financial time series object
and false (0) otherwise. An empty financial times series object has no elements, that is,
length(fts) = 0.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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isfield
Check whether character vector is field name

Syntax
F = isfield(tsobj, name)

Description

F = isfield(tsobj, name) returns true (1) if name is the name of a data series in
tsobj. Otherwise, isfield returns false (0).

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
fieldnames | getfield | setfield

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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issorted
Check whether dates and times are monotonically increasing

Syntax
monod = issorted(tsobj)

Arguments

tsobj Financial time series object

Description

monod = issorted(tsobj) returns 1 if the dates and times in tsobj are
monotonically increasing or 0 if they are not.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
sortfts

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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kagi

Kagi chart

Syntax

kagi(X)

Arguments

X X is a M-by-2 matrix or a table. If X is a M-by-2 matrix, the first
column contains date numbers and the second column is the asset
price. If X is a table, the first column of the table contains the dates.
The second column contains the asset price data. Dates can be a
serial date number, a date character vector, or a datetime array.

Description

kagi(X) plots asset price with respect to dates.

Examples

Create a Kagi Chart

This example shows how to generate a Kagi chart for asset X that is an M-by-2 matrix of
date numbers and asset prices.

X = [...

733299.00         41.99;...

733300.00         42.14;...

733303.00         41.93;...

733304.00         41.98];
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kagi(X)

Create a Kagi Chart Using datetime Input

This example shows how to use datetime input to generate a Kagi chart for asset X that
is an M-by-2 matrix of date numbers and asset prices.

X = [...

733299.00         41.99;...

733300.00         42.14;...

733303.00         41.93;...

733304.00         41.98;...
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733305.00         41.80;...

733306.00         42.30;...

733307.00         42.00;...

733308.00         42.40;...

733309.00         41.80;...

733310.00         41.90];

dates = datetime(X(:,1),'ConvertFrom','datenum','Locale','en_US');

data=X(:,2);

t=table(dates,data);

kagi(t);

• “Charting Financial Data” on page 2-12
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See Also
bolling | candle | datetime | highlow | linebreak | movavg | pointfig |
priceandvol | renko | volarea

Introduced in R2008a
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lagts
Lag time series object

Syntax
newfts = lagts(oldfts)

newfts = lagts(oldfts, lagperiod)

newfts = lagts(oldfts, lagperiod, padmode)

Arguments

oldfts Financial time series object
lagperiod Number of lag periods expressed in the frequency of the time series

object
padmode Data padding value

Description

lagts delays a financial time series object by a specified time step.

newfts = lagts(oldfts) delays the data series in oldfts by one time series date
entry and returns the result in the object newfts. The end is padded with zeros, by
default.

newfts = lagts(oldfts, lagperiod) shifts time series values to the right on an
increasing time scale. lagts delays the data series to happen later. lagperiod is the
number of lag periods expressed in the frequency of the time series object oldfts. For
example, if oldfts is a daily time series, lagperiod is specified in days. lagts pads
the data with zeros (default).

newfts = lagts(oldfts, lagperiod, padmode) lets you pad the data with an
arbitrary value, NaN, or Inf rather than zeros by setting padmode to the desired value.
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See Also
leadts

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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lbusdate
Last business date of month

Syntax

Date = lbusdate(Year,Month)

Date = lbusdate(Year,Month,Holiday,Weekend,outputType)

Description

Date = lbusdate(Year,Month) returns the serial date number for the last business
date of the given year and month.

Year and Month can contain multiple values. If one contains multiple values, the
other must contain the same number of values or a single value that applies to all. For
example, if Year is a 1-by-N vector of integers, then Month must be a 1-by-N vector of
integers or a single integer. Date is then a 1-by-N vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character
vectors.

Date = lbusdate(Year,Month,Holiday,Weekend,outputType) returns the serial
date number for the last business date of the given year and month using optional input
arguments. Holiday specifies nontrading days.

If neither Holiday or outputType are specified, Date is returned as a serial date
number. If Holiday is specified, but not outputType, then the type of the holiday
variable controls the type of date. If Holiday is a serial date number or date character
vector, then Date is returned as a serial date number.

Examples

Determine the Last Business Date of a Given Year and Month

Determine the Date using an input argument for Year and Month.

Date = lbusdate(2001, 5)
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datestr(Date)

Date =

      731002

ans =

31-May-2001

Determine the Date using the optional input argument for outputType.

Date = lbusdate(2001, 11,[],[],'datetime')

Date = 

  datetime

   30-Nov-2001

Indicate that Saturday is a business day by appropriately setting the Weekend
argument. May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday is
actually the last business day of the month.

Weekend = [1 0 0 0 0 0 0];

Date = datestr(lbusdate(2003, 5, [], Weekend))

Date =

31-May-2003

• “Handle and Convert Dates” on page 2-4

Input Arguments

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers
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Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit
integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers
with values 1 through 12.

Data Types: single | double

Holiday — Holidays and nontrading-day dates
non-trading day vector is determined by the routine holidays (default) | serial date
number | date character vector | datetime array

Holidays and nontrading-day dates, specified as vector.

All dates in Holiday must be the same format: either serial date numbers, or date
character vectors, or datetime arrays. (Using serial date numbers improves performance.)
The holidays function supplies the default vector.

If Holiday is a datetime array, then Date is returned as a datetime array. If
outputType is specified, then its value determines the output type of Date. This
overrides any influence of Holiday.

Data Types: double | char | datetime

Weekend — Weekend days
[1 0 0 0 0 0 1] (Saturday and Sunday form the weekend) (default) | vector of length
7, containing 0 and 1, where 1 indicates weekend days

Weekend days, specified as a vector of length 7, containing 0 and 1, where 1 indicates
weekend days and the first element of this vector corresponds to Sunday.
Data Types: double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output Date
is in serial date format if 'datenum' is specified, or datetime format if 'datetime'
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is specified. By default the output Date is in serial date format,or match the format of
Holiday, if specified.

Data Types: char

Output Arguments

Date — Date for the last business date of given year and month
serial date number | date character vector | datetime array

Date for the last business date of a given year and month, returned as a serial date
number, date character vector, or datetime array.

If neither Holiday or outputType are specified, Date is returned as a serial date
number. If Holiday is specified, but not outputType, then the type of the holiday
variable controls the type of date:

• If Holiday is a serial date number or date character vector, then Date is returned as
a serial date number

• If Holiday is a datetime array, then Date is returned as a datetime array.

.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
busdate | datetime | eomdate | fbusdate | holidays | isbusday

Introduced before R2006a
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leadts
Lead time series object

Syntax
newfts = leadts(oldfts)

newfts = leadts(oldfts, leadperiod)

newfts = leadts(oldfts, leadperiod, padmode)

Arguments

oldfts Financial time series object.
leadperiod Number of lead periods expressed in the frequency of the time

series object.
padmode Data padding value.

Description

leadts advances a financial time series object by a specified time step.

newfts = leadts(oldfts) advances the data series in oldfts by one time series
date entry and returns the result in the object newfts. The end will be padded with
zeros, by default.

newfts = leadts(oldfts, leadperiod) shifts time series values to the left on an
increasing time scale. leadts advances the data series to happen at an earlier time.
leadperiod is the number of lead periods expressed in the frequency of the time series
object oldfts. For example, if oldfts is a daily time series, leadperiod is specified in
days. leadts pads the data with zeros (default).

newfts = leadts(oldfts, leadperiod, padmode) lets you pad the data with an
arbitrary value, NaN, or Inf rather than zeros by setting padmode to the desired value.
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See Also
lagts

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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length
Get number of dates (rows)

Syntax
lenfts = length(tsobj)

Description

lenfts = length(tsobj) returns the number of dates (rows) in the financial time
series object tsobj. This is the same as issuing lenfts = size(tsobj, 1).

See Also
length | size

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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lifetableconv
Convert life table series into life tables with forced termination

Syntax
[qx,lx,dx] = lifetableconv(x0,lx0)

[qx,lx,dx] = lifetableconv(x0,y0,y0type)

Description
[qx,lx,dx] = lifetableconv(x0,lx0) converts life table with ages x0 and survival
counts lx0 into life tables with termination.

[qx,lx,dx] = lifetableconv(x0,y0,y0type) converts life table with ages x0 and
series y0, specified by the optional argument y0type, into life tables with termination.

Examples

Convert Life Table Series into Life Tables with Forced Termination

Load the life table data file.

load us_lifetable_2009

Convert life table series into life tables with forced termination.

[lx, qx, dx] = lifetableconv(x, lx);

display(lx(1:20,:))

display(qx(1:20,:))

display(dx(1:20,:))

    0.0064    0.0070    0.0057

    0.0004    0.0004    0.0004

    0.0003    0.0003    0.0002

    0.0002    0.0002    0.0002

    0.0002    0.0002    0.0001

    0.0001    0.0002    0.0001

    0.0001    0.0001    0.0001
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    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0002    0.0002    0.0002

    0.0003    0.0004    0.0002

    0.0004    0.0005    0.0002

    0.0005    0.0006    0.0003

    0.0005    0.0007    0.0003

    0.0006    0.0009    0.0004

    0.0007    0.0010    0.0004

   1.0e+05 *

    1.0000    1.0000    1.0000

    0.9936    0.9930    0.9943

    0.9932    0.9926    0.9939

    0.9930    0.9923    0.9937

    0.9927    0.9920    0.9935

    0.9926    0.9919    0.9933

    0.9924    0.9917    0.9932

    0.9923    0.9916    0.9931

    0.9922    0.9914    0.9930

    0.9921    0.9913    0.9929

    0.9920    0.9912    0.9928

    0.9919    0.9911    0.9927

    0.9918    0.9910    0.9926

    0.9917    0.9909    0.9925

    0.9915    0.9907    0.9923

    0.9912    0.9903    0.9921

    0.9908    0.9898    0.9919

    0.9904    0.9892    0.9916

    0.9899    0.9885    0.9913

    0.9892    0.9876    0.9909

  637.2266  698.8750  572.6328

   40.4063   43.9297   36.7188

   27.1875   30.0938   24.1406

   20.7656   23.0781   18.3359

   15.9141   17.2109   14.5625

   14.8672   16.3125   13.3516

   13.3672   14.7891   11.8750
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   12.1328   13.3828   10.8203

   10.8125   11.6094    9.9844

    9.4609    9.5781    9.3438

    8.6172    8.1328    9.1172

    9.2656    8.8359    9.7188

   12.5938   13.5078   11.6328

   19.1016   22.9844   15.0234

   27.6719   35.5938   19.3516

   36.6328   48.5703   24.0547

   45.0156   60.7109   28.4844

   53.1406   72.8906   32.2813

   60.8984   85.1172   35.2578

   68.3438   97.2266   37.6875

Plot the qx series and display the legend. The series qx is the conditional probability that
a person at age x will die between age x and the next age in the series.

plot(x,log(qx))

legend(series)
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Convert the Life Table dx Series After Fitting and Generating the Life Table Series

Load the life table data file.

load us_lifetable_2009

Calibrate life table from survival data with the default Heligman-Pollard parametric
model.

a = lifetablefit(x, lx)

a =
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    0.0005    0.0006    0.0004

    0.0592    0.0819    0.0192

    0.1452    0.1626    0.1048

    0.0007    0.0011    0.0006

    6.2840    6.7636    1.1274

   24.1387   24.2897   52.1149

    0.0000    0.0000    0.0000

    1.0971    1.0987    1.1098

Generate life table series from the calibrated mortality model.

qx = lifetablegen((0:120), a);

display(qx(1:20,:))

    0.0063    0.0069    0.0057

    0.0005    0.0006    0.0004

    0.0002    0.0003    0.0002

    0.0002    0.0002    0.0002

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0002    0.0002    0.0001

    0.0002    0.0002    0.0002

    0.0002    0.0003    0.0002

    0.0003    0.0004    0.0002

    0.0004    0.0005    0.0002

    0.0005    0.0006    0.0003

    0.0006    0.0008    0.0003

    0.0007    0.0009    0.0003

Convert life table series into life tables with forced termination.

[~, ~, dx] = lifetableconv((0:120), qx, 'qx');

display(dx(1:20,:))

  630.9953  686.9460  571.6087

   48.7927   55.1030   40.9755

   24.8017   26.3780   23.6150
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   17.0832   17.5879   17.0354

   13.6181   13.8189   13.6205

   11.8661   12.0077   11.6377

   10.9781   11.1573   10.4946

   10.5995   10.8605    9.9493

   10.5757   10.9396    9.8919

   10.8789   11.3612   10.2653

   11.6084   12.2508   11.0339

   12.9922   13.9271   12.1691

   15.3480   16.8834   13.6440

   18.9940   21.6791   15.4312

   24.1395   28.7662   17.5027

   30.8009   38.3209   19.8304

   38.7717   50.1481   22.3869

   47.6536   63.6898   25.1462

   56.9302   78.1258   28.0842

   66.0576   92.5245   31.1798

Plot the dx series and display the legend. The series dx is the number of people who die
out of 100,000 alive at birth between age x and the next age in the series.

plot((0:119), dx(1:end-1,:));

legend(series, 'location', 'northwest');

title('\bfLife Table Yearly Decrements');

xlabel('Age');

ylabel('Number Dying within a Given Year');
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• “Case Study for Life Tables Analysis” on page 2-50

Input Arguments

x0 — Increasing ages for raw data
vector of nonnegative integer values

Increasing ages for raw data, specified as nonnegative integer values in an N0 vector.

The vector of ages x must contain nonnegative integer values. If the input series is the
discrete survival function lx, then the starting age need only be nonnegative. Otherwise,
the starting age must be 0.
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Data Types: double

lx0 — Collection of num standardized survivor series
matrix

Collection of num standardized survivor series, specified as an N0-by-num matrix. The
input lx0 series is the number of people alive at age x, given 100,000 alive at birth.
Values of 0 or NaN in the input table lx0 are ignored.

Data Types: double

y0 — Collection of num life table series to be converted
matrix

Collection of num life table series to be converted, specified as an N0-by-num matrix. The
default y0 series is lx0.

Data Types: double

y0type — (Optional) Type of mortality series for input y0 with default 'lx'
'lx' (default) | character vector with values 'qx', 'lx', 'dx'

(Optional) Type of mortality series for input y0, specified as a character vector with one
of the following values:

• 'qx' — Input is a table of discrete hazards (qx).
• 'lx' — Input is a table of discrete survival counts (lx).
• 'dx' — Input is a table of discrete decrements (dx).

Whereas the output series have forced termination, the input series (y0) can have one of
several types of termination:

• Natural termination runs out to the last person so that lx goes to 0, qx goes to 1, and
dx goes to 0. For more information, see “Natural Termination” on page 18-989.

• Truncated termination stops at a terminal age so that lx is positive, qx is less than
1, and dx is positive. Any ages after the terminal age are NaN values. For more
information, see “Truncated Termination” on page 18-990.

Data Types: char
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Output Arguments

qx — Discrete hazard function
matrix

Discrete hazard function, returned as an N0-by-num matrix with forced termination. For
more information, see “Forced Termination” on page 18-988.

The series qx is the conditional probability that a person at age x will die between age x
and the next age in the series.

lx — Discrete survival function
matrix

Discrete survival function, returned as an N0-by-num matrix with forced termination. For
more information, see “Forced Termination” on page 18-988.

The series lx is the number of people alive at age x, given 100,000 alive at birth.

dx — Discrete decrements function
matrix

Discrete decrements function, returned as an N0-by-num matrix with forced termination.
For more information, see “Forced Termination” on page 18-988.

The series dx is the number of people who die out of 100,000 alive at birth, between age x
and the next age in the series.

More About

Forced Termination

Most modern life tables have “forced” termination. Forced termination means that the
last row of the life table applies for all persons with ages on or after the last age in the
life table. This sample illustrates forced termination.
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In this case, the last row of the life table applies for all persons aged 100 or older.
Specifically, qx probabilities are 1qx for ages less than 100 and, technically, ∞qx for age
100.

Forced termination has terminal age values that apply to all ages after the terminal age
so that lx is positive, qx is 1, and dx is positive. Ages after the terminal age are NaN
values, although lx and dx can be 0 and qx can be 1 for input series. Forced termination
is triggered by a naturally terminating series, the last age in a truncated series, or the
first NaN value in a series.

Natural Termination

Before 1970, life tables were often published with data that included all ages for which
persons associated with a given series were still alive. Tables in this form have "natural"
termination. In natural termination, the last row of the life table for each series counts
the deaths or probabilities of deaths of the last remaining person at the corresponding
age. Tables in this form can be problematic due to the granularity of the data and the fact
that groups of series can terminate at distinct ages. Natural termination is illustrated in
the following sample of the last few years of a life table.
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This form for life tables poses a number of issues that go beyond the obvious statistical
issues. First, the lx table on the left terminates at ages 108, 109, 109, and 113 for the four
series in the table. Technically, the numbers after these ages are 0, but can also be NaN
values because no person is alive after these terminating ages. Second, the probabilities
qx on the right terminate with fluctuating probabilities that go from 0 to 1 in some cases.
In this case, however, all probabilities are 1qx probabilities (unlike the forced termination
probabilities). You can argue that the probabilities after the ages of termination can be
1 (anyone alive at this age is expected to die in the next year), 0 (the age lies outside the
support of the probability distribution), or NaN values.

Truncated Termination

Truncated termination occurs with truncation of life tables at an arbitrary age. For
example, from 1970–1990, United States life tables truncated at age 85. This format
is problematic because life table probabilities must either terminate with probability 1
(forced termination) or discard data that exceeds the terminating age. This sample of the
last few years of a life table illustrates truncated termination. The raw data for this table
is the lx series. The qx series is derived from this series.
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This life table format poses problems for termination because, for example, over 27%
of the population for the fourth lx series is still alive at age 85. To claim that the
probability of dying for all ages after age 85 is 100% might be true but is uninformative.
Notwithstanding the statistical issues, however, tables in this form are completed by
forced termination.
• “About Life Tables” on page 2-47

References

Arias, E. “United States Life Tables.” National Vital Statistics Reports, U.S. Department
of Health and Human Services. Vol. 62, No. 7, 2009.

See Also
lifetablefit | lifetablegen

Introduced in R2015a
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lifetablefit

Calibrate life table from survival data with parametric models

Syntax

[a,elx] = lifetablefit(x,lx)

[a,elx] = lifetablefit( ___ ,lifemodel,objtype,interpmethod,a0)

Description

[a,elx] = lifetablefit(x,lx) calibrates a life table, x, from survival data, lx,
using parametric models.

[a,elx] = lifetablefit( ___ ,lifemodel,objtype,interpmethod,a0)

calibrates a life table, x, from survival data, lx, using parametric models using optional
arguments for lifemodel, objtype, interpmethod, and a0.

Examples

Calibrate Life Table from Survival Data Using a Heligman-Pollard Parametric Model

Load the life table data file.

load us_lifetable_2009

Calibrate the life table from survival data using the default heligman-pollard
parametric model.

[a,elx] = lifetablefit(x,lx);

display(a)

display(elx(1:20,:))

a =
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    0.0005    0.0006    0.0004

    0.0592    0.0819    0.0192

    0.1452    0.1626    0.1048

    0.0007    0.0011    0.0006

    6.2840    6.7636    1.1274

   24.1387   24.2897   52.1149

    0.0000    0.0000    0.0000

    1.0971    1.0987    1.1098

   1.0e+05 *

    1.0000    1.0000    1.0000

    0.9937    0.9931    0.9943

    0.9932    0.9926    0.9939

    0.9930    0.9923    0.9936

    0.9928    0.9921    0.9935

    0.9926    0.9920    0.9933

    0.9925    0.9919    0.9932

    0.9924    0.9918    0.9931

    0.9923    0.9917    0.9930

    0.9922    0.9916    0.9929

    0.9921    0.9914    0.9928

    0.9920    0.9913    0.9927

    0.9919    0.9912    0.9926

    0.9917    0.9910    0.9924

    0.9915    0.9908    0.9923

    0.9913    0.9905    0.9921

    0.9910    0.9901    0.9919

    0.9906    0.9896    0.9917

    0.9901    0.9890    0.9914

    0.9895    0.9882    0.9912

Plot the qx series and display the legend. The series qx is the conditional probability that
a person at age x will die between age x and the next age in the series

plot(x,log(qx))

legend(series)
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• “Case Study for Life Tables Analysis” on page 2-50

Input Arguments

x — Increasing ages for raw data
vector of nonnegative integers

Increasing ages for raw data, specified as a N vector for nonnegative integers.

Data Types: double

lx — Collection of num discrete survival counts
matrix
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Collection of num discrete survival counts, specified as an N-by-num matrix. The input lx
series is the number of people alive at age x, given 100,000 alive at birth. Values of 0 or
NaN in the input table lx are ignored.

Data Types: double

lifemodel — (Optional) Parametric mortality model type
'heligman-pollard’ (default) | character vector with values 'heligman-pollard',
'heligman-pollard-2''heligman-pollard-3', 'gompertz', 'makeham', 'siler'

(Optional) Parametric mortality model type, specified as a character vector with one of
the following values:

• 'heligman-pollard' — Eight-parameter Heligman-Pollard model (version 1),
specified in terms of the discrete hazard function:

q x

q x
A D E

x

F
GHx B XC( )

( )
exp( (log ) )( )

1

2

-

= + - +
+

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-2' — Eight-parameter Heligman-Pollard model (version 2),

specified in terms of the discrete hazard function:

q x

q x
A D E

x

F

GH

GH

x B
X

X
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( )
exp( (log ) )( )

1 1

2

-

= + - +

+

+

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-3' — Eight-parameter Heligman-Pollard model (version 3),

specified in terms of the discrete hazard function:

q x A D E
x

F
GHx B XC

( ) exp( (log ) )( )
= + - +

+ 2

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'gompertz' — Two-parameter Gompertz model, specified in terms of the continuous

hazard function:

h(x) = A exp(Bx)

for ages x ≥ 0, with parameters A, B ≥ 0.
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• 'makeham' — Three-parameter Gompertz-Makeham model, specified in terms of the
continuous hazard function:

h(x) = A exp(Bx) + C

for ages x ≥ 0, with parametersA, B, C ≥ 0.
• 'siler' — Five-parameter Siler model, specified in terms of the continuous hazard

function:

h(x) = A exp(Bx) + C + D exp(-Ex)

for ages x ≥ 0, with parameters A, B, C, D, E ≥ 0.

Data Types: char

objtype — (Optional) Objective for nonlinear least-squares estimation
'ratio’ (default) | character vector with values 'ratio' 'logratio'

(Optional) Objective for nonlinear least-squares estimation, specified as a character
vector with the following values:

•
'ratio' — Given raw data qx and model estimates q̂

x  for x  = 1, ... , N, the first
objective (which is the preferred objective) has the form

F = -
Ê

Ë
Á

ˆ

¯
˜

=
Â 1

1

2

q̂

q

x

xx

N

•
'logratio' — Given raw data qx and model estimates q̂

x  for x  = 1, ... , N, the
second objective has the form

F = -( )
=

Â log( � ) log( )q qx x
x

N

1

2

Data Types: char

interpmethod — (Optional) Interpolation method to use for abridged life table inputs
'cubic’ (default) | character vector with values 'cubic', 'linear', 'none'

(Optional) Interpolation method to use for abridged life table inputs, specified as a
character vector with the following values:
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• 'cubic' — Cubic interpolation that uses 'pchip’ method in interp1.
• 'linear' — Linear interpolation.
• 'none' — No interpolation.

Note: If the ages in x are not consecutive years and interpolation is set to 'none', then
the estimates for the parameters are suitable only for the age vector x.

If you use the parameter estimates to compute life table values for arbitrary years,
interpolate using the default 'cubic' method.

Interpolation with abridged life tables forms internal interpolated full life tables, which
usually improves model fits.

Data Types: char

a0 — (Optional) Initial parameter estimate to be applied to all series
vector

(Optional) Initial parameter estimate to be applied to all series, specified as a numparam
vector. This vector must conform to the number of parameters in the model specified
using the lifemodel argument.

Data Types: double

Output Arguments

a — Parameter estimates for each num series
matrix

Parameter estimates for each num series, returned as a numparam-by-num matrix.

elx — Estimated collection of num standardized survivor series
matrix

Estimated collection of num standardized survivor series, returned as an N-by-num
matrix. The elx output series is the number of people alive at age x, given 100,000 alive
at birth. Values of 0 or NaN in the input table lx are ignored.
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More About
• “About Life Tables” on page 2-47
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lifetablegen

Generate life table series from calibrated mortality model

Syntax

[qx,lx,dx] = lifetablegen(x,a)

[qx,lx,dx] = lifetablegen(x,a,lifemodel)

Description

[qx,lx,dx] = lifetablegen(x,a) generates a life table series from a calibrated
mortality model.

[qx,lx,dx] = lifetablegen(x,a,lifemodel) generates a life table series from a
calibrated mortality model using the optional argument for lifemodel.

Examples

Generate Life Table Series from a Calibrated Mortality Model for Heligman-Pollard

Load the life table data file.

load us_lifetable_2009

Calibrate the life table from survival data using the default heligman-pollard
parametric model.

a = lifetablefit(x, lx)

a =

    0.0005    0.0006    0.0004

    0.0592    0.0819    0.0192

    0.1452    0.1626    0.1048
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    0.0007    0.0011    0.0006

    6.2840    6.7636    1.1274

   24.1387   24.2897   52.1149

    0.0000    0.0000    0.0000

    1.0971    1.0987    1.1098

Generate a life table series from the calibrated mortality model.

qx = lifetablegen(x,a);

display(qx(1:20,:))

    0.0063    0.0069    0.0057

    0.0005    0.0006    0.0004

    0.0002    0.0003    0.0002

    0.0002    0.0002    0.0002

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0002    0.0002    0.0001

    0.0002    0.0002    0.0002

    0.0002    0.0003    0.0002

    0.0003    0.0004    0.0002

    0.0004    0.0005    0.0002

    0.0005    0.0006    0.0003

    0.0006    0.0008    0.0003

    0.0007    0.0009    0.0003

Plot the qx series and display the legend. The series qx is the conditional probability that
a person at age x will die between age x and the next age in the series.

plot(x,log(qx))

legend(series)
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Prepare Life Table Data Using the qx Series and Generate the qx Life Table

Load the life table data file.

load us_lifetable_2009

Convert the life table series into life tables with forced termination.

[~, lx] = lifetableconv(x, qx, 'qx');

Calibrate the life table from survival data using the default heligman-pollard
parametric model.

a = lifetablefit(x, lx)
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a =

    0.0005    0.0006    0.0004

    0.0592    0.0819    0.0192

    0.1452    0.1626    0.1048

    0.0007    0.0011    0.0007

    6.2854    6.7638    1.1032

   24.1384   24.2895   53.2068

    0.0000    0.0000    0.0000

    1.0971    1.0987    1.1100

Generate a life table series from the calibrated mortality model.

qx = lifetablegen((0:100), a)

qx =

    0.0063    0.0069    0.0057

    0.0005    0.0006    0.0004

    0.0002    0.0003    0.0002

    0.0002    0.0002    0.0002

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0001    0.0001    0.0001

    0.0002    0.0002    0.0001

    0.0002    0.0002    0.0002

    0.0002    0.0003    0.0002

    0.0003    0.0004    0.0002

    0.0004    0.0005    0.0002

    0.0005    0.0006    0.0003

    0.0006    0.0008    0.0003

    0.0007    0.0009    0.0003

    0.0008    0.0011    0.0003

    0.0008    0.0012    0.0004

    0.0009    0.0013    0.0004

    0.0009    0.0014    0.0005

    0.0010    0.0014    0.0005
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    0.0010    0.0015    0.0005

    0.0010    0.0015    0.0006

    0.0010    0.0015    0.0006

    0.0010    0.0015    0.0007

    0.0010    0.0014    0.0007

    0.0011    0.0014    0.0007

    0.0011    0.0014    0.0008

    0.0011    0.0014    0.0008

    0.0011    0.0014    0.0009

    0.0011    0.0014    0.0009

    0.0012    0.0015    0.0010

    0.0012    0.0015    0.0011

    0.0013    0.0016    0.0011

    0.0014    0.0017    0.0012

    0.0015    0.0018    0.0013

    0.0016    0.0019    0.0014

    0.0017    0.0020    0.0015

    0.0018    0.0022    0.0016

    0.0020    0.0023    0.0017

    0.0021    0.0025    0.0018

    0.0023    0.0028    0.0019

    0.0025    0.0030    0.0021

    0.0028    0.0033    0.0022

    0.0030    0.0036    0.0024

    0.0033    0.0039    0.0026

    0.0036    0.0043    0.0028

    0.0040    0.0047    0.0030

    0.0044    0.0052    0.0033

    0.0048    0.0057    0.0036

    0.0052    0.0062    0.0039

    0.0057    0.0069    0.0042

    0.0063    0.0075    0.0046

    0.0069    0.0083    0.0050

    0.0076    0.0091    0.0055

    0.0083    0.0099    0.0061

    0.0091    0.0109    0.0066

    0.0100    0.0120    0.0073

    0.0109    0.0131    0.0080

    0.0120    0.0144    0.0088

    0.0131    0.0158    0.0097

    0.0144    0.0173    0.0107

    0.0157    0.0190    0.0118

    0.0173    0.0209    0.0130

    0.0189    0.0229    0.0143
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    0.0207    0.0251    0.0158

    0.0227    0.0275    0.0174

    0.0248    0.0301    0.0192

    0.0271    0.0330    0.0212

    0.0297    0.0361    0.0234

    0.0325    0.0395    0.0259

    0.0355    0.0433    0.0286

    0.0389    0.0473    0.0316

    0.0425    0.0518    0.0348

    0.0464    0.0566    0.0385

    0.0507    0.0618    0.0425

    0.0553    0.0675    0.0468

    0.0604    0.0737    0.0517

    0.0659    0.0804    0.0570

    0.0718    0.0876    0.0628

    0.0782    0.0954    0.0692

    0.0852    0.1039    0.0761

    0.0927    0.1130    0.0838

    0.1008    0.1227    0.0921

    0.1095    0.1332    0.1011

    0.1189    0.1445    0.1110

    0.1289    0.1565    0.1216

    0.1397    0.1693    0.1332

    0.1512    0.1830    0.1457

    0.1635    0.1974    0.1591

    0.1766    0.2128    0.1735

    0.1905    0.2290    0.1890

    0.2052    0.2460    0.2054

    0.2207    0.2639    0.2230

    0.2371    0.2825    0.2415

    0.2542    0.3020    0.2612

    1.0000    1.0000    1.0000

Plot the qx series and display the legend. The series qx is the conditional probability that
a person at age x will die between age x and the next age in the series.

plot((0:100), log(qx));

legend(series, 'location', 'southeast');

title('Conditional Probability of Dying within One Year of Current Age');

xlabel('Age');

ylabel('Log Probability');
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• “Case Study for Life Tables Analysis” on page 2-50

Input Arguments

x — Increasing ages for raw data
vector of nonnegative integers

Increasing ages for raw data, specified as a N vector of nonnegative integer values. The
ages must start at 0 (birth).

Data Types: double
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a — Model parameters for num models
matrix

Model parameters for num models, specified as a numparam-by-num matrix, where the
number of parameters (numparam) depends on the model specified using the lifemodel
argument.
Data Types: double

lifemodel — (Optional) Parametric mortality model type
'heligman-pollard’ (default) | character vector with values 'heligman-pollard',
'heligman-pollard-2''heligman-pollard-3', 'gompertz', 'makeham', 'siler'

(Optional) Parametric mortality model type, specified as a character vector with one of
the following values:

• 'heligman-pollard' — Eight-parameter Heligman-Pollard model (version 1),
specified in terms of the discrete hazard function:

q x

q x
A D E

x

F
GHx B XC( )

( )
exp( (log ) )( )

1

2

-

= + - +
+

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-2' — Eight-parameter Heligman-Pollard model (version 2),

specified in terms of the discrete hazard function:

q x

q x
A D E

x

F

GH

GH

x B
X

X

C( )

( )
exp( (log ) )( )

1 1

2

-

= + - +

+

+

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'heligman-pollard-3' — Eight-parameter Heligman-Pollard model (version 3),

specified in terms of the discrete hazard function:

q x A D E
x

F
GHx B XC

( ) exp( (log ) )( )
= + - +

+ 2

for ages x ≥ 0, with parameters A, B, C, D, E, F, G, H ≥ 0.
• 'gompertz' — Two-parameter Gompertz model, specified in terms of the continuous

hazard function:
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h(x) = A exp(Bx)

for ages x ≥ 0, with parameters A, B ≥ 0.
• 'makeham' — Three-parameter Gompertz-Makeham model, specified in terms of the

continuous hazard function:

h(x) = A exp(Bx) + C

for ages x ≥ 0, with parametersA, B, C ≥ 0.
• 'siler' — Five-parameter Siler model, specified in terms of the continuous hazard

function:

h(x) = A exp(Bx) + C + D exp(-Ex)

for ages x ≥ 0, with parameters A, B, C, D, E ≥ 0.

Data Types: char

Output Arguments

qx — Conditional probabilities of dying for N ages and num series
matrix

Conditional probabilities of dying for N ages and num series, returned as an N-by-num
matrix. The series qx is the conditional probability that a person at age x will die
between age x and the next age in the series. For the last age, qx represents probabilities
or counts for all ages after the last age.

The last row of the N-by-num output for qx is the values for all ages on or after the last
age in x (due to “Forced Termination” on page 18-1008). Therefore, the last row of qx
contains 1 (100% probability of dying on or after the last age).

lx — Survival counts for N ages and num series
matrix

Survival counts for N ages and num series, returned as an N-by-num matrix. The series lx
is the number of people alive at age x, given 100,000 alive at birth.

dx — Decrement counts for N ages and num series
matrix

Decrement counts for N ages and num series, returned as an N-by-num matrix. The series
dx is the number of people out of 100,000 alive at birth who die between age x and the
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next age in the series. For the last age, dx represent probabilities or counts for all ages
after the last age.

The last row of the N-by-num output for dx are values for all ages on or after the last
age in x (due to “Forced Termination” on page 18-1008). Therefore, the last row of dx
contains the remaining count of 100,000 people alive at birth who have not died by the
last age.

More About

Forced Termination

Most modern life tables have “forced” termination. Forced termination means that the
last row of the life table applies for all persons with ages on or after the last age in the
life table. This sample illustrates forced termination.

In this case, the last row of the life table applies for all persons aged 100 or older.
Specifically, qx probabilities are 1qx for ages less than 100 and, technically, ∞qx for age
100.

Forced termination has terminal age values that apply to all ages after the terminal age
so that lx is positive, qx is 1, and dx is positive. Ages after the terminal age are NaN
values, although lx and dx can be 0 and qx can be 1 for input series. Forced termination
is triggered by a naturally terminating series, the last age in a truncated series, or the
first NaN value in a series.
• “About Life Tables” on page 2-47
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linebreak

Line break chart

Syntax

linebreak(X)

Arguments

X X is a M -by-2 matrix or table. If X is a M -by-2 matrix, the first
column contains date numbers and the second column is the asset
price. If X is a table, the first column of the table contains the dates.
The second column contains the asset price data. Dates can be
either a serial date number, a date character vector, or a datetime
array.

Description

linebreak(X) plots asset price with respect to dates.

Examples

Create a Line Break Chart

This example shows how to generate a line break chart for asset X that is an M-by-2
matrix of date numbers and asset prices.

X = [...

733299.00         41.99;...

733300.00         42.14;...

733303.00         41.93;...
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733304.00         41.98;...

733305.00         41.75;...

733306.00         41.61;...

733307.00         42.29;...

733310.00         42.19;...

733311.00         41.82;...

733312.00         41.93;...

733313.00         41.81;...

733314.00         41.37;...

733317.00         41.17;...

733318.00         42.02]

linebreak(X)

X =

   1.0e+05 *

    7.3330    0.0004

    7.3330    0.0004

    7.3330    0.0004

    7.3330    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3331    0.0004

    7.3332    0.0004

    7.3332    0.0004
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Create a Line Break Chart Using datetime Inputs

This example shows how to use datetime input to generate a line break chart for asset X
that is an M-by-2 matrix of date numbers and asset prices.

X = [...

733299.00         41.99;...

733300.00         42.14;...

733303.00         41.93;...

733304.00         41.98;...

733305.00         41.75;...

733306.00         41.61;...

733307.00         42.29;...
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733310.00         42.19;...

733311.00         41.82;...

733312.00         41.93;...

733313.00         41.81;...

733314.00         41.37;...

733317.00         41.17;...

733318.00         42.02];

dates = datetime(X(:,1),'ConvertFrom','datenum','Locale','en_US');

data = X(:,2);

t=table(dates,data);

linebreak(t)

• “Charting Financial Data” on page 2-12
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See Also
bolling | candle | datetime | highlow | kagi | movavg | pointfig |
priceandvol | renko | volarea

Introduced in R2008a
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llow
Lowest low

Syntax

llv = llow(data)

llv = llow(data, nperiods, dim)

llvts = llow(tsobj, nperiods)

llvts = llow(tsobj, nperiods, 'ParameterName', ParameterValue, ...)

Arguments

data Data series matrix.
nperiods (Optional) Number of periods. Default = 14.
dim Dimension.
tsobj Financial time series object.
'ParameterName' The valid parameter name is:

• LowName: low prices series name
ParameterValue The parameter value is a character vector that represents

the valid parameter name.

Description

llv = llow(data) generates a vector of lowest low values for the past 14 periods from
the matrix data.

llv = llow(data, nperiods, dim) generates a vector of lowest low values for
the past nperiods periods. dim indicates the direction in which the lowest low is to be
searched. If you input [] for nperiods, the default is 14.
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llvts = llow(tsobj, nperiods) generates a vector of lowest low values from
tsobj, a financial time series object. tsobj must include at least the series Low. The
output llvts is a financial time series object with the same dates as tsobj and data
series named LowestLow. If nperiods is specified, llow generates a financial time
series object of lowest low values for the past nperiods periods.

llvts = llow(tsobj, nperiods, 'ParameterName', ParameterValue, ...)

specifies the name for the required data series when it is different from the default name.
The parameter value is a character vector that represents the valid parameter name.

Examples

Compute the Lowest Low Price

This example shows how to compute the lowest low price for Disney stock and plot the
results.

load disney.mat

dis_LLow = llow(dis);

plot(dis_LLow)

title('Lowest Low for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
hhigh

Introduced before R2006a
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log
Natural logarithm

Syntax
newfts = log(tsobj)

Description

newfts = log(tsobj) calculates the natural logarithm (log base e) of the data series
in a financial time series object tsobj. It returns another time series object newfts
containing the natural logarithms.

See Also
exp | log10 | log2

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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log10
Common logarithm

Syntax
newfts = log10(tsobj)

Description

newfts = log10(tsobj) calculates the common logarithm (base 10) of all the data
in the data series of the financial time series object tsobj and returns the result in the
object newfts.

See Also
exp | log | log2

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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log2
Base 2 logarithm

Syntax
newfts = log2(tsobj)

Description

newfts = log2(tsobj) calculates the base 2 logarithm of the data series in a financial
time series object tsobj. It returns another time series object newfts containing the
logarithms.

See Also
exp | log | log10

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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lpm
Compute sample lower partial moments of data

Syntax
lpm(Data)

lpm(Data, MAR)

lpm(Data, MAR, Order)

Moment = lpm(Data, MAR, Order)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES observations
of NUMSERIES asset returns.

MAR (Optional) Scalar minimum acceptable return (default MAR = 0).
This is a cutoff level of return such that all returns above MAR
contribute nothing to the lower partial moment.

Order (Optional) Either a scalar or a NUMORDERS vector of nonnegative
integer moment orders. If no order specified, default Order = 0,
which is the shortfall probability. Although this function works for
noninteger orders and, in some cases, for negative orders, this falls
outside customary usage.

Description

Given NUMSERIES assets with NUMSAMPLES returns in a NUMSAMPLES-by-NUMSERIES
matrix Data, a scalar minimum acceptable return MAR, and one or more nonnegative
moment orders in a NUMORDERS vector Order, lpm computes lower partial moments
relative to MAR for each asset in a NUMORDERS x NUMSERIES matrix Moment.

The output Moment is a NUMORDERS x NUMSERIES matrix of lower partial moments
with NUMORDERS Orders and NUMSERIES series, that is, each row contains lower partial
moments for a given order.
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Note: To compute upper partial moments, reverse the signs of both Data and MAR (do not
reverse the sign of the output). This function computes sample lower partial moments
from data. To compute expected lower partial moments for multivariate normal asset
returns with a specified mean and covariance, use elpm. With lpm, you can compute
various investment ratios such as Omega ratio, Sortino ratio, and Upside Potential ratio,
where:

• Omega = lpm(-Data, -MAR, 1) / lpm(Data, MAR, 1)

• Sortino = (mean(Data) - MAR) / sqrt(lpm(Data, MAR, 2))

• Upside = lpm(-Data, -MAR, 1) / sqrt(lpm(Data, MAR, 2))

Examples

See “Sample Lower Partial Moments” on page 7-15.

More About
• “Performance Metrics Overview” on page 7-2

References

Vijay S. Bawa. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice."
Journal of Financial and Quantitative Analysis. Vol. 13, No. 2, June 1978, pp. 255–271.

W. V. Harlow. "Asset Allocation in a Downside-Risk Framework." Financial Analysts
Journal. Vol. 47, No. 5, September/October 1991, pp. 28–40.

W. V. Harlow and K. S. Rao. "Asset Pricing in a Generalized Mean-Lower Partial
Moment Framework: Theory and Evidence." Journal of Financial and Quantitative
Analysis. Vol. 24, No. 3, September 1989, pp. 285–311.

Frank A. Sortino and Robert van der Meer. "Downside Risk." Journal of Portfolio
Management. Vol. 17, No. 5, Spring 1991, pp. 27–31.

See Also
elpm
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Introduced in R2006b
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lweekdate

Date of last occurrence of weekday in month

Syntax

LastDate = lweekdate(Weekday,Year,Month)

LastDate = lweekdate(Weekday,Year,Month,NextDay,outputType)

Description

LastDate = lweekdate(Weekday,Year,Month) returns the date number for the last
occurrence of Weekday in the given year and month.

Any input can contain multiple values, but if so, all other inputs must contain the same
number of values or a single value that applies to all. For example, if Year is a 1-by-n
vector of integers, thenMonth must be a 1-by-n vector of integers or a single integer.
LastDate is then a 1-by-n vector of date numbers.

LastDate = lweekdate(Weekday,Year,Month,NextDay,outputType) returns the
date of last occurrence of weekday in month using the optional arguments for NextDay
and outputType.

The type of the output for LastDate depends on the input outputType. If this variable
is 'datenum', LastDate is a serial date number. If outputType is 'datetime', then
LastDate is a datetime array. By default, outputType is set to 'datenum'.

Use the function datestr to convert serial date numbers to formatted date character
vectors.

Examples

Determine the Date of Last Occurrence of Weekday in a Month

Determine the last Monday in June 2001.
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LastDate = lweekdate(2, 2001, 6); datestr(LastDate)

ans =

25-Jun-2001

Determine the last Monday in a week that also contains a Friday in June 2001 returned
as a datetime array.

LastDate = lweekdate(2, 2001, 6,[],'datetime')

LastDate = 

  datetime

   25-Jun-2001

Determine the last Monday in a week that also contains a Friday in June 2001:

LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)

ans =

25-Jun-2001

Determine the last Monday in May for 2001, 2002, and 2003:

Year = [2001:2003];

LastDate = lweekdate(2, Year, 5);

datestr(LastDate)

ans =

28-May-2001

27-May-2002

26-May-2003

• “Handle and Convert Dates” on page 2-4
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Input Arguments

Weekday — Weekday whose date you seek
integer with value 1 through 7 | vector of integers with values 1 through 7

Weekday whose date you seek, specified as an integer or a vector of integers from 1
through 7.

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Data Types: single | double

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit
integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers
with values 1 through 12.

Data Types: single | double

NextDay — Weekday that must occur after Weekday in same week
0 = ignore (default) | integer with value 0 through 7 | vector of integers with values 0
through 7

Weekday that must occur after Weekday in same week, specified as an integer or a vector
of integers from 0 through 7, where 0 = ignore (default) and 1 through 7 are the same as
for Weekday.
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Data Types: single | double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output LastDate
is in serial date format if 'datenum' is specified, or datetime format if 'datetime' is
specified. By default the output LastDate is in serial date format.

Data Types: char

Output Arguments

LastDate — Date for last occurrence of Weekday in given year and month
serial date number | date character vector

Date for last occurrence of Weekday in given year and month, returned as a serial date
number or date character vector.

The type of the output for LastDate depends on the optional input argument
outputType. If this variable is 'datenum', LastDate is a serial date number.
If outputType is 'datetime', then LastDate is a datetime array. By default,
outputType is set to 'datenum'.

See Also
datetime | eomdate | lbusdate | nweekdate

Introduced before R2006a
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m2xdate
MATLAB date to Excel serial date number

Syntax

DateNum = m2xdate(MATLABDateNumber,Convention)

Description

DateNum = m2xdate(MATLABDateNumber,Convention) converts MATLAB serial
date numbers, date character vectors, or datetime arrays to Excel serial date numbers.
MATLAB date numbers start with 1 = January 1, 0000 A.D., hence there is a difference
of 693960 relative to the 1900 date system, or 695422 relative to the 1904 date system.
This function is useful with Spreadsheet Link™ software.

Examples

Convert MATLAB Serial Date Numbers Using 1900 Date System

This example shows how to convert MATLAB serial date numbers using the 1900 date
system. Given MATLAB date numbers for Christmas 2001 through 2004, convert them to
Excel date numbers in the 1900 system.

DateNum = datenum(2001:2004, 12, 25);

ExDate = m2xdate(DateNum)

ExDate =

       37250       37615       37980       38346

Convert MATLAB Serial Date Numbers Using 1900 Date System With a datetime Array

This example shows how to convert MATLAB® date numbers using a datetime array
with the 1900 date system. Given MATLAB date numbers for Christmas 2001 through
2004, convert them to Excel date numbers in the 1904 system.
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DateNum = datetime(2001:2004, 12, 25,'Locale','en_US');

ExDate = m2xdate(DateNum)

ExDate =

       37250       37615       37980       38346

Convert MATLAB Serial Date Numbers Using 1904 Date System

This example shows how to convert MATLAB serial date numbers using the 1904 date
system. Given MATLAB date numbers for Christmas 2001 through 2004, convert them to
Excel date numbers in the 1904 system.

DateNum = datenum(2001:2004, 12, 25);

ExDate = m2xdate(DateNum, 1)

ExDate =

       35788       36153       36518       36884

• “Handle and Convert Dates” on page 2-4

Input Arguments

MATLABDateNumber — MATLAB dates
serial date number | date character vector | datetime array

MATLAB dates, specified as a scalar or vector of MATLAB serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Convention — Flag for Excel date system
0 (Excel 1900 date system is in effect) (default) | numeric with value 0 or 1

Flag for Excel date system, specified as a scalar or vector as a numeric with a value 0 or
1.

When Convention = 0 (default), the Excel 1900 date system is in effect. When
Convention = 1, the Excel 1904 date system in used.
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In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1,
1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software, the year 1900 is considered a leap year.
As a result, all DATEVALUE's reported by Excel software between Jan. 1, 1900 and Feb.
28, 1900 (inclusive) differs from the values reported by 1. For example:

• In Excel software, Jan. 1, 1900 = 1
• In MATLAB, Jan. 1, 1900 – 693960 (for 1900 date system) = 2

datenum('Jan 1, 1900') - 693960

ans =

     2

Data Types: logical

Output Arguments

DateNum — Excel serial date number
array of serial date numbers

Excel serial date number, returned as an array of serial date numbers in Excel serial
date number form.

See Also
datenum | datestr | datetime | x2mdate

Introduced before R2006a
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macd

Moving Average Convergence/Divergence (MACD)

Syntax

[macdvec, nineperma] = macd(data)

[macdvec, nineperma] = macd(data, dim)

macdts = macd(tsobj, series_name)

Arguments

data Data matrix
dim Dimension. Default = 1 (column orientation).
tsobj Financial time series object
series_name Data series name

Description

[macdvec, nineperma] = macd(data) calculates the Moving Average Convergence/
Divergence (MACD) line, macdvec, from the data matrix, data, and the nine-period
exponential moving average, nineperma, from the MACD line.

When the two lines are plotted, they can give you an indication of whether to buy or sell
a stock, when an overbought or oversold condition is occurring, and when the end of a
trend might occur.

The MACD is calculated by subtracting the 26-period (7.5%) exponential moving average
from the 12-period (15%) moving average. The 9-day (20%) exponential moving average
of the MACD line is used as the signal line. For example, when the MACD and the 20%
moving average line have just crossed and the MACD line falls below the other line, it is
time to sell.
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[macdvec, nineperma] = macd(data, dim) lets you specify the orientation
direction for the input. If the input data is a matrix, you must indicate whether each row
is a set of observations (dim = 2) or each column is a set of observations (dim = 1, the
default).

macdts = macd(tsobj, series_name) calculates the MACD line from the financial
time series tsobj, and the nine-period exponential moving average from the MACD
line. The MACD is calculated for the closing price series in tsobj, presumed to have
been named Close. The result is stored in the financial time series object macdts. The
macdts object has the same dates as the input object tsobj and contains only two series,
named MACDLine and NinePerMA. The first series contains the values representing the
MACD line and the second is the nine-period exponential moving average of the MACD
line.

Examples

Compute the Moving Average Convergence/Divergence (MACD)

This example shows how to compute the MACD for Disney stock and plot the results.

load disney.mat

dis_CloseMACD = macd(dis);

dis_OpenMACD = macd(dis, 'OPEN');

plot(dis_CloseMACD);

plot(dis_OpenMACD);

title('MACD for Disney')

18-1032



 macd

• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis From A To Z. Second Edition. McGraw-Hill, 1995,
pp. 166–168.
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See Also
adline | willad

Introduced before R2006a
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max
Maximum value

Syntax
tsmax = max(tsobj)

Description

tsmax = max(tsobj) finds the maximum value in each data series in the financial
time series object (tsobj) and returns it in a structure tsmax. The tsmax structure
contains field name(s) identical to the data series name(s).

Note tsmax returns only the values and does not return the dates associated with the
values. The maximum values are not necessarily from the same date.

See Also
min

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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maxdrawdown

Compute maximum drawdown for one or more price series

Syntax

MaxDD = maxdrawdown(Data)

MaxDD = maxdrawdown(Data, Format)

[MaxDD, MaxDDIndex] = maxdrawdown(Data, Format) 

Arguments

Data T-by-N matrix with T samples of N total return price series (also
known as total equity).

Format (Optional) MATLAB character vector indicating format of data.
Possible values are:
'return' (default) — Maximum drawdown in terms of maximum
percentage drop from a peak.
'arithmetic' — Maximum drawdown of an arithmetic Brownian
motion with drift (differences of data from peak to trough) using the
equation

dX t dt dW t( ) = + ( )m s .

'geometric' — Maximum drawdown of a geometric Brownian
motion with drift (differences of log of data from peak to trough)
using the equation

dS t S t dt S t dW t( ) = ( ) + ( ) ( )m s
0 0
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Description

MaxDD = maxdrawdown(Data, Format) computes maximum drawdown for each
series in an N-vector MaxDD and identifies start and end indexes of maximum drawdown
periods for each series in a 2-by-N matrix MaxDDIndex.

To summarize the outputs of maxdrawdown:

• MaxDD is a 1-by-N vector with maximum drawdown for each of N time series.
• MaxDDIndex is a 2-by-N vector of start and end indexes for each maximum drawdown

period for each total equity time series, where the first row contains the start indexes
and the second row contains the end indexes of each maximum drawdown period.

Notes

• Drawdown is the percentage drop in total returns from the start to the end of a
period. If the total equity time series is increasing over an entire period, drawdown

is 0. Otherwise, it is a positive number. Maximum drawdown is an ex-ante proxy for
downside risk that computes the largest drawdown over all intervals of time that can
be formed within a specified interval of time.

• Maximum drawdown is sensitive to quantization error.

Examples

See “Maximum Drawdown” on page 7-18.

More About
• “Performance Metrics Overview” on page 7-2

References

Christian S. Pederson and Ted Rudholm-Alfvin. "Selecting a Risk-Adjusted Shareholder
Performance Measure." Journal of Asset Management. Vol. 4, No. 3, 2003, pp. 152–172.
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See Also
emaxdrawdown

Introduced in R2006b
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mean
Arithmetic average

Syntax
tsmean = mean(tsobj)

Description

tsmean = mean(tsobj) computes the arithmetic mean of all data in all series in the
financial time series object (tsobj) and returns it in a structure tsmean. The tsmean
structure contains field name(s) identical to the data series name(s).

See Also
peravg | tsmovavg

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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medprice
Median price

Syntax
mprc = medprice(highp, lowp)

mprc = medprice([highp lowp])

mprcts = medprice(tsobj)

mprcts = medprice(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector)
lowp Low price (vector)
tsobj Financial time series object
'ParameterName' Valid parameter names are:

• HighName — high prices series name
• LowName — low prices series name

ParameterValue Parameter values are the character vectors that represent
the valid parameter names.

Description

mprc = medprice(highp, lowp) calculates the median prices mprc from the high
(highp) and low (lowp) prices. The median price is the average of the high and low price
for each period.

mprc = medprice([highp lowp]) accepts a two-column matrix as the input rather
than two individual vectors. The columns of the matrix represent the high and low prices,
in that order.
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mprcts = medprice(tsobj) calculates the median prices of a financial time series
object tsobj. The object must minimally contain the series High and Low. The median
price is the average of the high and low price each period. mprcts is a financial time
series object with the same dates as tsobj and the data series MedPrice.

mprcts = medprice(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Parameter values
are the character vectors that represent the valid parameter names.

Examples

Compute the Median Price

This example shows how to compute the median price for Disney stock and plot the
results.

load disney.mat

dis_MedPrice = medprice(dis);

plot(dis_MedPrice)

title('Median Price for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 177–178.
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See Also
typprice | wclose

Introduced before R2006a
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merge

Merge multiple financial time series objects

Syntax

newfts = merge(fts1, fts2)

newfts = merge(fts1, fts2, ..., ftsx)

newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1, 'PARAM2',

VALUE2, ...)

Arguments

fts1,

fts2, ...

Comma-separated list of financial time series objects to merge.

Note Multiple Financial Time Series objects can be merged at
once. The merged objects must appear in a comma separated
list before the optional inputs. The order of the inputs is
significant.

'DateSetMethod' (Optional) Merge method. Valid merge values are:

'union' — (Default) Returns the combined values of all
merged objects.

'intersection' — Returns the values common to all merged
objects.

RefObj — Maps all values to a reference time contained in
a Financial Time Series object (RefObj) or vector of date
numbers.

'DataSetMethod' (Optional) Merge method. Valid merge values are:

'closest' — (Default) Returns data based on the order of
the inputs. However, the first missing data point (NaN value) of
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a date will be replaced by the closest non-NaN data point that
appears on the same date of subsequent merged objects.

'order' — Returns data based strictly on the order of the
inputs.

'SortColumns' (Optional) Sorts columns. Valid merge values are:

True/1 — (Default) Sorts the columns based on the headers
(series names). The headers are sorted in alphabetical order.

False/0 — Columns are not sorted.

Description

newfts = merge(fts1, fts2, ..., ftsx, 'PARAM1', VALUE1, 'PARAM2',

VALUE2', ...) merges multiple financial time series objects. The optional parameter
and value pair argument specifies the values contained in the output financial time
series object ftsout.

Examples

Create Three Financial Time Series Objects and Merge into a Single Object

Create three financial time series objects and merged into a new time series object t123.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...

         'jan-04-2001'; 'jan-06-2001'};

data = [1; 1; 1; 1; 1];

t1 = fints(dates, data);

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001';

         'jan-05-2001'};

data = [2; 2; 2; 2];

t2 = fints(dates, data);

dates = {'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001';

         'jan-06-2001'};

data = [3; 3; 3; 3];
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t3 = fints(dates, data);

t123 = merge(t1, t2, t3)

 

t123 = 

 

    desc:   ||  || 

    freq:  Unknown (0)

    'dates:  (6)'    'series1:  (6)'

    '01-Jan-2001'    [            1]

    '02-Jan-2001'    [            1]

    '03-Jan-2001'    [            1]

    '04-Jan-2001'    [            1]

    '05-Jan-2001'    [            2]

    '06-Jan-2001'    [            1]

If you change the order of input time series, the output may contain different data when
duplicate dates exist. Here, for example, is the result of using the same three time series
defined above but with the order changed.

merge(t3, t2, t1)

 

ans = 

 

    desc:   ||  || 

    freq:  Unknown (0)

    'dates:  (6)'    'series1:  (6)'

    '01-Jan-2001'    [            1]

    '02-Jan-2001'    [            2]

    '03-Jan-2001'    [            3]

    '04-Jan-2001'    [            3]

    '05-Jan-2001'    [            3]

    '06-Jan-2001'    [            3]

t123 contains all 1's except on '05-Jan-2001' because t1 appears first in the list of
inputs and takes precedence. The same logic can be applied to t321. By changing the
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order of inputs, you can overwrite old financial time series data with new data by placing
the new time series ahead of the old one in the list of inputs to the merge function.

Merge Financial Time Series Objects with Different Headers (Series Names)

Merge time series objects with different headers into a new time series object t45.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; ...

'jan-04-2001'; 'jan-06-2001'};

data = [1; 1; 1; 1; 1];

t4 = fints(dates, data, 'ts4');

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};

data = [2; 2; 2; 2];

t5 = fints(dates, data, 'ts5');

t45 = merge(t4, t5)

 

t45 = 

 

    desc:   || 

    freq:  Unknown (0)

    'dates:  (6)'    'ts4:  (6)'    'ts5:  (6)'

    '01-Jan-2001'    [        1]    [      NaN]

    '02-Jan-2001'    [        1]    [        2]

    '03-Jan-2001'    [        1]    [        2]

    '04-Jan-2001'    [        1]    [        2]

    '05-Jan-2001'    [      NaN]    [        2]

    '06-Jan-2001'    [        1]    [      NaN]

Merge Two Financial Index Series and Keep Intersecting Dates

Merge two index series into the final merged object (t12) and keep the intersecting dates.

dates = {'jan-01-2001'; 'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-06-2001'};

data = [1; 1; 1; 1; 1];

t1 = fints(dates, data,'A')

dates = {'jan-02-2001'; 'jan-03-2001'; 'jan-04-2001'; 'jan-05-2001'};

data = [2; 2; 2; 2];

t2 = fints(dates, data,'B')
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t12 = merge(t1, t2,'DateSetMethod','Intersection')

 

t1 = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (5)'    'A:  (5)'

    '01-Jan-2001'    [      1]

    '02-Jan-2001'    [      1]

    '03-Jan-2001'    [      1]

    '04-Jan-2001'    [      1]

    '06-Jan-2001'    [      1]

 

t2 = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (4)'    'B:  (4)'

    '02-Jan-2001'    [      2]

    '03-Jan-2001'    [      2]

    '04-Jan-2001'    [      2]

    '05-Jan-2001'    [      2]

 

t12 = 

 

    desc:   || 

    freq:  Unknown (0)

    'dates:  (3)'    'A:  (3)'    'B:  (3)'

    '02-Jan-2001'    [      1]    [      2]

    '03-Jan-2001'    [      1]    [      2]

    '04-Jan-2001'    [      1]    [      2]

• “Merge Financial Time Series Objects” on page 13-13
• “Using Time Series to Predict Equity Return” on page 12-25
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See Also
horzcat | vertcat

Introduced before R2006a
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min
Minimum value

Syntax
tsmin = min(tsobj)

Description

tsmin = min(tsobj) finds the minimum value in each data series in the financial
time series object (tsobj) and returns it in the structure tsmin. The tsmin structure
contains field name(s) identical to the data series name(s).

Note tsmin returns only the values and does not return the dates associated with the
values. The minimum values are not necessarily from the same date.

See Also
max

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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minus
Financial time series subtraction

Syntax
newfts = tsobj_1 - tsobj_2

newfts = tsobj - array

newfts = array - tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects .
array A scalar value or array with the number of rows equal to the

number of dates in tsobj and the number of columns equal
to the number of data series in tsobj.

Description

minus is an element-by-element subtraction of the components.

newfts = tsobj_1 - tsobj_2 subtracts financial time series objects. If an object is
to be subtracted from another object, both objects must have the same dates and data
series names, although the order need not be the same. The order of the data series,
when one financial time series object is subtracted from another, follows the order of the
first object.

newfts = tsobj - array subtracts an array element by element from a financial time
series object.

newfts = array - tsobj subtracts a financial time series object element by element
from an array.

See Also
plus | rdivide | times

18-1051



18 Functions — Alphabetical List

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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minute
Minute of date or time

Syntax

Minute = minute(Date)

Minute = minute(Date,F)

Description

Minute = minute(Date) returns the minute of date or time given a serial date number
or a date character vector.

Minute = minute(Date,F) returns the minute of date or time given a serial date
number or a date character vector, Date, using format defined by the optional input F.
Date can be a character array where each row corresponds to one date character vector,
or a one-dimensional cell array of character vectors. All the character vectors in Date
must have the same format F. F must designate a supported date format symbol. For
more information on supported date formats, see datestr.

Examples

Determine the Minutes of the Date for Various Dates

Find the minutes of the day for Date using a serial date number.

Minute = minute(731204.5591223380)

Minute =

    25

Find the minutes of the day for Date using a date character vector format.

Minute = minute('19-dec-2001, 13:25:08.17')
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Minute =

    25

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine minute
serial date number | date character vector | cell array of date character vectors

Date to determine minute, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date
character vector, or a one-dimensional cell array of character vectors. All the character
vectors in Date must have the same format F. F must designate a supported date format
symbol. For more information on supported date formats, see datestr

Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol
for input argument Date. For more information on supported date character vector
formats, see datestr. Note, formats with 'Q' are not accepted.

Data Types: char

Output Arguments

Minute — Minute of date or time
serial date number | datetime array

Minute of date or time, returned as a serial date number or date character vector.

See Also
datevec | hour | second
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Introduced before R2006a
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mirr
Modified internal rate of return

Syntax
Return = mirr(CashFlow, FinRate, Reinvest)

Arguments

CashFlow Vector of cash flows. The first entry is the initial investment.
FinRate Finance rate for negative cash flow values. Enter as a decimal

fraction.
Reinvest Reinvestment rate for positive cash flow values, as a decimal

fraction.

Description

Return = mirr(CashFlow, FinRate, Reinvest) calculates the modified internal
rate of return for a series of periodic cash flows. This function calculates only positive
rates of return; for nonpositive rates of return, Return = 0.

Examples

This cash flow represents the yearly income from an initial investment of $100,000. The
finance rate is 9% and the reinvestment rate is 12%.

Year 1 $20,000
Year 2 ($10,000)
Year 3 $30,000
Year 4 $38,000
Year 5 $50,000
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To calculate the modified internal rate of return on the investment
Return = mirr([-100000 20000 -10000 30000 38000 50000], 0.09,... 

0.12)

returns

Return =

         0.0832 (8.32%)

References

Brealey and Myers. Principles of Corporate Finance. Chapter 5.

See Also
annurate | effrr | irr | nomrr | pvvar | xirr

Introduced before R2006a
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month
Month of date

Syntax

[MonthNum,MonthString] = month(Date)

[MonthNum,MonthString] = month(Date,F)

Description

[MonthNum,MonthString] = month(Date) returns the month of date given a serial
date number or a date character vector.

[MonthNum,MonthString] = month(Date,F) returns the month of date given a
serial date number or a date character vector, Date, using format defined by the optional
input F. Date can be a character array where each row corresponds to one date character
vector, or a one-dimensional cell array of character vectors. All the character vectors in
Date must have the same format F. F must designate a supported date format symbol.
For more information on supported date formats, see datestr.

Examples

Determine the Month for Various Dates

Find the month for Date using a serial date number.

[MonthNum, MonthString] = month(730368)

MonthNum =

     9

MonthString =

Sep
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Find the month for Date using a date character vector format.

[MonthNum, MonthString] = month('05-Sep-1999')

MonthNum =

     9

MonthString =

Sep

Use the optional F argument to designate a country-specific date format for a given Date.

[MonthNum, MonthString] = month('1999/05/09','yyyy/dd/mm')

MonthNum =

     9

MonthString =

Sep

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine month
serial date number | date character vector | cell array of date character vectors

Date to determine month, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date
character vector, or a one-dimensional cell array of character vectors. All the character
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vectors in Date must have the same format F. F must designate a supported date format
symbol. For more information on supported date formats, see datestr

Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol
for input argument Date. For more information on supported date character vector
formats, see datestr. Note, formats with 'Q' are not accepted.

Data Types: char

Output Arguments

MonthNum — Numeric representation of the month
nonnegative integer

Month of date, returned as a nonnegative integer.

MonthString — Three letter abbreviation for month
character vector

Three letter abbreviation for month, returned as a character vector.

See Also
datevec | day | year

Introduced before R2006a
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months
Number of whole months between dates

Syntax

MyMonths = months(StartDate,EndDate)

MyMonths = months(StartDate,EndDate,EndMonthFlag)

Description

MyMonths = months(StartDate,EndDate) returns the number of whole months
between StartDate and EndDate. If EndDate is earlier than StartDate, MyMonths is
negative.

Any input argument can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of character vector dates, then EndDate must be
an n-row character array of character vector dates or a single date. MyMonths is then an
n-by-1 vector of numbers.

MyMonths = months(StartDate,EndDate,EndMonthFlag) returns the number
of whole months between StartDate and EndDate using an optional argument for
EndMonthFlag. If EndDate is earlier than StartDate, MyMonths is negative.

Examples

Determine the Number of Whole Months Between Dates

Find the number of whole months using date character vectors.

MyMonths = months('may 31 2000', 'jun 30 2000', 1)

MyMonths =

     1
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Find the number of whole months using date character vectors when the optional
EndMonthFlag = 0.

MyMonths = months('may 31 2000','jun 30 2000', 0)

MyMonths =

     0

Find the number of whole months using a cell array of date character vectors.

Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];

MyMonths = months(Dates, 'jun 30 2002')

MyMonths =

     3

     2

     1

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Starting date for number of whole months between dates
serial date number | date character vector | cell array of date character vectors

Starting date for number of whole months between dates, specified as a serial date
number or date character vector.

Any input argument can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of character vector dates, then EndDate must be
an n-row character array of character vector dates or a single date. MyMonths is then an
n-by-1 vector of numbers.

Data Types: single | double | char | cell
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EndDate — Ending date for number of whole months between dates
serial date number | date character vector | cell array of date character vectors

Ending date for number of whole months between dates, specified as a serial date
number or date character vector.

Any input argument can contain multiple values, but if so, all other inputs must
contain the same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of character vector dates, then EndDate must be
an n-row character array of character vector dates or a single date. MyMonths is then an
n-by-1 vector of numbers.

Data Types: single | double | char | cell

EndMonthFlag — Flag for end-of-month rule
1 (default) | nonnegative integer with values 0 or 1

Flag for end-of-month rule, specified as a nonnegative integer with values 0 or 1.

If StartDate and EndDate are end-of-month dates and EndDate has fewer days than
StartDate, EndMonthFlag = 1. In this case, EndDate is treated as the end of a whole
month, while EndMonthFlag = 0 does not.

Data Types: logical

Output Arguments

MyMonths — Number of whole months between dates
nonnegative integer

Number of whole months between dates, returned as a nonnegative integer.

See Also
yearfrac

Introduced before R2006a
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movavg
Leading and lagging moving averages chart

Syntax
movavg(Asset, Lead, Lag, Alpha)

[Short, Long] = movavg(Asset, Lead, Lag, Alpha)

Arguments

Asset Security data, a vector of time-series prices.
Lead Number of samples to use in leading average calculation. A positive

integer. Lead must be less than or equal to Lag.
Lag Number of samples to use in the lagging average calculation. A

positive integer.
Alpha (Optional) Control parameter that determines the type of moving

averages. 0 = simple moving average (default), 0.5 = square root
weighted moving average, 1 = linear moving average, 2 = square
weighted moving average, and so on. To calculate the exponential
moving average, set Alpha ='e'.

Note: When Alpha ='e', the value of the moving average depends
on all previous data points (due to the iterative calculation). In
this case, the Lead and Lag parameters are used to calculate the
weighting factor for their respective averages (which is different
from the number of samples).

Description
movavg(Asset, Lead, Lag, Alpha) plots leading and lagging moving averages.

[Short, Long] = movavg(Asset, Lead, Lag, Alpha) returns the leading Short
and lagging Long moving average data without plotting it.
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Note: m, When using movavg syntax with output arguments, zero padding is used at the
edges of the data. If you use movavg without output arguments, there is no zero padding
in the data for the plot.

Examples

Compute the Moving Average for DIS Closing Prices

Load the DIS closing prices using disney.mat.

load disney.mat

Use movavg to plot the leading and lagging moving averages for DIS.

movavg(dis_CLOSE,3,20,1);ylabel('Price')

legend('Asset Price','Lagging Long','Leading Short')
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• “Charting Financial Data” on page 2-12

See Also
bolling | candle | dateaxis | highlow | pointfig

Introduced before R2006a
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mrdivide
Financial time series matrix division

Syntax
newfts = tsobj_1 / tsobj_2

newfts = tsobj / array

newfts = array / tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with number of rows equal to the

number of dates in tsobj and number of columns equal to
the number of data series in tsobj.

Description

The mrdivide method divides element by element the components of one financial time
series object (tsobj) by the components of the other. You can also divide the whole object
by an array or divide a financial time series object into an array.

If an object is to be divided by another object, both objects must have the same dates and
data series names, although the order need not be the same. The order of the data series,
when an object is divided by another object, follows the order of the first object.

newfts = tsobj_1 / tsobj_2 divides financial time series objects element by
element.

newfts = tsobj / array divides a financial time series object element by element by
an array.

newfts = array / tsobj divides an array element by element by a financial time
series object.
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For financial time series objects, the mrdivide operation is identical to the rdivide
operation.

See Also
minus | plus | rdivide | times

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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mtimes
Financial time series matrix multiplication

Syntax
newfts = tsobj_1 * tsobj_2

newfts = tsobj * array

newfts = array * tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with number of rows equal to the

number of dates in tsobj and number of columns equal to
the number of data series in tsobj.

Description

The mtimes method multiplies element by element the components of one financial time
series object (tsobj) by the components of the other. You can also multiply the entire
object by an array.

If an object is to be multiplied by another object, both objects must have the same dates
and data series names, although the order need not be the same. The order of the data
series, when an object is multiplied by another object, follows the order of the first object.

newfts = tsobj_1 * tsobj_2 multiplies financial time series objects element by
element.

newfts = tsobj * array multiplies a financial time series object element by element
by an array.

newfts = array * tsobj and newfts = array / tsobj multiplies an array
element by element by a financial time series object.
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For financial time series objects, the mtimes operation is identical to the times
operation.

See Also
minus | mrdivide | plus | times

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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mvnrfish
Fisher information matrix for multivariate normal or least-squares regression

Syntax
Fisher = mvnrfish(Data, Design, Covariance, MatrixFormat,

CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector. If a
data sample has missing values, represented as NaNs, the
sample is ignored.

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-
by-NUMPARAMS matrix with known values. This structure
is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell
contains a NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed to have the
same Design matrix for each sample. If Design has
more than one cell, each cell contains a Design matrix
for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance of the residuals of the regression.

MatrixFormat (Optional) Character vector that identifies parameters to be
included in the Fisher information matrix:

• full — Default format. Compute the full Fisher
information matrix for both model and covariance
parameter estimates.
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• paramonly — Compute only components of the Fisher
information matrix associated with the model parameter
estimates.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a
full matrix.

• 'diagonal' — The covariance matrix is a diagonal
matrix.

Description

Fisher = mvnrfish(Data, Design, Covariance, MatrixFormat,

CovarFormat) computes a Fisher information matrix based on current maximum
likelihood or least-squares parameter estimates.

Fisher is a TOTALPARAMS-by-TOTALPARAMS Fisher information matrix. The size of
TOTALPARAMS depends on MatrixFormat and on current parameter estimates. If
MatrixFormat = 'full',

TOTALPARAMS = NUMPARAMS + NUMSERIES * (NUMSERIES + 1)/2

If MatrixFormat = 'paramonly',

TOTALPARAMS = NUMPARAMS

Note mvnrfish operates slowly if you calculate the full Fisher information matrix.

Examples

See “Multivariate Normal Linear Regression” on page 9-2.

More About
• “Fisher Information” on page 9-6
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• “Multivariate Normal Linear Regression” on page 9-2
• “Least-Squares Regression” on page 9-5

See Also
mvnrmle | mvnrstd

Introduced in R2006a
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mvnrmle

Multivariate normal regression (ignore missing data)

Syntax

[Parameters, Covariance, Resid, Info] = mvnrmle(Data, Design,

MaxIterations, TolParam, TolObj, Covar0, CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
samples of a NUMSERIES-dimensional random vector. If a
data sample has missing values, represented as NaNs, the
sample is ignored. (Use ecmmvnrmle to handle missing
data.)

Design Matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-
by-NUMPARAMS matrix with known values. This structure
is the standard form for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell
contains a NUMSERIES-by-NUMPARAMS matrix of known
values.

If Design has a single cell, it is assumed to have the
same Design matrix for each sample. If Design has
more than one cell, each cell contains a Design matrix
for each sample.

MaxIterations (Optional) Maximum number of iterations for the estimation
algorithm. Default value is 100.

TolParam (Optional) Convergence tolerance for estimation algorithm
based on changes in model parameter estimates. Default
value is sqrt(eps) which is about 1.0e-8 for double
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precision. The convergence test for changes in model
parameters is

 
Param Param TolParam Paramk k k- < ¥ +( )-1 1

  where Param represents the output Parameters, and
iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam ≤ 0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

TolObj (Optional) Convergence tolerance for estimation algorithm
based on changes in the objective function. Default value is
eps ∧ 3/4 which is about 1.0e-12 for double precision. The
convergence test for changes in the objective function is

Obj Obj TolObj Objk k k- < ¥ +( )-1 1

for iteration k = 2, 3, ... . Convergence is assumed when both
the TolParam and TolObj conditions are satisfied. If both
TolParam ≤ 0 and TolObj ≤ 0, do the maximum number
of iterations (MaxIterations), whatever the results of the
convergence tests.

Covar0 (Optional) NUMSERIES-by-NUMSERIES matrix that contains
a user-supplied initial or known estimate for the covariance
matrix of the regression residuals.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. Compute the full covariance
matrix.

• 'diagonal' — Force the covariance matrix to be a
diagonal matrix.
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Description

[Parameters, Covariance, Resid, Info] = mvnrmle(Data, Design,

MaxIterations, TolParam, TolObj, Covar0, CovarFormat) estimates a
multivariate normal regression model without missing data. The model has the form

Data N Design Parameters Covariancek k∼ ¥( ),

for samples k = 1, ... , NUMSAMPLES.

mvnrmle estimates a NUMPARAMS-by-1 column vector of model parameters called
Parameters, and a NUMSERIES-by-NUMSERIES matrix of covariance parameters called
Covariance.

mvnrmle(Data, Design) with no output arguments plots the log-likelihood function
for each iteration of the algorithm.

To summarize the outputs of mvnrmle:

• Parameters is a NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

• Covariance is a NUMSERIES-by-NUMSERIES matrix of estimates for the covariance of
the regression model's residuals.

• Resid is a NUMSAMPLES-by-NUMSERIES matrix of residuals from the regression.
For any row with missing values in Data, the corresponding row of residuals is
represented as all NaN missing values, since this routine ignores rows with NaN
values.

Another output, Info, is a structure that contains additional information from the
regression. The structure has these fields:

• Info.Obj – A variable-extent column vector, with no more than MaxIterations
elements, that contain each value of the objective function at each iteration of the
estimation algorithm. The last value in this vector, Obj(end), is the terminal
estimate of the objective function. If you do maximum likelihood estimation, the
objective function is the log-likelihood function.

• Info.PrevParameters – NUMPARAMS-by-1 column vector of estimates for the model
parameters from the iteration just before the terminal iteration.
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• Info.PrevCovariance – NUMSERIES-by-NUMSERIES matrix of estimates for the
covariance parameters from the iteration just before the terminal iteration.

Notes

mvnrmle does not accept an initial parameter vector, because the parameters are
estimated directly from the first iteration onward.

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

These points concern how Design handles missing data:

• Although Design should not have NaN values, ignored samples due to NaN values in
Data are also ignored in the corresponding Design array.

• If Design is a 1-by-1 cell array, which has a single Design matrix for each sample,
no NaN values are permitted in the array. A model with this structure must have
NUMSERIES ≥ NUMPARAMS with rank(Design{1}) = NUMPARAMS.

• Two functions for handling missing data, ecmmvnrmle and ecmlsrmle, are stricter
about the presence of NaN values in Design.

Use the estimates in the optional output structure Info for diagnostic purposes.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Multivariate Normal Linear Regression” on page 9-2
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References

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd
Edition. John Wiley & Sons, Inc., 2002.

Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

See Also
ecmmvnrmle | mvnrobj | mvnrstd | mvregress

Introduced in R2006a
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mvnrobj
Log-likelihood function for multivariate normal regression without missing data

Syntax
Objective = mvnrobj(Data, Design, Parameters, Covariance,

CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. If a data sample has
missing values, represented as NaNs, the sample is ignored. (Use
ecmmvnrmle to handle missing data.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Parameters NUMPARAMS-by-1 column vector of estimates for the parameters of
the regression model.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
of the residuals of the regression.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full
matrix.
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• 'diagonal' — The covariance matrix is a diagonal matrix.

Description

Objective = mvnrobj(Data, Design, Parameters, Covariance,

CovarFormat) computes the log-likelihood function based on current maximum
likelihood parameter estimates without missing data. Objective is a scalar that
contains the log-likelihood function.

Notes

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

Although Design should not have NaN values, ignored samples due to NaN values in
Data are also ignored in the corresponding Design array.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.

More About
• “Multivariate Normal Linear Regression” on page 9-2

See Also
ecmmvnrmle | ecmmvnrobj | mvnrmle
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Introduced in R2006a
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mvnrstd

Evaluate standard errors for multivariate normal regression model

Syntax

[StdParameters, StdCovariance] = mvnrstd(Data, Design, Covariance,

CovarFormat)

Arguments

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples
of a NUMSERIES-dimensional random vector. If a data sample has
missing values, represented as NaNs, the sample is ignored. (Use
ecmmvnrmle to handle missing data.)

Design A matrix or a cell array that handles two model structures:

• If NUMSERIES = 1, Design is a NUMSAMPLES-by-NUMPARAMS
matrix with known values. This structure is the standard form
for regression on a single series.

• If NUMSERIES ≥ 1, Design is a cell array. The cell array
contains either one or NUMSAMPLES cells. Each cell contains a
NUMSERIES-by-NUMPARAMS matrix of known values.

If Design has a single cell, it is assumed to have the same
Design matrix for each sample. If Design has more than one
cell, each cell contains a Design matrix for each sample.

Covariance NUMSERIES-by-NUMSERIES matrix of estimates for the covariance
of the regression residuals.

CovarFormat (Optional) Character vector that specifies the format for the
covariance matrix. The choices are:

• 'full' — Default method. The covariance matrix is a full
matrix.

• 'diagonal' — The covariance matrix is a diagonal matrix.
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Description

[StdParameters, StdCovariance] = mvnrstd(Data, Design, Covariance,

CovarFormat) evaluates standard errors for a multivariate normal regression model
without missing data. The model has the form

Data N Design Parameters Covariancek k∼ ¥( ),

for samples k = 1, ... , NUMSAMPLES.

mvnrstd computes two outputs:

• StdParameters is a NUMPARAMS-by-1 column vector of standard errors for each
element of Parameters, the vector of estimated model parameters.

• StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors for each
element of Covariance, the matrix of estimated covariance parameters.

Note mvnrstd operates slowly when you calculate the standard errors associated
with the covariance matrix Covariance.

Notes

You can configure Design as a matrix if NUMSERIES = 1 or as a cell array if
NUMSERIES ≥ 1.

• If Design is a cell array and NUMSERIES = 1, each cell contains a NUMPARAMS row
vector.

• If Design is a cell array and NUMSERIES > 1, each cell contains a NUMSERIES-
by-NUMPARAMS matrix.

Examples

See “Multivariate Normal Regression” on page 9-18, “Least-Squares Regression” on page
9-18, “Covariance-Weighted Least Squares” on page 9-19, “Feasible Generalized Least
Squares” on page 9-20, and “Seemingly Unrelated Regression” on page 9-21.
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More About
• “Multivariate Normal Linear Regression” on page 9-2

References

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd
Edition. John Wiley & Sons, Inc., 2002.

See Also
ecmmvnrmle | ecmmvnrstd  | mvnrmle

Introduced in R2006a
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nancov
Covariance ignoring NaNs

Syntax
c = nancov(X)

c = nancov(..., 'pairwise')

Arguments

X Financial times series object.
Y Financial times series object.

Description

nancov for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nancov. See nancov in the Statistics and Machine Learning Toolbox
documentation.

c = nancov(X), if X is a financial time series object with one series and returns the
sample variance of the values in X, treating NaNs as missing values. For a financial time
series object containing more than one series, where each row is an observation and each
series a variable, nancov(X) is the covariance matrix computing using rows of X that
do not contain any NaN values. nancov(X,Y), where X and Y are financial time series
objects with the same number of elements, is equivalent to nancov([X(:) Y(:)]).

nancov(X) or nancov(X,Y) normalizes by (N-1) if N >1, where N is the number of
observations after removing missing values. This makes nancov the best unbiased
estimate of the covariance matrix if the observations are from a normal distribution. For
N = 1, cov normalizes by N.

nancov(X,1) or nancov(X,Y,1) normalizes by N and produces the second moment
matrix of the observations about their mean. nancov(X,Y,0) is the same as
nancov(X,Y), and nancov(X,0) is the same as nancov(X).
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c = nancov(..., 'pairwise') computes c(i,j) using rows with no NaN values in
columns ior j. The result may not be a positive definite matrix. c = nancov(...,
'complete') is the default, and it omits rows with any NaN values, even if they are not
in column i or j. The mean is removed from each column before calculating the result.

Examples

To generate random data having nonzero covariance between column 4 and the other
columns:
x = randn(30, 4);                 % uncorrelated data

x(:, 4) = sum(x, 2);              % introduce correlation

x(2, 3) = NaN;                    % introduce one missing value

f = fints((today:today+29)', x);  % create a fints object using x

c = nancov(f)                     % compute sample covariance

c =

    1.6898   -0.0005    0.3612    1.9143

   -0.0005    1.0833   -0.5513    0.6059

    0.3612   -0.5513    1.0369    0.7570

    1.9143    0.6059    0.7570    4.4895

See Also
cov | nanvar | var

Introduced before R2006a
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nanmax
Maximum ignoring NaNs

Syntax
m = nanmax(X)

[m,ndx] = nanmax(X)

m = nanmax(X,Y)

[m,ndx] = nanmax(X,[],DIM)

Arguments

X Financial times series object.
Y Financial times series object or scalar.
DIM Dimension of X.

Description

nanmax for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nanmax. See nanmax in the Statistics and Machine Learning Toolbox
documentation.

m = nanmax(X) returns the maximum of a financial time series object X with NaNs
treated as missing. m is the largest non-NaN element in X.

[m,ndx] = nanmax(X) returns the indices of the maximum values in X. If the values
along the first nonsingleton dimension contain multiple maximal elements, the index of
the first one is returned.

m = nanmax(X,Y) returns an array the same size as X and Y with the largest elements
taken from X or Y. Only Y can be a scalar double.

[m,ndx] = nanmax(X,[],DIM) operates along the dimension DIM.
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Examples

To compute nanmax for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

f = fints(dates, magic(3));

f.series1(1) = nan;

f.series2(3) = nan;

f.series3(2) = nan;

[nmax, maxidx] = nanmax(f)

nmax =

     4     5     6

maxidx =

     3     2     1

See Also
max | nanmean | nanmedian | nanmin | nanstd | nanvar

Introduced before R2006a
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nanmean
Mean ignoring NaNs

Syntax
m = nanmean(X)

m = nanmean(X,DIM)

Arguments

X Financial times series object.
DIM Dimension along which the operation is conducted.

Description

nanmean for financial times series objects is based on the Statistics and Machine
Learning Toolbox function nanmean. See nanmean in the Statistics and Machine
Learning Toolbox documentation.

m = nanmean(X) returns the sample mean of a financial time series object X, treating
NaNs as missing values. m is a row vector containing the mean value of the non-NaN
elements in each series.

m = nanmean(X,DIM) takes the mean along dimension DIM of X.

Examples

To compute nanmean for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

f = fints(dates, magic(3));

f.series1(1) = nan;

f.series2(3) = nan;
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f.series3(2) = nan;

nmean = nanmean(f)

nmean =

    3.5000    3.0000    4.0000

See Also
mean | nanmax | nanmin | nanstd | nansum | nanvar

Introduced before R2006a
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nanmedian
Median ignoring NaNs

Syntax
m = nanmedian(X)

m = nanmedian(X,DIM)

Arguments

X Financial times series object.
DIM Dimension along which the operation is condcuted.

Description

nanmedian for financial times series objects is based on the Statistics and Machine
Learning Toolbox function nanmedian. See nanmedian in the Statistics and Machine
Learning Toolbox documentation.

m = nanmedian(X) returns the sample median of a financial time series object X,
treating NaNs as missing values. m is a row vector containing the median value of
non-NaN elements in each column.

m = nanmedian(X,DIM) takes the median along the dimension DIM of X.

Examples

To compute nanmedian for the following dates:
dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007';'04-Jan-2007'};

f = fints(dates, magic(4));

f.series1(1) = nan;

f.series2(2) = nan;

f.series3([1 3]) = nan;
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nmedian = nanmedian(f)

nmedian =

    5.0000    7.0000   12.5000   10.0000

See Also
mean | nanmax | nanmin | nanstd | nansum | nanvar

Introduced before R2006a
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nanmin
Minimum ignoring NaNs

Syntax
m = nanmin(X)

[m,ndx] = nanmin(X)

m = nanmin(X,Y)

[m,ndx] = nanmin(X,[],DIM)

Arguments

X Financial times series object.
Y Financial times series object or scalar.
DIM Dimension along which the operation is conducted.

Description

nanmin for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nanmin. See nanmin in the Statistics and Machine Learning Toolbox
documentation.

m = nanmin(X) returns the minimum of a financial time series object X with NaNs
treated as missing. m is the smallest non-NaN element in X.

[m,ndx] = nanmin(X) returns the indices of the minimum values in X. If the values
along the first nonsingleton dimension contain multiple elements, the index of the first
one is returned.

m = nanmin(X,Y) returns an array the same size as X and Y with the smallest elements
taken from X or Y. Only Y can be a scalar double.

[m,ndx] = nanmin(X, [], DIM) operates along the dimension DIM.
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Examples

To compute nanmin for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

f = fints(dates, magic(3));

f.series1(1) = nan;

f.series2(3) = nan;

f.series3(2) = nan;

[nmin, minidx] = nanmin(f)

nmin =

     3     1     2

minidx =

     2     1     3

See Also
mean | nanmax | nanstd | nanvar

Introduced before R2006a
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nanstd

Standard deviation ignoring NaNs

Syntax

y = nanstd(X)

y = nanstd(X,1)

y = nanstd(X,FLAG,DIM)

Arguments

X Financial times series object.
FLAG Normalization flag.
DIM Dimension along which the operation is conducted.

Description

nanstd for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nanstd. See nanstd in the Statistics and Machine Learning Toolbox
documentation.

y = nanstd(X) returns the sample standard deviation of the values in a financial
time series object X, treating NaNs as missing values. y is the standard deviation of the
non-NaN elements of X.

nanstd normalizes y by (N – 1), where N is the sample size. This is the square root of an
unbiased estimator of the variance of the population from which X is drawn, as long as X
consists of independent, identically distributed samples and data are missing at random.

y = nanstd(X,1) normalizes by N and produces the square root of the second moment
of the sample about its mean. nanstd(X,0) is the same as nanstd(X).

18-1095



18 Functions — Alphabetical List

y = nanstd(X,flag,dim) takes the standard deviation along the dimension dim of X.
Set the value of flag to 0 to normalize the result by n – 1; set the value of flag to 1 to
normalize the result by n.

Examples

To compute nanstd for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

f = fints(dates, magic(3));

f.series1(1) = nan;

f.series2(3) = nan;

f.series3(2) = nan;

nstd = nanstd(f)

nstd =

          0.71          2.83          2.83

See Also
nanmax | nanmean | nanmedian | nanmin | nanvar | std

Introduced before R2006a
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nansum
Sum ignoring NaNs

Syntax
y = nansum(X)

y = nansum(X,DIM)

Arguments

X Financial time series object.
DIM Dimension along which the operation is conducted.

Description

nansum for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nansum. See nansum in the Statistics and Machine Learning Toolbox
documentation.

y = nansum(X) returns the sum of a financial time series object X, treating NaNs as
missing values. y is the sum of the non-NaN elements in X.

y = nansum(X,DIM) takes the sum along dimension DIM of X.

Examples

To compute nansum for the following dates:

dates = {'01-Jan-2007';'02-Jan-2007';'03-Jan-2007'};

f = fints(dates, magic(3));

f.series1(1) = nan;

f.series2(3) = nan;

f.series3(2) = nan;
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nsum = nansum(f)

nsum =

     7     6     8

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | nanvar

Introduced before R2006a
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nanvar
Variance ignoring NaNs

Syntax
y = nanvar(X)

y = nanvar(X,1)

y = nanvar(X,W)

y = nanvar(X,W,DIM)

Arguments

X Financial times series object.
W Weight vector.
DIM Dimension along which the operation is conducted.

Description

nanvar for financial times series objects is based on the Statistics and Machine Learning
Toolbox function nanvar. See nanvar in the Statistics and Machine Learning Toolbox
documentation.

y = nanvar(X) returns the sample variance of the values in a financial time series
object X, treating NaNs as missing values. y is the variance of the non-NaN elements of
each series in X.

nanvar normalizes y by N – 1 if N > 1, where N is the sample size of the non-NaN
elements. This is an unbiased estimator of the variance of the population from which X is
drawn, as long as X consists of independent, identically distributed samples, and data are
missing at random. For N = 1, y is normalized by N.

y = nanvar(X,1) normalizes by N and produces the second moment of the sample
about its mean. nanvar(X, 0) is the same as nanvar(X).
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y = nanvar(X,W) computes the variance using the weight vector W. The length of W
must equal the length of the dimension over which nanvar operates, and its non-NaN
elements must be nonnegative. Elements of X corresponding to NaN elements of Ware
ignored.

y = nanvar(X,W,DIM) takes the variance along dimension DIM of X.

Examples

To compute nanvar:

f = fints((today:today+1)', [4 -2 1; 9  5 7])

f.series1(1) = nan;

f.series3(2) = nan;

nvar = nanvar(f)

nvar =

         0   24.5000         0

See Also
nanmax | nanmean | nanmedian | nanmin | nanstd | var

Introduced before R2006a
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negvolidx

Negative volume index

Syntax

nvi = negvolidx(closep, tvolume, initnvi)

nvi = negvolidx([closep tvolume], initnvi)

nvits = negvolidx(tsobj)

vits = negvolidx(tsobj, initnvi, 'ParameterName', ParameterValue,

...)

Arguments

closep Closing price (vector).
tvolume Volume traded (vector).
initnvi (Optional) Initial value for negative volume index (Default

= 100).
tsobj Financial time series object.
'ParameterName' Valid parameter names are:

• CloseName: closing prices series name
• VolumeName: volume traded series name

ParameterValue Parameter values are the character vectors that represent
the valid parameter names.

Description

nvi = negvolidx(closep, tvolume, initnvi) calculates the negative volume
index from a set of stock closing prices (closep) and volume traded (tvolume) data. nvi
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is a vector representing the negative volume index. If initnvi is specified, negvolidx
uses that value instead of the default (100).

nvi = negvolidx([closep tvolume], initnvi) accepts a two-column matrix, the
first column representing the closing prices (closep), and the second representing the
volume traded (tvolume). If initnvi is specified, negvolidx uses that value instead of
the default (100).

nvits = negvolidx(tsobj) calculates the negative volume index from the financial
time series object tsobj. The object must contain, at least, the series Close and Volume.
The nvits output is a financial time series object with dates similar to tsobj and a data
series named NVI. The initial value for the negative volume index is arbitrarily set to
100.

nvits = negvolidx(tsobj, initnvi, 'ParameterName',

ParameterValue, ...) accepts parameter name/ parameter value pairs as input.
These pairs specify the name(s) for the required data series if it is different from the
expected default name(s). Parameter values are the character vectors that represent the
valid parameter names.

Examples

Compute the Negative Volume Index

This example shows how to compute the negative volume index for Disney stock and plot
the results.

load disney.mat

dis_NegVol = negvolidx(dis);

plot(dis_NegVol)

title('Negative Volume Index for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z.  Second Edition. McGraw-Hill, 1995,
pp. 193–194.
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See Also
onbalvol | posvolidx

Introduced before R2006a
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nomrr
Nominal rate of return

Syntax
Return = nomrr(Rate, NumPeriods)

Arguments

Rate Effective annual percentage rate. Enter as a decimal fraction.
NumPeriods Number of compounding periods per year, an integer.

Description

Return = nomrr(Rate, NumPeriods) calculates the nominal rate of return.

Examples

Calculate the Nominal Rate of Return

This example shows how to calculate the nominal rate of return based on an effective
annual percentage rate of 9.38% compounded monthly.

Return = nomrr(0.0938, 12)

Return =

    0.0900

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
effrr | irr | mirr | taxedrr | xirr
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Introduced before R2006a
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nweekdate
Date of specific occurrence of weekday in month

Syntax
Date = nweekdate(n,Weekday,Year,Month)

Date = nweekdate(n,Weekday,Year,Month,Same,outputType)

Description
Date = nweekdate(n,Weekday,Year,Month) returns the date number for the
specific occurrence of the weekday in the given Year and Month.

Any input argument can contain multiple values, but if so, all other input arguments
must contain the same number of values or a single value that applies to all. For
example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of
integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date character
vectors.

Date = nweekdate(n,Weekday,Year,Month,Same,outputType) returns the date
number for the specific occurrence of the weekday in the given Year and Month and also
contains the optional arguments for weekday Same and outputType.

Examples

Determine the Date of a Specific Occurrence of a Weekday in a Month

Find the first Thursday in May 2001.

Date = nweekdate(1, 5, 2001, 5);

datestr(Date)

ans =

03-May-2001
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Find the first Thursday in May 2001 returned as a datatime array.

Date = nweekdate(1, 5, 2001, 5,[],'datetime')

Date = 

  datetime

   03-May-2001

Find the first Thursday in a week that also contains a Wednesday in May 2001.

Date = nweekdate(2, 5, 2001, 5, 4);

datestr(Date)

ans =

10-May-2001

Find the third Monday in February for 2001, 2002, and 2003.

Year = [2001:2003];

Date = nweekdate(3, 2, Year, 2);

datestr(Date)

ans =

19-Feb-2001

18-Feb-2002

17-Feb-2003

• “Handle and Convert Dates” on page 2-4

Input Arguments

n — Nth occurrence of weekday in a month
integer with value 1 through 5 | vector of integers with values 1 through 5
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Nth occurrence of the weekday in a month, specified as an integer or a vector of integers
from 1 through 5.

If n is larger than the last occurrence of Weekday, the output Date = 0.

Data Types: single | double

Weekday — Weekday whose date you seek
integer with value 1 through 7 | vector of integers with values 1 through 7

Weekday whose date you seek, specified as an integer or a vector of integers from 1
through 7.

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Data Types: single | double

Year — Year to determine occurrence of weekday
4-digit integer | vector of 4-digit integers

Year to determine occurrence of weekday, specified as a 4-digit integer or vector of 4-digit
integers.
Data Types: single | double

Month — Month to determine occurrence of weekday
integer with value 1 through 12 | vector of integers with values 1 through 12

Month to determine occurrence of weekday, specified as an integer or vector of integers
with values 1 through 12.

Data Types: single | double

Same — Weekday that must occur in same week with Weekday
0 = ignore (default) | integer with value 0 through 7 | vector of integers with values 0
through 7
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Weekday that must occur in the same week with Weekday, specified as an integer or a
vector of integers from 0 through 7, where 0 = ignore (default) and 1 through 7 are as for
Weekday.

Data Types: single | double

outputType — Year to determine days
'datenum' (default) | character vector with values 'datenum' or 'datetime'

A character vector specified as either 'datenum' or 'datetime'. The output Date is
in serial date format if 'datenum' is specified, or datetime format if 'datetime' is
specified. By default the output Date is in serial date format.

Data Types: single | double

Output Arguments

Date — Date of specific occurrence of weekday in month
serial date number | date character vector

Date of specific occurrence of weekday in month, returned as a serial date number or
date character vector.

The type of the output for Date depends on the input outputType. If this variable is
'datenum', Date is a serial date number. If outputType is 'datetime', then Date is
a datetime array. By default, outputType is set to 'datenum'.

See Also
datetime | fbusdate | lbusdate | lweekdate

Introduced before R2006a
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nyseclosures
New York Stock Exchange closures from 1885 to 2050

Syntax

Closures = nyseclosures

[Closures,SatTransition] = nyseclosures(StartDate,EndDate,

WorkWeekFormat)

Description

Closures = nyseclosures returns a vector of serial date numbers for all known or
anticipated closures from January 1, 1885 to December 31, 2070.

Since the New York Stock Exchange was open on Saturdays before September 29,
1952, exact closures from 1885 to 1952 are based on a 6-day workweek. nyseclosures
contains all holiday and special non-trading days for the New York Stock Exchange
from 1885 through 2050 based on a six-day work week (always closed on Sundays). Use
WorkWeekFormat to modify the list of dates.

[Closures,SatTransition] = nyseclosures(StartDate,EndDate,

WorkWeekFormat), using optional input arguments, returns a vector of serial date
numbers corresponding to market closures between StartDate and EndDate, inclusive.

Since the New York Stock Exchange was open on Saturdays before September 29,
1952, exact closures from 1885 to 1952 are based on a 6-day workweek. nyseclosures
contains all holiday and special non-trading days for the New York Stock Exchange
from 1885 through 2050 based on a six-day work week (always closed on Sundays). Use
WorkWeekFormat to modify the list of dates.

Examples

Find NYSE Closures

Find the NYSE closures for 1899:
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datestr(nyseclosures('1-jan-1899','31-dec-1899'),'dd-mmm-yyyy ddd')

ans =

02-Jan-1899 Mon

11-Feb-1899 Sat

13-Feb-1899 Mon

22-Feb-1899 Wed

31-Mar-1899 Fri

29-May-1899 Mon

30-May-1899 Tue

03-Jul-1899 Mon

04-Jul-1899 Tue

04-Sep-1899 Mon

29-Sep-1899 Fri

30-Sep-1899 Sat

07-Nov-1899 Tue

25-Nov-1899 Sat

30-Nov-1899 Thu

25-Dec-1899 Mon

Find the NYSE closures for 1899 using a datetime array:

[Closures,SatTransition] = nyseclosures(datetime('1-jan-1899','Locale','en_US'),'30-Jun-1899')

Closures = 

  7×1 datetime array

   02-Jan-1899

   11-Feb-1899

   13-Feb-1899

   22-Feb-1899

   31-Mar-1899

   29-May-1899

   30-May-1899

SatTransition = 

  datetime
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   29-Sep-1952

Find the NYSE closure dates using the 'Archaic' value for WorkWeekFormat:

datestr(nyseclosures('1-sep-1952','31-oct-1952','a'),1)

ans =

01-Sep-1952

06-Sep-1952

13-Sep-1952

20-Sep-1952

27-Sep-1952

04-Oct-1952

11-Oct-1952

13-Oct-1952

18-Oct-1952

25-Oct-1952

The exchange was closed on Saturdays for much of 1952 before the official transition to a
5-day workweek.

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
start of default date range, January 1, 1885 (default) | serial date number | date
character vector | datetime object

Start date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime

EndDate — End date
end of default date range, December 31, 2070 (default) | serial date number | date
character vector | datetime object

End date, specified using a serial date number, date character vector, or datetime array.
Data Types: double | char | datetime
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WorkWeekFormat — Method to handle the workweek
'Implicit' (default) | date character vector with values 'Modern', 'Implicit', or
'Archaic'

Method to handle the workweek, specified using a date character vector with values
'Modern', 'Implicit', or 'Archaic'. This function accepts the first letter for each
method as input and is not case-sensitive. Acceptable values are:

• 'Modern' — 5-day workweek with all Saturday trading days removed.
• 'Implicit' — 6-day workweek until 1952 and 5-day week afterward (no need to

exclude Saturdays).
• 'Archaic' — 6-day workweek throughout and Saturdays treated as closures after

1952.

Data Types: char

Output Arguments

Closures — Market closures between StartDate and EndDate, inclusive
vector

Market closures between the StartDate and EndDate, inclusive, returned as a vector of
dates.

If StartDate or EndDate are all either serial date numbers or date character vectors,
both Closures and SatTransition are returned as serial date numbers. If either
StartDate or EndDate are datetime arrays, both Closures and SatTransition are
returned as datetime arrays.

If both StartDate and EndDate are not specified or are empty, Closures contains all
known or anticipated closures from January 1, 1885 to December 31, 2070 based on a
WorkWeekFormat of 'implicit'.

SatTransition — Date of transition for New York Stock Exchange from 6-day workweek to
5-day workweek
serial date number | datetime array

Date of transition for the New York Stock Exchange from a 6-day workweek to a 5-day
workweek, returned as the date September 29, 1952 (serial date number 713226).
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If StartDate or EndDate are all either serial date numbers or date character vectors,
both Closures and SatTransition are returned as serial date numbers. If either
StartDate or EndDate are datetime arrays, both Closures and SatTransition are
returned as datetime arrays.

More About

Definition of holidays

holidays is based on a modern 5-day workweek. This function contains all holidays
and special nontrading days for the New York Stock Exchange from January 1, 1885 to
December 31, 2050.

Since the New York Stock Exchange was open on Saturdays before September 29, 1952,
exact closures from 1885 to 2070 should include Saturday trading days. To capture these
dates, use nyseclosures. The results from holidays and nyseclosures are identical
if the WorkWeekFormat in nyseclosures is 'Modern'.
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
busdate | createholidays | datetime | fbusdate | holidays | isbusday |
lbusdate

Introduced before R2006a
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onbalvol
On-Balance Volume (OBV)

Syntax

obv = onbalvol(closep, tvolume)

obv = onbalvol([closep tvolume])

obvts = onbalvol(tsobj)

obvts = onbalvol(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

closep Closing price (vector)
tvolume Volume traded
tsobj Financial time series object

Description

obv = onbalvol(closep, tvolume) calculates the On-Balance Volume (OBV) from
the stock closing price (closep) and volume traded (tvolume) data.

obv = onbalvol([closep tvolume]) accepts a two-column matrix representing the
closing price (closep) and volume traded (tvolume), in that order.

obvts = onbalvol(tsobj) calculates the OBV from the stock data in the financial
time series object tsobj. The object must minimally contain series names Close and
Volume. The obvts output is a financial time series object with the same dates as tsobj
and a series named OnBalVol.

obvts = onbalvol(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/ parameter value pairs as input. These pairs specify the name(s) for the
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required data series if it is different from the expected default name(s). Valid parameter
names are

• CloseName: closing prices series name
• VolumeName: volume traded series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Calculate the On-Balance Volume (OBV)

This example shows how to calculate the OBV for Disney stock and plot the results.

load disney.mat

dis_OnBalVol = onbalvol(dis);

plot(dis_OnBalVol)

title('On-Balance Volume for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 207–209.
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See Also
negvolidx

Introduced before R2006a
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opprofit
Option profit

Syntax
Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)

Arguments

AssetPrice Asset price.
Strike Strike or exercise price.
Cost Cost of the option.
PosFlag Option position. 0 = long, 1 = short.
OptType Option type. 0 = call option, 1 = put option.

Description

Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType) returns
the profit of an option.

Examples

Calcualte the Profit of an Option

This example shows how to return the profit of an option. For example, consider buying
(going long on) a call option with a strike price of $90 on an underlying asset with a
current price of $100 for a cost of $4.

Profit = opprofit(100, 90, 4, 0, 0)

Profit =
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     6

• “Pricing and Analyzing Equity Derivatives” on page 2-42
• “Greek-Neutral Portfolios of European Stock Options” on page 10-18
• “Plotting Sensitivities of an Option” on page 10-30
• “Plotting Sensitivities of a Portfolio of Options” on page 10-33

See Also
binprice | blsprice

Introduced before R2006a

18-1121



18 Functions — Alphabetical List

payadv
Periodic payment given number of advance payments

Syntax
Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,

Advance)

Arguments

Rate Lending or borrowing rate per period. Enter as a decimal
fraction. Must be greater than or equal to 0.

NumPeriods Number of periods in the life of the instrument.
PresentValue Present value of the instrument.
FutureValue Future value or target value to be attained after

NumPeriods periods.
Advance Number of advance payments. If the payments are made at

the beginning of the period, add 1 to Advance.

Description

Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,

Advance) returns the periodic payment given a number of advance payments.

Examples

Compute the Periodic Payment

This example shows how to compute the periodic payment, given a number of advance
payments. For example, the present value of a loan is $1000.00 and it will be paid in full
in 12 months. The annual interest rate is 10% and three payments are made at closing
time.
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Payment = payadv(0.1/12, 12, 1000, 0, 3)

Payment =

   85.9389

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
amortize | payodd | payper

Introduced before R2006a
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payodd
Payment of loan or annuity with odd first period

Syntax
Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

Arguments

rate Interest rate per period. Enter as a decimal fraction.
NumPeriods Number of periods in the life of the instrument.
PresentValue Present value of the instrument.
FutureValue Future value or target value to be attained after

NumPeriods periods.
Days Actual number of days until the first payment is made.

Description

Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

returns the payment for a loan or annuity with an odd first period.

Examples

Compute the Payment for a Loan or Annuity With an Odd First Period

This example shows how to return the payment for a loan or annuity with an odd first
period. For example, consider a two-year loan for $4000 that has an annual interest rate
of 11% and the first payment will be made in 36 days.

Payment = payodd(0.11/12, 24, 4000, 0, 36)

Payment =
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  186.7731

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
amortize | payadv | payper

Introduced before R2006a
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payper
Periodic payment of loan or annuity

Syntax
Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

Arguments

Rate Interest rate per period. Enter as a decimal fraction.
NumPeriods Number of payment periods in the life of the instrument.
PresentValue Present value of the instrument.
FutureValue (Optional) Future value or target value to be attained after

NumPeriods periods. Default = 0.
Due (Optional) When payments are due: 0 = end of period

(default), or 1 = beginning of period.

Description

Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

returns the periodic payment of a loan or annuity.

Examples

Compute the Periodic Payment of a Loan or Annuity

This example shows how to find the monthly payment for a three-year loan of $9000 with
an annual interest rate of 11.75%.

Payment = payper(0.1175/12, 36, 9000, 0, 0)

Payment =
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  297.8553

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
amortize | fvfix | payadv | payodd | pvfix

Introduced before R2006a
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payuni
Uniform payment equal to varying cash flow

Syntax
Series = payuni(CashFlow, Rate)

Arguments

CashFlow A vector of varying cash flows. Include the initial investment as the
initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

Description

Series = payuni(CashFlow, Rate) returns the uniform series value of a varying
cash flow.

Examples

This cash flow represents the yearly income from an initial investment of $10,000. The
annual interest rate is 8%.

Year 1 $2000
Year 2 $1500
Year 3 $3000
Year 4 $3800
Year 5 $5000

To calculate the uniform series value

Series = payuni([-10000 2000 1500 3000 3800 5000], 0.08)
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returns

Series =

         429.63

See Also
fvfix | fvvar | irr | pvfix | pvvar

Introduced before R2006a
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pcalims

Linear inequalities for individual asset allocation

As an alternative to pcalims, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. This object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax

[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

Arguments

AssetMin Scalar or NASSETS vector of minimum allocations in each asset.
NaN indicates no constraint.

AssetMax Scalar or NASSETS vector of maximum allocations in each asset.
NaN indicates no constraint.

NumAssets (Optional) Number of assets. Default = length of AssetMin or
AssetMax.

Description

[A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and
upper bounds of portfolio allocations in each of NumAssets available asset investments.

A is a matrix and b is a vector such that A*PortWts' <= b, where PortWts is a 1-
by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function returns A
concatenated with b [A,b].
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Examples

Set the minimum weight in every asset to 0 (no short-selling), and set the maximum
weight of IBM stock to 0.5 and CSCO to 0.8, while letting the maximum weight in INTC
float.

Asset IBM INTC CSCO

Minimum Weight 0 0 0
Maximum Weight 0.5 0.8

AssetMin = 0

AssetMax = [0.5 NaN 0.8]

[A,b] = pcalims(AssetMin, AssetMax)

A =

     1     0     0

     0     0     1

    -1     0     0

     0    -1     0

     0     0    -1

b =

    0.5000

    0.8000

         0

         0

         0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Set the minimum weight in every asset to 0 and the maximum weight to 1.

Asset IBM INTC CSCO

Minimum Weight 0 0 0
Maximum Weight 1 1 1

AssetMin = 0

AssetMax = 1

NumAssets = 3
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[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

A =

     1     0     0

     0     1     0

     0     0     1

    -1     0     0

     0    -1     0

     0     0    -1

b =

    1

    1

    1

    0

    0

    0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
pcgcomp | pcglims | pcpval | portcons | portopt | portstats

Introduced before R2006a
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pcgcomp
Linear inequalities for asset group comparison constraints

As an alternative to pcgcomp, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. This object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax
[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

Arguments

GroupA

GroupB

Number of groups (NGROUPS) by number of assets (NASSETS)
specifications of groups to compare. Each row specifies a group. For
a specific group, Group(i,j) = 1 if the group contains asset j;
otherwise, Group(i,j) = 0.

AtoBmin

AtoBmax

Scalar or NGROUPS-long vectors of minimum and maximum ratios
of allocations in GroupA to allocations in GroupB. NaN indicates no
constraint between the two groups. Scalar bounds are applied to all
group pairs. The total number of assets allocated to GroupA divided
by the total number of assets allocated to GroupB is >= AtoBmin
and <= AtoBmax.

Description

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB) specifies that the ratio
of allocations in one group to allocations in another group is at least AtoBmin to 1 and
at most AtoBmax to 1. Comparisons can be made between an arbitrary number of group
pairs NGROUPS comprising subsets of NASSETS available investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 1-
by-NASSETS vector of asset allocations.
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If pcgcomp is called with fewer than two output arguments, the function returns A
concatenated with b [A,b].

Examples

Asset INTC XOM RD
Region North America North America Europe
Sector Technology Energy Energy

Group Min. Exposure Max. Exposure

North America 0.30 0.75
Europe 0.10 0.55
Technology 0.20 0.50
Energy 0.20 0.80

Make the North American energy sector compose exactly 20% of the North American
investment.

%          INTC  XOM  RD       

GroupA = [   0    1   0  ];  % North American Energy

GroupB = [   1    1   0  ];  % North America

AtoBmin = 0.20;

AtoBmax = 0.20;

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

A =

    0.2000    -0.8000     0

   -0.2000     0.8000     0

b =

   0

   0

Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD satisfy the constraints.
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More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
pcalims | pcglims | pcpval | portcons | portopt

Introduced before R2006a
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pcglims
Linear inequalities for asset group minimum and maximum allocation

As an alternative to pcglims, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. This object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax
[A,b] = pcglims(Groups, GroupMin, GroupMax)

Arguments

Groups Number of groups (NGROUPS) by number of assets (NASSETS)
specification of which assets belong to which group. Each row
specifies a group. For a specific group, Group(i,j) = 1 if the
group contains asset j; otherwise, Group(i,j) = 0.

GroupMin

GroupMax

Scalar or NGROUPS-long vectors of minimum and maximum
combined allocations in each group. NaN indicates no constraint.
Scalar bounds are applied to all groups.

Description

[A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum and
maximum allocations to groups of assets. An arbitrary number of groups, NGROUPS,
comprising subsets of NASSETS investments, is allowed.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 1-
by-NASSETS vector of asset allocations.

If pcglims is called with fewer than two output arguments, the function returns A
concatenated with b [A,b].
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Examples

Asset INTC XOM RD
Region North America North America Europe
Sector Technology Energy Energy

Group Min. Exposure Max. Exposure

North America 0.30 0.75
Europe 0.10 0.55
Technology 0.20 0.50
Energy 0.50 0.50

Set the minimum and maximum investment in various groups.

%          INTC  XOM  RD       

Groups = [   1    1   0  ;  % North America

             0    0   1  ;  % Europe

             1    0   0  ;  % Technology

             0    1   1  ]; % Energy

GroupMin = [0.30

            0.10

            0.20

            0.50];

GroupMax = [0.75

            0.55

            0.50

            0.50];

[A,b] = pcglims(Groups, GroupMin, GroupMax)

A =

    -1    -1     0

     0     0    -1

    -1     0     0

     0    -1    -1

     1     1     0

     0     0     1
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     1     0     0

     0     1     1

b =

   -0.3000

   -0.1000

   -0.2000

   -0.5000

    0.7500

    0.5500

    0.5000

    0.5000

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy the constraints.

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
pcalims | pcgcomp | pcpval | portcons | portopt

Introduced before R2006a
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pcpval

Linear inequalities for fixing total portfolio value

As an alternative to pcpval, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. This object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax

[A,b] = pcpval(PortValue, NumAssets)

Arguments

PortValue Scalar total value of asset portfolio (sum of the allocations in
all assets). PortValue = 1 specifies weights as fractions of
the portfolio and return and risk numbers as rates instead of
value.

NumAssets Number of available asset investments.

Description

[A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio of
NumAssets assets to PortValue. All portfolio weights, bounds, return, and risk values
except ExpReturn and ExpCovariance (see portopt) are in terms of PortValue.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 1-
by-NASSETS vector of asset allocations.

If pcpval is called with fewer than two output arguments, the function returns A
concatenated with b [A,b].
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Examples

Scale the value of a portfolio of three assets = 1, so all return values are rates and all
weight values are in fractions of the portfolio.

PortValue = 1;

NumAssets = 3;

[A,b] = pcpval(PortValue, NumAssets)

A =

     1     1     1

    -1    -1    -1

b =

    1

   -1

Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the constraints.

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
pcalims | pcgcomp | pcglims | portcons | portopt

Introduced before R2006a
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peravg

Periodic average of FINTS object

Syntax

avgfts = peravg(tsobj)

avgfts = peravg(tsobj, numperiod)

avgfts = peravg(tsobj, daterange)

Arguments

tsobj Financial time series object
numperiod (Optional) Integer specifying the number of data points over which

each periodic average should be averaged
daterange (Optional) Time period over which the data is averaged

Description

peravg calculates periodic averages of a financial time series object. Periodic averages
are calculated from the values per period defined. If the period supplied is a character
vector, it is assumed as a range of date character vector. If the period is entered as
numeric, the number represents the number of data points (financial time series
periods) to be included in a period for the calculation. For example, if you enter
'01/01/98::01/01/99' as the period input argument, peravg returns the average of
the time series between those dates, inclusive. However, if you enter the number 5 as the
period input, peravg returns a series of averages from the time series data taken 5 date
points (financial time series periods) at a time.

avgfts = peravg(tsobj, numperiod) returns a structure avgfts that contains the
periodic (per numperiod periods) average of the financial time series object. avgfts has
field names identical to the data series names of tsobj.
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avgfts = peravg(tsobj, daterange) returns a structure avgfts that contains the
periodic (as specified by daterange) average of the financial time series object. avgfts
has field names identical to the data series names of tsobj.

Note: peravg calculates periodic averages of a FINTS object. Periodic averages are
calculated from the values per period defined. If the period supplied is a character vector,
it is assumed as a range of date character vectors. If the period is entered as numeric,
the number represents the number of data points to be included in a period for the
calculation.

Examples

If you enter 01-Jan-2001::03-Jan-2001 as the period input argument, peravg
returns the average of the time series between those dates, inclusive. However, if you
enter the number 5 as the period input, peravg returns a series of averages from the
time series data, taken 5 date points at a time.
%% Create the FINTS object %%

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ', size(dates, 1), 1), times]);

data  = [(1:6)', 2*(1:6)'];

myFts = fints(dates_times, data, {'Data1', 'Data2'}, 1, 'My first FINTS')

%% Create the FINTS object %%

[p, pFts] = peravg(myFts, 3)

 p = 

  Data1: [2 5]

  Data2: [4 10]

pFts = 

   

  desc:  My first FINTS

  freq:  Daily (1)

  

  'dates:  (2)'    'times:  (2)'    'Data1:  (2)'    'Data2:  (2)'

  '02-Jan-2001'    '11:00'          [          2]    [          4]

  '03-Jan-2001'    '12:00'          [          5]    [         10]

[p, pFts] = peravg(myFts,'01-Jan-2001 12:00::03-Jan-2001 11:00')
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p = 

   Data1: 3.5000

   Data2: 7

   

 pFts = 

   

   desc:  My first FINTS

   freq:  Daily (1)

  

   'dates:  (1)'    'times:  (1)'    'Data1:  (1)'    'Data2:  (1)'

   '03-Jan-2001'    '11:00'          [     3.5000]    [          7]

See Also
mean | tsmovavg

Introduced before R2006a
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periodicreturns
Periodic total returns from total return prices

Syntax
TotalReturn = periodicreturns(TotalReturnPrices)

TotalReturn = periodicreturns(TotalReturnPrices, Period)

Arguments

TotalReturnPrices TotalReturnPrices can be the number of observations
(NUMOBS) by number of assets (NASSETS + 1) matrix
of total return prices for a given security. Column 1
contains MATLAB serial date numbers. The remaining
columns contain total return price data. In addition,
TotalReturnPrices can also be a table where the first
column of the table represents the dates (as either serial
date numbers, date character vectors, or datetime arrays)
while the other columns represent the returns data. If a
table is used, TotalReturn is returned as a table.

Period (Optional) Periodicity flag used to compute total returns:
'd' = daily values (default)
'w' = weekly values
'm' = monthly values
n = rolling return periodic values, where n is an integer

Description

TotalReturn = periodicreturns(TotalReturnPrices) calculates the daily total
returns from a daily total return price series.

TotalReturn = periodicreturns(TotalReturnPrices, Period) calculates the
total returns for a periodicity that you specify from a daily total return price series.

18-1144



 periodicreturns

If TotalReturnPrices input is a matrix, TotalReturn is a NUMOBS-by-NASSETS
+ 1 matrix containing month-end dates and return values. Each row represents an
observation. Column 1 contains month-end dates in MATLAB serial date number format.
The remaining columns contain monthly return values.

Note: Although input returns can have dates in either ascending or descending
order, output total returns in TotalReturn have dates in ascending order, with the
earliest date in the first row TotalReturn, and the most recent date in the last row of
TotalReturn.

If TotalReturnPrices input is a table where the first column of the table represents
the dates (as either serial date numbers, date character vectors, or datetime arrays)
while the other columns represent the returns data, TotalReturn is returned as a table.

Examples

Compute TotalReturn Using datetime Input for TotalReturnPrices

Compute TotalReturn returned as a table using datetime input in a table for
TotalReturnPrices.

Dates = datetime(2015,1,1:10,'Locale','en_US')';

Prices = [0.01 0.03 0.1  -0.05  0.02 0.07 0.03 -0.01 -0.02 0.01]';

TotalReturnPrices = table(Dates,Prices);

TotalReturn = periodicreturns(TotalReturnPrices)

TotalReturn = 

       Dates        Prices 

    ___________    ________

    02-Jan-2015           2

    03-Jan-2015      2.3333

    04-Jan-2015        -1.5

    05-Jan-2015        -1.4

    06-Jan-2015         2.5

    07-Jan-2015    -0.57143

    08-Jan-2015     -1.3333

    09-Jan-2015           1
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    10-Jan-2015        -1.5

• “Portfolio Construction Examples” on page 3-7

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
totalreturnprice

Introduced before R2006a
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plot
Plot data series

Syntax
plot(tsobj)

hp = plot(tsobj)

plot(tsobj, linefmt)

hp = plot(tsobj, linefmt)

plot(..., volumename, bar)

hp = plot(..., volumename, bar)

Arguments

tsobj Financial time series object.
linefmt (Optional) Line format.
volumename (Optional) Specifies which data series is the volume series.

volumename must be the exact data series name for the volume
column (case sensitive).

bar (Optional)

• bar = 0 — (Default) Plot volume as a line.
• bar = 1 — Plot volume as a bar chart. The width of each bar is

the same as the default in bar, barh.

Description

plot(tsobj) plots the data series contained in the object tsobj. Each data series is a
line. plot automatically generates a legend and dates on the x-axis. Grid is turned on by
default. plot uses the default color order as if plotting a matrix.
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The plot command automatically creates subplots when multiple time series are
encountered, and they differ greatly on their decimal scales. For example, subplots are
generated if one time series data set is in the 10s and another is in the 10,000s.

hp = plot(tsobj) also returns the handle(s) to the object(s) inside the plot figure. If
there are multiple lines in the plot, hp is a vector of multiple handles.

plot(tsobj, linefmt) plots the data series in tsobj using the line format specified.
For a list of possible line formats, see plot in the MATLAB documentation. The plot
legend is not generated, but the dates on the x-axis and the plot grid are. The specified
line format is applied to all data series; that is, all data series have the same line type.

hp = plot(tsobj, linefmt) plots the data series in tsobj using the format
specified. The plot legend is not generated, but the dates on the x-axis and the plot grid
are. The specified line format is applied to all data series, that is, all data series can
have the same line type. If there are multiple lines in the plot, hp is a vector of multiple
handles.

plot(..., volumename, bar) also specifies which data series is the volume. The
volume is plotted in a subplot below the other data series. If bar = 1, the volume is
plotted as a bar chart. Otherwise, a line plot is used.

hp = plot(..., volumename, bar) returns handles for each line. If bar = 1, the
handle to the patch for the bars is also returned.

Note To turn off the legend, enter legend off at the MATLAB command line. Once
you turn it off, the legend is deleted. To turn it back on, recreate it using the legend
command as if you are creating it for the first time. To turn off the grid, enter grid off.
To turn it back on, enter grid on.

See Also
candle | chartfts | grid | highlow | legend | plot

Related Examples
• “Charting Financial Data” on page 2-12

Introduced before R2006a
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plotFrontier

Plot efficient frontier

Use the plotFrontier function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to plot the efficient frontier for a portfolio object.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

[prsk,pret] = plotFrontier(obj)

[prsk,pret] = plotFrontier(obj,varargin)

Description

[prsk,pret] = plotFrontier(obj) plots the efficient frontier for a portfolio object.

[prsk,pret] = plotFrontier(obj,varargin) plot the efficient frontier for
a portfolio object with multiple types of input methods. There are four ways to use
plotFrontier:

• Method 1 — Given a portfolio object obj, estimate the efficient frontier with default
number of 10 portfolios on the frontier.

• Method 2 — Given a portfolio object obj, estimate the efficient frontier with a
specified number of portfolios NumPorts on the frontier.

• Method 3 — Given a portfolio object obj with estimated efficient portfolios in
PortWeights, plot the efficient frontier with those portfolios. This method assumes
that you provide valid efficient portfolios as input.

• Method 4 — Given a portfolio object obj with estimated portfolio risks (PortRisk)
and returns (PortReturn), plot the efficient frontier. This method assumes that you
provide valid inputs for efficient portfolio risks and returns.

18-1149



18 Functions — Alphabetical List

Note: plotFrontier handles multiple input formats as described above. Given an asset
universe with NumAssets assets and an efficient frontier with NumPorts portfolios,
remember that portfolio weights are NumAsset-by-NumPorts matrices and that portfolio
risks and returns are NumPorts column vectors.

Examples

Plot the Efficient Frontier for the Portfolio Object

Given a portfolio p, plot the efficient frontier.

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));

p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);

p = setDefaultConstraints(p);

plotFrontier(p);
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Plot the Efficient Frontier for the PortfolioCVaR Object

Given a PortfolioCVaR p, plot the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
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p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);

Plot Efficient Frontier for PortfolioMAD Object

Given a PortfolioMAD p, plot the efficient frontier.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;
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    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

plotFrontier(p);

• “Plotting the Efficient Frontier for a Portfolio Object” on page 4-124
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• “Plotting the Efficient Frontier for a PortfolioCVaR Object” on page 5-116
• “Plotting the Efficient Frontier for a PortfolioMAD Object” on page 6-110
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

varargin — Optional input methods
vector for NumPorts, PortRisk, PortReturn, or PortWeights

Optional input methods, specified as varargin can be NumPorts, PortRisk,
PortReturn, or PortWeights depending on which of these four input methods you use:

• Method 1 — Given a portfolio object obj, estimate the efficient frontier with the
default number of 10 portfolios on the frontier:

[prsk, pret] = plotFrontier(obj)

• Method 2 — Given a portfolio object obj, estimate the efficient frontier with a
specified number of portfolios NumPorts on the frontier:

[prsk, pret] = plotFrontier(obj,NumPorts)

• Method 3 — Given a portfolio object obj with estimated efficient portfolios in
PortWeights, plot the efficient frontier with those portfolios:

[prsk, pret] = plotFrontier(obj,PortWeights)

The plotFrontier function assumes that you provide valid efficient portfolios as
inputs.

• Method 4 — Given a portfolio object obj with estimated portfolio risks (PortRisk)
and returns (PortReturn), plot the efficient frontier:
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[prsk, pret] = plotFrontier(obj,PortRisk,PortReturn)

The plotFrontier function assumes that you provide valid efficient portfolio risks
and returns as inputs.

Data Types: double

Output Arguments

prsk — Estimated efficient portfolio risks (standard deviation of returns
vector

Estimated efficient portfolio risks (standard deviation of returns, returned as a vector for
a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note:

• If the portfolio object has a name in the Name property, the name is displayed as the
title of the plot. Otherwise, the plot is just labeled “Efficient Frontier.”

• If the portfolio object has an initial portfolio in the InitPort property, the initial
portfolio is plotted and labeled.

• If portfolio risks and returns are inputs, make sure that risks come first in the calling
sequence. In addition, if portfolio risks and returns are not sorted in ascending order,
this method performs the sort. On output, the sorted moments are returned.

pret — Estimated efficient portfolio returns
vector

Estimated efficient portfolio returns, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note:

• If the portfolio object has a name in the Name property, the name is displayed as the
title of the plot. Otherwise, the plot is labeled “Efficient Frontier.”

• If the portfolio object has an initial portfolio in the InitPort property, the initial
portfolio is plotted and labeled.
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• If portfolio risks and returns are inputs, make sure that risks come first in the calling
sequence. In addition, if portfolio risks and returns are not sorted in ascending order,
this method performs the sort. On output, the sorted moments are returned.

More About

Tips

You can also use dot notation to plot the efficient frontier.

[prsk, pret] = obj.plotFrontier;

• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Introduced in R2011a
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plus
Financial time series addition

Syntax
newfts = tsobj_1 + tsobj_2

newfts = tsobj + array

newfts = array + tsobj

Arguments

tsobj_1, tsobj_2 A pair of financial time series objects.
array A scalar value or array with the number of rows equal to the

number of dates in tsobj and the number of columns equal
to the number of data series in tsobj.

Description

plus is an element-by-element addition of the components.

newfts = tsobj_1 + tsobj_2 adds financial time series objects. If an object is to be
added to another object, both objects must have the same dates and data series names,
although the order need not be the same. The order of the data series, when one financial
time series object is added to another, follows the order of the first object.

newfts = tsobj + array  adds an array element by element to a financial time
series object.

newfts = array + tsobj adds a financial time series object element by element to an
array.

See Also
minus | rdivide | times
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Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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pointfig

Point and figure chart

Syntax

pointfig(Asset)

Description

pointfig(Asset) plots a point and figure chart for a vector of price data Asset.
Upward price movements are plotted as X's and downward price movements are plotted
as O's.

Examples

Create a Point and Figure Chart for an Equity's Closing Prices

Using the price data for the equity DIS, plot a point and figure chart for the closing
prices.

load disney;

pointfig(dis_CLOSE)

18-1159



18 Functions — Alphabetical List

• “Charting Financial Data” on page 2-12

See Also
bolling | candle | dateaxis | highlow | movavg

Introduced before R2006a
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portalloc

Optimal capital allocation to efficient frontier portfolios

Syntax

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk,

OverallReturn] = portalloc(PortRisk, PortReturn, PortWts,

RisklessRate, BorrowRate, RiskAversion)

Arguments

PortRisk Standard deviation of each risky asset efficient frontier
portfolio. A number of portfolios (NPORTS-by-1 vector).

PortReturn Expected return of each risky asset efficient frontier
portfolio. An NPORTS-by-1 vector.

PortWts Weights allocated to each asset. An NPORTS by number of
assets (NASSETS) matrix of weights allocated to each asset.
Each row represents an efficient frontier portfolio of risky
assets. Total of all weights in a portfolio is 1.

RisklessRate Risk-free lending rate. A decimal number.
BorrowRate (Optional) Borrowing rate. A decimal number. If borrowing

is not desired, or not an option, set to NaN (default).
RiskAversion (Optional) Coefficient of investor's degree of risk aversion.

Higher numbers indicate greater risk aversion. Typical
coefficients range from 2.0 through 4.0 (Default = 3).

Note: Consider that a less risk-averse investor would be
expected to accept much greater risk and, consequently,
a more risk-averse investor would accept less risk
for a given level of return. Therefore, making the
RiskAversionargument higher reflects the risk-return
tradeoff in the data.
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Description

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk,

OverallReturn] = portalloc(PortRisk, PortReturn, PortWts,

RisklessRate, BorrowRate, RiskAversion) computes the optimal risky portfolio,
and the optimal allocation of funds between the risky portfolio and the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.

RiskyReturn is the expected return of the optimal risky portfolio.

RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky portfolio.
The total of all weights in the portfolio is 1.

RiskyFraction is the fraction of the complete portfolio allocated to the risky portfolio.

OverallRisk is the standard deviation of the optimal overall portfolio.

OverallReturn is the expected rate of return of the optimal overall portfolio.

portalloc generates a plot of the optimal capital allocation if you invoke it without
output arguments.

Examples

Compute the Optimal Risky Portfolio

This example shows how to compute the optimal risky portfolio by generating the
efficient frontier from the asset data and then finding the optimal risky portfolio and
allocate capital. The risk-free investment return is 8%, and the borrowing rate is 12%.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005   -0.010    0.004

                -0.010    0.040   -0.002

                 0.004   -0.002    0.023];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...

ExpCovariance);

RisklessRate  = 0.08;

BorrowRate    = 0.12;
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RiskAversion  = 3;

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...

OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...

PortWts, RisklessRate, BorrowRate, RiskAversion)

RiskyRisk =

    0.1283

RiskyReturn =

    0.1788

RiskyWts =

    0.0265    0.6023    0.3712

RiskyFraction =

    1.1898

OverallRisk =

    0.1527

OverallReturn =

    0.1899

• “Portfolio Construction Examples” on page 3-7

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)
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References

Bodie, Kane, and Marcus. Investments. Second Edition. Chapters 6 and 7.

See Also
portrand | portstats

Introduced before R2006a
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portalpha
Compute risk-adjusted alphas and returns for one or more assets

Syntax
portalpha(Asset, Benchmark)

portalpha(Asset, Benchmark, Cash)

portalpha(Asset, Benchmark, Cash, Choice)

Alpha = portalpha(Asset, Benchmark, Cash, Choice)

[Alpha, RAReturn] = portalpha(Asset, Benchmark, Cash, Choice)

Arguments

Asset NUMSAMPLES x NUMSERIES matrix with NUMSAMPLES
observations of asset returns for NUMSERIES asset return
series.

Benchmark NUMSAMPLES vector of returns for a benchmark asset. The
periodicity must be the same as the periodicity of Asset.
For example, if Asset is monthly data, then Benchmark
should be monthly returns.

Cash (Optional) Either a scalar return for a riskless asset or a
vector of asset returns to be a proxy for a “riskless” asset.
In either case, the periodicity must be the same as the
periodicity of Asset. For example, if Asset is monthly data,
then Cash must be monthly returns. If no value is supplied,
the default value for Cash returns is 0.

Choice (Optional) A character vector, or cell array of character
vectors to indicate one or more measures to be computed
from among a number of risk-adjusted alphas and return
measures. The number of choices selected in Choice is
NUMCHOICES. The list of choices is given in the following
table:
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Code Description

'xs' Excess Return (no risk adjustment)
'sml' Security Market Line
'capm' Jensen's Alpha
'mm' Modigliani & Modigliani
'gh1' Graham-Harvey 1
'gh2' Graham-Harvey 2
'all' Compute all measures

Choice is specified by using the code from the table (for
example, to select the Modigliani & Modigliani measure,
Choice = 'mm'). A single choice is either a character vector
or a scalar cell array with a single code from the table.

Multiple choices can be selected with a cell array of
character vectors for choice codes (for example, to select both
Graham-Harvey measures, Choice = {'gh1','gh2'}).
To select all choices, specify Choice = 'all'. If no value is
supplied, the default choice is to compute the excess return
with Choice = 'xs'. Choice is not case-sensitive.

Description

Given NUMSERIES assets with NUMSAMPLES returns in a NUMSAMPLES-by-NUMSERIES
matrix Asset, a NUMSAMPLES vector of Benchmark returns, and either a scalar Cash
return or a NUMSAMPLES vector of Cash returns, compute risk-adjusted alphas and
returns for one or more methods specified by Choice.

To summarize the outputs of portalpha:

• Alpha is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted alphas for each series
in Asset with each row corresponding to a specified measure in Choice.

• RAReturn is a NUMCHOICES-by-NUMSERIES matrix of risk-adjusted returns for each
series in Asset with each row corresponding to a specified measure in Choice.
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Note: NaN values in the data are ignored and, if NaNs are present, some results could
be unpredictable. Although the alphas are comparable across measures, risk-adjusted
returns depend on whether the Asset or Benchmark is levered or unlevered to match its
risk with the alternative. If Choice = 'all', the order of rows in Alpha and RAReturn
follows the order in the table. In addition, Choice = 'all' overrides all other choices.

Examples

See “Risk-Adjusted Return” on page 7-12.

References

John Lintner. "The Valuation of Risk Assets and the Selection of Risky Investments in
Stocks Portfolios and Capital Budgets." Review of Economics and Statistics. Vol. 47, No.
1, February 1965, pp. 13–37.

John R. Graham and Campbell R. Harvey. "Market Timing Ability and Volatility Implied
in Investment Newsletters' Asset Allocation Recommendations." Journal of Financial
Economics. Vol. 42, 1996, pp. 397–421.

Franco Modigliani and Leah Modigliani. "Risk-Adjusted Performance: How to Measure It
and Why." Journal of Portfolio Management. Vol. 23, No. 2, Winter 1997, pp. 45–54.

Jan Mossin. "Equilibrium in a Capital Asset Market." Econometrica. Vol. 34, No. 4,
October 1966, pp. 768–783.

William F. Sharpe. "Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk." Journal of Finance. Vol. 19, No. 3, September 1964, pp. 425–442.

More About
• “Performance Metrics Overview” on page 7-2
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
inforatio | sharpe
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Introduced in R2006b
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portcons
Portfolio constraints

As an alternative to portcons, use the Portfolio object (Portfolio) for mean-variance
portfolio optimization. This object supports gross or net portfolio returns as the return
proxy, the variance of portfolio returns as the risk proxy, and a portfolio set that is any
combination of the specified constraints to form a portfolio set. For information on the
workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-18.

Syntax
ConSet = portcons(varargin)

Description

Using linear inequalities, portcons generates a matrix of constraints for a portfolio of
asset investments. The matrix ConSet is defined as ConSet = [A b]. A is a matrix and
b a vector such that A*PortWts' <= b sets the value, where PortWts is a 1-by-number
of assets (NASSETS) vector of asset allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates a matrix
ConSet, based on the constraint type ConstType, and the constraint parameters
Data1, ..., DataN.

ConSet = portcons('ConstType1', Data11, ..., Data21, ...,

Data2N, ...) creates a matrix ConSet, based on the constraint types ConstTypeN,
and the corresponding constraint parameters DataN1, ..., DataNN.

Constraint Type Description Values

Default All allocations
are >= 0; no short
selling allowed.
Combined value of
portfolio allocations
normalized to 1.

NumAssets (required). Scalar representing number
of assets in portfolio.
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Constraint Type Description Values

PortValue Fix total value of
portfolio to PVal.

PVal (required). Scalar representing total value of
portfolio.

NumAssets (required). Scalar representing number
of assets in portfolio. See pcpval.

AssetLims Minimum and
maximum allocation
per asset.

AssetMin (required). Scalar or vector of length
NASSETS, specifying minimum allocation per asset.

AssetMax (required). Scalar or vector of length
NASSETS, specifying maximum allocation per asset.

NumAssets (optional). See pcalims.
GroupLims Minimum and

maximum allocations
to asset group.

Groups (required). NGROUPS-by-NASSETS matrix
specifying which assets belong to each group.

GroupMin (required). Scalar or a vector of length
NGROUPS, specifying minimum combined allocations
in each group.

GroupMax (required). Scalar or a vector of length
NGROUPS, specifying maximum combined allocations
in each group.

See pcglims.
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Constraint Type Description Values

GroupComparison Group-to-group
comparison
constraints.

GroupA (required). NGROUPS-by-NASSETS matrix
specifying first group in the comparison.

AtoBmin (required). Scalar or vector of length
NGROUPS specifying minimum ratios of allocations in
GroupA to allocations in GroupB.

AtoBmax (required). Scalar or vector of length
NGROUPS specifying maximum ratios of allocations
in GroupA to allocations in GroupB.

GroupB (required). NGROUPS-by-NASSETS matrix
specifying second group in the comparison.

See pcgcomp.
Custom Custom linear

inequality constraints
A*PortWts' <= b.

A (required). NCONSTRAINTS-by-NASSETS matrix,
specifying weights for each asset in each inequality
equation.

b (required). Vector of length NCONSTRAINTS
specifying the right-hand sides of the inequalities.

Note: For more information using Custom, see
“Specifying Group Constraints” on page 3-39.

Examples

Constrain a portfolio of three assets:

Asset IBM HPQ XOM
Group A A B
Minimum Weight 0 0 0
Maximum Weight 0.5 0.9 0.8

NumAssets = 3;

PVal = 1; % Scale portfolio value to 1.
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AssetMin = 0;

AssetMax = [0.5 0.9 0.8];

GroupA = [1 1 0];

GroupB = [0 0 1];

AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value 

              % in group B.

ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',... 

AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,... 

AtoBmax, GroupB)  

ConSet =

    1.0000    1.0000    1.0000    1.0000

   -1.0000   -1.0000   -1.0000   -1.0000

    1.0000         0         0    0.5000

         0    1.0000         0    0.9000

         0         0    1.0000    0.8000

   -1.0000         0         0         0

         0   -1.0000         0         0

         0         0   -1.0000         0

    1.0000    1.0000   -1.5000         0

For instance, one possible solution for portfolio weights that satisfy the constraints is
30% in IBM, 30% in HPQ, and 40% in XOM.

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
pcalims | pcgcomp | pcglims | pcpval | portopt

Introduced before R2006a
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Portfolio
Portfolio object for mean-variance portfolio optimization and analysis

Description
The Portfolio object implements mean-variance portfolio optimization. Portfolio objects
support functions that are specific to mean-variance portfolio optimization.

The main workflow for portfolio optimization is to create an instance of a Portfolio
object that completely specifies a portfolio optimization problem and to operate on the
Portfolio object using supported functions to obtain and analyze efficient portfolios.
A mean-variance optimization problem is completely specified with the following three
elements:

• A universe of assets with estimates for the prospective mean and covariance of asset
total returns for a period of interest.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of
constraints.

• A model for portfolio return and risk, which, for mean-variance optimization, is either
the gross or net mean of portfolio returns and the standard deviation of portfolio
returns.

After you specify these three elements in an unambiguous way, you can solve and
analyze portfolio optimization problems. The simplest mean-variance portfolio
optimization problem has:

• A mean and covariance of asset total returns
• Nonnegative weights for all portfolios that sum to 1 (the summation constraint is

known as a budget constraint)
• Built-in models for portfolio return and risk that use the mean and covariance of asset

total returns

Given mean and covariance of asset returns in the variables AssetMean and
AssetCovar, this problem is completely specified by:
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar,...

'LowerBound', 0, 'UpperBudget',1, 'LowerBudget',1)

or equivalently by:

p = Portfolio;
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p = setAssetMoments(p, AssetMean, AssetCovar); 

p = setDefaultConstraints(p);

For more information on the workflow when using Portfolio objects, see “Portfolio Object
Workflow” on page 4-18 and for more detailed information on the theoretical basis for
mean-variance optimization, see “Portfolio Optimization Theory” on page 4-3.

Create Object

To create a Portfolio object, use the Portfolio function. For more details on working
with a Portfolio object, see:

• “Portfolio Object Properties and Functions” on page 4-20
• “Working with Portfolio Objects” on page 4-20
• “Setting and Getting Properties” on page 4-21
• “Displaying Portfolio Objects” on page 4-22
• “Saving and Loading Portfolio Objects” on page 4-22
• “Estimating Efficient Portfolios and Frontiers” on page 4-22
• “Arrays of Portfolio Objects” on page 4-22
• “Subclassing Portfolio Objects” on page 4-23
• “Conventions for Representation of Data” on page 4-23

Properties
Portfolio Properties Manage Portfolio object for mean-variance

portfolio optimization and analysis

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
getAssetMoments Obtain mean and covariance of asset

returns from Portfolio object
setAssetMoments Set moments (mean and covariance) of asset

returns for Portfolio object
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estimateAssetMoments Estimate mean and covariance of asset
returns from data

setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio

weights to existing constraints
addGroupRatio Add group ratio constraints for portfolio

weights to existing group ratio constraints
addGroups Add group constraints for portfolio weights

to existing group constraints
addInequality Add linear inequality constraints for

portfolio weights to existing constraints
getBounds Obtain bounds for portfolio weights from

portfolio object
getBudget Obtain budget constraint bounds from

portfolio object
getCosts Obtain buy and sell transaction costs from

portfolio object
getEquality Obtain equality constraint arrays from

portfolio object
getGroupRatio Obtain group ratio constraint arrays from

portfolio object
getGroups Obtain group constraint arrays from

portfolio object
getInequality Obtain inequality constraint arrays from

portfolio object
getOneWayTurnover Obtain one-way turnover constraints from

portfolio object
setGroups Set up group constraints for portfolio

weights
setInequality Set up linear inequality constraints for

portfolio weights
setBounds Set up bounds for portfolio weights
setBudget Set up budget constraints
setCosts Set up proportional transaction costs
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
setEquality Set up linear equality constraints for

portfolio weights
setGroupRatio Set up group ratio constraints for portfolio

weights
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setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover

constraints
setTurnover Set up maximum portfolio turnover

constraint
setTrackingPort Set up benchmark portfolio for tracking

error constraint
setTrackingError Set up maximum portfolio tracking error

constraint
checkFeasibility Check feasibility of input portfolios against

portfolio object
estimateBounds Estimate global lower and upper bounds for

set of portfolios
estimateFrontier Estimate specified number of optimal

portfolios on the efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted

portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted

portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of

efficient frontier
plotFrontier Plot efficient frontier
estimateMaxSharpeRatio Estimate efficient portfolio to maximize

Sharpe ratio for Portfolio object
estimatePortMoments Estimate moments of portfolio returns for

Portfolio object
estimatePortReturn Estimate mean of portfolio returns
estimatePortRisk Estimate portfolio risk according to risk

proxy associated with corresponding object
setSolver Choose main solver and specify associated

solver options for portfolio optimization

Examples

Construct a Portfolio Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse
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p = Portfolio('AssetList',Assets(1:12));

p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);

p = setDefaultConstraints(p);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

 pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5

    AAPL     0.017926    0.058247    0.097816    0.12955    0    

    AMZN            0           0           0          0    0    

    CSCO            0           0           0          0    0    

    DELL    0.0041906           0           0          0    0    

    EBAY            0           0           0          0    0    

    GOOG      0.16144     0.35678     0.55228    0.75116    1    

    HPQ      0.052566    0.032302    0.011186          0    0    

    IBM       0.46422     0.36045     0.25577    0.11928    0    

    INTC            0           0           0          0    0    

    MSFT      0.29966     0.19222    0.082949          0    0    

    ORCL            0           0           0          0    0    

    YHOO            0           0           0          0    0    
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• “Creating the Portfolio Object” on page 4-25
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Asset Allocation Case Study” on page 4-167
• “Portfolio Optimization Examples” on page 4-139

18-1178



 Portfolio

References

For a complete list of references for the Portfolio object, see “Portfolio Optimization” on
page A-11.

See Also
PortfolioCVaR | PortfolioMAD

More About
• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)

Introduced in R2011a
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Portfolio
Create Portfolio object for mean-variance portfolio optimization

Use the Portfolio function to create a Portfolio object for mean-variance portfolio
optimization. For more information, see Portfolio.

You can use the Portfolio function in several ways. To set up a portfolio optimization
problem in a Portfolio object, the simplest syntax is:

p = Portfolio;

This syntax creates a Portfolio object, p, such that all object properties are empty.

The Portfolio function also accepts collections of argument name-value pair
arguments for properties and their values. The Portfolio function accepts inputs for
properties with the general syntax:

 p = Portfolio('property1', value1, 'property2', value2, ... );

If a Portfolio object exists, the syntax permits the first (and only the first argument) of
the Portfolio function to be an existing object with subsequent argument name-value
pair arguments for properties to be added or modified. For example, given an existing
Portfolio object in p, the general syntax is:

p = Portfolio(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 18-1196). The Portfolio function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a Portfolio object is a value object so that, given
portfolio p, the following code creates two objects, p and q, that are distinct:

q = Portfolio(p, ...)

After creating a Portfolio object, you can use the associated object functions to set
portfolio constraints, analyze the efficient frontier, and validate the portfolio model.

For details on this workflow, see “Portfolio Object Workflow” on page 4-18 and for
more detailed information on the theoretical basis for mean-variance optimization, see
“Portfolio Optimization Theory” on page 4-3.
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Syntax

p = Portfolio

p = Portfolio(Name,Value)

p = Portfolio(p,Name,Value)

Description

p = Portfolio constructs an empty Portfolio object for mean-variance portfolio
optimization and analysis. You can then add elements to the Portfolio object using the
supported add and set functions. For more information, see “Creating the Portfolio
Object” on page 4-25..

p = Portfolio(Name,Value) constructs a Portfolio object for mean-variance portfolio
optimization and analysis with additional options specified by one or more Name,Value
arguments.

p = Portfolio(p,Name,Value) constructs a Portfolio object for mean-variance
portfolio optimization and analysis using a previously constructed Portfolio object p with
additional options specified by one or more Name,Value arguments.

Examples

Create an Empty Portfolio Object

You can create a Portfolio object, p, with no input arguments and display it using disp.

p = Portfolio;

disp(p);

  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: []

       AssetCovar: []

    TrackingError: []

     TrackingPort: []
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         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: []

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: []

       UpperBound: []

      LowerBudget: []

      UpperBudget: []

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

This approach provides a way to set up a portfolio optimization problem with the
Portfolio function. You can then use the associated set functions to set and modify
collections of properties in the Portfolio object.

Create a Portfolio Object Using a Single-Step Setup

You can use the Portfolio function directly set up a “standard” portfolio optimization
problem, given a mean and covariance of asset returns in the variables m and C.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio('assetmean', m, 'assetcovar', C, ...

'lowerbudget', 1, 'upperbudget', 1, 'lowerbound', 0)

p = 
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  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 4

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Note that the LowerBound property value undergoes scalar expansion since AssetMean
and AssetCovar provide the dimensions of the problem.

Create a Portfolio Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting
up a “standard” portfolio optimization problem, given a mean and covariance of asset
returns in the variables m and C (which also illustrates that argument names are not case
sensitive).

m = [ 0.05; 0.1; 0.12; 0.18 ];
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C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = Portfolio(p, 'assetmean', m, 'assetcovar', C);

p = Portfolio(p, 'lowerbudget', 1, 'upperbudget', 1);

p = Portfolio(p, 'lowerbound', 0);

plotFrontier(p);

This way works because the calls to the Portfolio function are in this particular order.
In this case, the call to initialize AssetMean and AssetCovar provides the dimensions
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for the problem. If you were to do this step last, you would have to explicitly dimension
the LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = Portfolio(p, 'LowerBound', zeros(size(m)));

p = Portfolio(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = Portfolio(p, 'AssetMean', m, 'AssetCovar', C);

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the
Portfolio function assumes that you are defining a single-asset problem and produces
an error at the call to set asset moments with four assets.

Create a Portfolio Object Using Shortcuts for Property Names

You can create a Portfolio object, p with the Portfolio function using shortcuts for
property names.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

18-1186



 Portfolio

p = Portfolio('mean', m, 'covar', C, 'budget', 1, 'lb', 0)

p = 

  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 4

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly, however no error-checking is
done on your inputs.

m = [ 0.05; 0.1; 0.12; 0.18 ];
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C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p.NumAssets = numel(m);

p.AssetMean = m;

p.AssetCovar = C;

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

disp(p)

  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 4

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []
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Construct a Portfolio Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));

p = estimateAssetMoments(p, Data(:,1:12),'missingdata',true);

p = setDefaultConstraints(p);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

 pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1        Port2       Port3       Port4      Port5

    AAPL     0.017926    0.058247    0.097816    0.12955    0    

    AMZN            0           0           0          0    0    

    CSCO            0           0           0          0    0    

    DELL    0.0041906           0           0          0    0    

    EBAY            0           0           0          0    0    

    GOOG      0.16144     0.35678     0.55228    0.75116    1    

    HPQ      0.052566    0.032302    0.011186          0    0    

    IBM       0.46422     0.36045     0.25577    0.11928    0    

    INTC            0           0           0          0    0    

    MSFT      0.29966     0.19222    0.082949          0    0    

    ORCL            0           0           0          0    0    

    YHOO            0           0           0          0    0    
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• “Creating the Portfolio Object” on page 4-25
• “Setting and Getting Properties” on page 4-21
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Common Operations on the Portfolio Object” on page 4-33
• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-44
• “Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object” on

page 4-104
• “Estimate Efficient Frontiers for Portfolio Object” on page 4-121
• “Validate the Portfolio Problem for Portfolio Object” on page 4-99
• “Asset Allocation Case Study” on page 4-167
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• “Portfolio Optimization Examples” on page 4-139

Input Arguments

p — Previously constructed Portfolio object
object

Previously constructed Portfolio object, specified using the Portfolio function

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p = Portfolio('AssetList',Assets(1:12));

'AEquality' — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

'AInequality' — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

'AssetCovar' — Covariance of asset returns
[] (default) | square matrix

Covariance of asset returns, specified as a square matrix.
Data Types: double

'AssetList' — cell array of character vectors
[] (default) | square matrix

Names or symbols of assets in the universe, specified as a cell array of character vectors.

18-1191



18 Functions — Alphabetical List

Data Types: cell

'AssetMean' — Mean of asset returns
[] (default) | vector

Mean of asset returns, specified as a vector.
Data Types: double

'bEquality' — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

'bInequality' — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

'BuyCost' — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

'BuyTurnover' — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

'GroupA' — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

'GroupB' — Group B weights
[] (default) | matrix
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Group B weights, specified as a matrix.
Data Types: double

'GroupMatrix' — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

'InitPort' — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

'LowerBound' — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

'LowerBudget' — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

'LowerGroup' — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

'LowerRatio' — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double
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'Name' — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

'NumAssets' — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

'RiskFreeRate' — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

'SellCost' — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

'SellTurnover' — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

'TrackingError' — Upper bound for tracking error constraint
[] (default) | scalar

Upper bound for tracking error constraint, specified as a scalar.
Data Types: double

'TrackingPort' — Tracking portfolio for tracking error constraint
[] (default) | vector

Tracking portfolio for tracking error constraint, specified as a vector.
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Data Types: double

'Turnover' — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

'UpperBound' — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

'UpperBudget' — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

'UpperGroup' — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

'UpperRatio' — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

Output Arguments

p — Updated Portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, For more information on using the
Portfolio object, see Portfolio.
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More About

Mean-Variance Portfolio Optimization

For more information on the theory and definition of mean-variance optimization
supported by portfolio optimization tools in Financial Toolbox, see “Portfolio
Optimization Theory” on page 4-3.

Portfolio Problem Sufficiency

A mean-variance portfolio optimization is completely specified with the Portfolio object if
these two conditions are met:

• The moments of asset returns must be specified such that the property AssetMean
contains a valid finite mean vector of asset returns and the property AssetMean
contains a valid symmetric positive-semidefinite matrix for the covariance of asset
returns.

The first condition is satisfied by setting the properties associated with the moments
of asset returns.

• The set of feasible portfolios must be a nonempty compact set, where a compact set is
closed and bounded.

The second condition is satisfied by an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets
must be bounded, either explicit or implicit constraints can be imposed, and several
functions, such as estimateBounds, provide ways to ensure that your problem is
properly formulated.

Although the general sufficiency conditions for mean-variance portfolio optimization
go beyond these two conditions, the Portfolio object implemented in Financial Toolbox
implicitly handles all these additional conditions. For more information on the
Markowitz model for mean-variance portfolio optimization, see “Portfolio Optimization”
on page A-11.

Shortcuts for Property Names

The Portfolio function has shorter argument names that replace longer argument
names associated with specific properties of the Portfolio object.

For example, rather than enter 'assetcovar', the Portfolio function accepts the
case-insensitive name 'covar' to set the AssetCovar property in a Portfolio object.
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Every shorter argument name corresponds with a single property in the Portfolio
function. The one exception is the alternative argument name 'budget', which signifies
both the LowerBudget and UpperBudget properties. When 'budget' is used, then
the LowerBudget and UpperBudget properties are set to the same value to form an
equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

covar AssetCovar

assetnames or assets AssetList

mean AssetMean

be bEquality

bi bInequality

group GroupMatrix

lb LowerBound

n or num NumAssets

rfr RiskFreeRate

ub UpperBound

budget UpperBudget and LowerBudget

• “Portfolio Optimization Theory” on page 4-3
• “Portfolio Object Workflow” on page 4-18
• Getting Started with Portfolio Optimization (13 min 31 sec)

References

For a complete list of references for the Portfolio object, see “Portfolio Optimization” on
page A-11.

See Also
estimateFrontier | plotFrontier
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Introduced in R2011a
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Portfolio Properties
Manage Portfolio object for mean-variance portfolio optimization and analysis

Description
The main workflow for portfolio optimization is to create an instance of a Portfolio
object that completely specifies a portfolio optimization problem and to operate on the
Portfolio object using the supported object functions to obtain and analyze efficient
portfolios.

The Portfolio object and its associated functions are an interface for mean-variance
portfolio optimization. So, almost everything you do with the Portfolio object can be done
using the associated functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the Portfolio function to create the Portfolio object or use the various set

functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a Portfolio object, you can save
and load objects from your workspace and create and manipulate arrays of objects. After
settling on a problem, which, in the case of mean-variance portfolio optimization, means
that you have either data or moments for asset returns and a collection of constraints
on your portfolios, use the Portfolio function to set the properties for the Portfolio
object. The Portfolio function lets you create an object from scratch or update an
existing object. Since the Portfolio object is a value object, it is easy to create a basic
object, then use functions to build upon the basic object to create new versions of the
basic object. This is useful to compare a basic problem with alternatives derived from the
basic problem. For details, see “Creating the Portfolio Object” on page 4-25.

For more information on the workflow when using Portfolio objects, see “Portfolio Object
Workflow” on page 4-18.

Setting Up the Object

AssetList — Names or symbols of assets in universe
[] (default) | cell array of character vectors
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Names or symbols of assets in the universe, specified as a cell array of character vectors.
Data Types: cell

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
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Data Types: double

bInequality — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

18-1201



18 Functions — Alphabetical List

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

TrackingError — Upper bound for tracking error constraint
[] (default) | scalar

Upper bound for tracking error constraint, specified as a scalar.
Data Types: double

TrackingPort — Tracking portfolio for tracking error constraint
[] (default) | vector

Tracking portfolio for tracking error constraint, specified as a vector.
Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double
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UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

Portfolio Object Modeling

AssetCovar — Covariance of asset returns
[] (default) | square matrix

Covariance of asset returns, specified as a square matrix.
Data Types: double

AssetMean — Mean of asset returns
[] (default) | vector

Mean of asset returns, specified as a vector.
Data Types: double

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double
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SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

See Also
Portfolio

Related Examples
• “Creating the Portfolio Object” on page 4-25
• “Setting and Getting Properties” on page 4-21
• “Working with Portfolio Constraints Using Defaults” on page 4-63
• “Portfolio Optimization Examples” on page 4-139

More About
• “Portfolio Optimization Theory” on page 5-3
• “Portfolio Object Workflow” on page 4-18

External Websites
• Getting Started with Portfolio Optimization (13 min 31 sec)
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PortfolioCVaR
PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis

Description

The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio
optimization. PortfolioCVaR objects support functions that are specific to conditional
value-at-risk (CVaR) portfolio optimization.

The main workflow for CVaR portfolio optimization is to create an instance of a
PortfolioCVaR object that completely specifies a portfolio optimization problem
and to operate on the PortfolioCVaR object using supported functions to obtain and
analyze efficient portfolios. A CVaR optimization problem is completely specified with the
following four elements:

• A universe of assets with scenarios of asset total returns for a period of interest,
where scenarios comprise a collection of samples from the underlying probability
distribution for asset total returns. This collection must be sufficiently large for
asymptotic convergence of sample statistics. Asset return moments and related
statistics are derived exclusively from the scenarios.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of
constraints.

• A model for portfolio return and risk proxies, which, for CVaR optimization, is either
the gross or net mean of portfolio returns and the conditional value-at-risk of portfolio
returns.

• A probability level that specifies the probability that a loss is less than or equal to
the value-at-risk. Typical values are 0.9 and 0.95, which indicate 10% and 5% loss
probabilities.

After these four elements have been specified in an unambiguous way, it is possible to
solve and analyze CVaR portfolio optimization problems.

The simplest CVaR portfolio optimization problem has:

• Scenarios of asset total returns
• A requirement that all portfolios have nonnegative weights that sum to 1 (the

summation constraint is known as a budget constraint)
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• Built-in models for portfolio return and risk proxies that use scenarios of asset total
returns

• A probability level of 0.95

Given scenarios of asset returns in the variable AssetScenarios, this problem is
completely specified by:
p = PortfolioCVaR('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1, ...

'ProbabilityLevel', 0.95);

or equivalently by:

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

To confirm that this is a valid portfolio optimization problem, the following function
determines whether the set of PortfolioCVaR choices is bounded (a necessary condition
for portfolio optimization).

[lb, ub, isbounded] = estimateBounds(p);

Given the problem specified in the PortfolioCVaR object p, the efficient frontier for this
problem can be displayed with:

plotFrontier(p);

and efficient portfolios can be obtained with:

pwgt = estimateFrontier(p);

For more information on the workflow when using PortfolioCVaR objects, see
“PortfolioCVaR Object Workflow” on page 5-17 and for more detailed information on the
theoretical basis for conditional value-at-risk optimization, see “Portfolio Optimization
Theory” on page 5-3.

Create Object

To create a PortfolioCVaR object, use the PortfolioCVaR function. For more details
on working with a PortfolioCVaR object, see:

• “PortfolioCVaR Object Properties and Functions” on page 5-19
• “Working with PortfolioCVaR Objects” on page 5-19
• “Setting and Getting Properties” on page 5-20
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• “Displaying PortfolioCVaR Objects” on page 5-21
• “Saving and Loading PortfolioCVaR Objects” on page 5-21
• “Estimating Efficient Portfolios and Frontiers” on page 5-21
• “Arrays of PortfolioCVaR Objects” on page 5-21
• “Subclassing PortfolioCVaR Objects” on page 5-22
• “Conventions for Representation of Data” on page 5-22

Properties
PortfolioCVaR Properties Manage Portfolio object for conditional

value-at-risk portfolio optimization and
analysis

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
estimateAssetMoments Estimate mean and covariance of asset

returns from data
setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio

weights to existing constraints
addGroupRatio Add group ratio constraints for portfolio

weights to existing group ratio constraints
addGroups Add group constraints for portfolio weights

to existing group constraints
addInequality Add linear inequality constraints for

portfolio weights to existing constraints
getBounds Obtain bounds for portfolio weights from

portfolio object
getBudget Obtain budget constraint bounds from

portfolio object
getCosts Obtain buy and sell transaction costs from

portfolio object
getEquality Obtain equality constraint arrays from

portfolio object
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getGroupRatio Obtain group ratio constraint arrays from
portfolio object

getGroups Obtain group constraint arrays from
portfolio object

getInequality Obtain inequality constraint arrays from
portfolio object

getOneWayTurnover Obtain one-way turnover constraints from
portfolio object

setGroups Set up group constraints for portfolio
weights

setInequality Set up linear inequality constraints for
portfolio weights

setBounds Set up bounds for portfolio weights
setBudget Set up budget constraints
setCosts Set up proportional transaction costs
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
setEquality Set up linear equality constraints for

portfolio weights
setGroupRatio Set up group ratio constraints for portfolio

weights
setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover

constraints
setTurnover Set up maximum portfolio turnover

constraint
checkFeasibility Check feasibility of input portfolios against

portfolio object
estimateBounds Estimate global lower and upper bounds for

set of portfolios
estimateFrontier Estimate specified number of optimal

portfolios on the efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted

portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted

portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of

efficient frontier
plotFrontier Plot efficient frontier
estimatePortReturn Estimate mean of portfolio returns
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estimatePortRisk Estimate portfolio risk according to risk
proxy associated with corresponding object

setSolver Choose main solver and specify associated
solver options for portfolio optimization

setProbabilityLevel Set probability level for VaR and CVaR
calculations

setScenarios Set asset returns scenarios by direct matrix
getScenarios Obtain scenarios from portfolio object
simulateNormalScenariosByData Simulate multivariate normal asset return

scenarios from data
simulateNormalScenariosByMoments Simulate multivariate normal asset return

scenarios from mean and covariance of asset
returns

estimateScenarioMoments Estimate mean and covariance of asset
return scenarios

estimatePortVaR Estimate value-at-risk for PortfolioCVaR
object

estimatePortStd

Examples

Construct a PortfolioCVaR Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

 pnames{i} = sprintf('Port%d',i);
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end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1         Port2         Port3         Port4          Port5     

    AAPL      0.010984      0.073246       0.11933        0.13068    1.5092e-14

    AMZN             0             0             0              0    2.8997e-14

    CSCO             0    2.9972e-33             0     1.0015e-32    4.1869e-14

    DELL      0.022454             0             0     6.3074e-33    3.9048e-14

    EBAY             0    1.5407e-33     7.053e-38     5.3926e-33    1.3394e-15

    GOOG       0.20335       0.38055       0.56242        0.75932             1

    HPQ       0.041724     0.0099223             0     5.3607e-33    3.8894e-14

    IBM        0.44482       0.36453       0.26282           0.11    3.7902e-14

    INTC             0    3.1296e-33             0     3.0815e-32    3.8264e-14

    MSFT       0.27667       0.17175      0.055435     4.6222e-33    4.0873e-14

    ORCL    5.8775e-39             0    3.5265e-38    -8.5528e-50    3.7811e-14

    YHOO             0    3.4608e-33             0      8.026e-32     3.535e-14
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• “Creating the PortfolioCVaR Object” on page 5-24
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123
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References

For a complete list of references for the PortfolioCVaR object, see “Portfolio Optimization”
on page A-11.

See Also
Portfolio | PortfolioMAD

More About
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

Introduced in R2012b
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PortfolioCVaR
Create PortfolioCVaR object for conditional value-at-risk portfolio optimization

Use the PortfolioCVaR function to create a PortfolioCVaR object for conditional
value-at-risk portfolio optimization. For more information, see PortfolioCVaR

You can use the PortfolioCVaR function in several ways. To set up a portfolio
optimization problem in a PortfolioCVaR object, the simplest syntax is:

p = PortfolioCVaR;

This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The PortfolioCVaR function also accepts collections of argument name-value pair
arguments for properties and their values. The PortfolioCVaR function accepts inputs
for properties with the general syntax:

 p = PortfolioCVaR('property1', value1, 'property2', value2, ... );

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first
argument) of the PortfolioCVaR function to be an existing object with subsequent
argument name-value pair arguments for properties to be added or modified. For
example, given an existing PortfolioCVaR object in p, the general syntax is:

p = PortfolioCVaR(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 18-1230). The PortfolioCVaR function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a PortfolioCVaR object is a value object so that,
given portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioCVaR(p, ...)

After creating a PortfolioCVaR object, you can use the associated object functions to set
portfolio constraints, analyze the efficient frontier, and validate the portfolio model.

For details on this workflow, see “PortfolioCVaR Object Workflow” on page 5-17 and for
more detailed information on the theoretical basis for conditional value-at-risk portfolio
optimization, see “Portfolio Optimization Theory” on page 5-3.
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Syntax

p = PortfolioCVaR

p = PortfolioCVaR(Name,Value)

p = PortfolioCVaR(p,Name,Value)

Description

p = PortfolioCVaR constructs an empty PortfolioCVaR object for conditional value-at-
risk portfolio optimization and analysis. You can then add elements to the PortfolioCVaR
object using the supported add and set functions. For more information, see “Creating the
PortfolioCVaR Object” on page 5-24..

p = PortfolioCVaR(Name,Value) constructs a PortfolioCVaR object for conditional
value-at-risk portfolio optimization and analysis with additional options specified by one
or more Name,Value arguments.

p = PortfolioCVaR(p,Name,Value) constructs a PortfolioCVaR object for conditional
value-at-risk portfolio optimization and analysis using a previously constructed
PortfolioCVaR object p with additional options specified by one or more Name,Value
arguments.

Examples

Create an Empty PortfolioCVaR Object

You can create a PortfolioCVaR object, p, with no input arguments and display it using
disp.

p = PortfolioCVaR;

disp(p);

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []
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         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: []

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: []

          UpperBound: []

         LowerBudget: []

         UpperBudget: []

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

This approach provides a way to set up a portfolio optimization problem with the
PortfolioCVaR function. You can then use the associated set functions to set and
modify collections of properties in the PortfolioCVaR object.

Create a PortfolioCVaR Object Using a Single-Step Setup

You can use the PortfolioCVaR function directly set up a “standard” portfolio
optimization problem. Given scenarios of asset returns in the variable AssetScenarios,
this problem is completely specified as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
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p = PortfolioCVaR('Scenarios', AssetScenarios, ...

'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1, ...

'ProbabilityLevel', 0.95)

p = 

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9500

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 20000

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Note that the LowerBound property value undergoes scalar expansion since
AssetScenarios provides the dimensions of the problem.

Create a PortfolioCVaR Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting up
a “standard” CVaR portfolio optimization problem, given AssetScenarios variable is:
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = PortfolioCVaR(p, 'LowerBound', 0);

p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);
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This way works because the calls to the PortfolioCVaR function are in this particular
order. In this case, the call to initialize AssetScenarios provides the dimensions for
the problem. If you were to do this step last, you would have to explicitly dimension the
LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;
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AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = PortfolioCVaR(p, 'LowerBound', zeros(size(m)));

p = PortfolioCVaR(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setProbabilityLevel(p, 0.95);

p = setScenarios(p, AssetScenarios);

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the
PortfolioCVaR function assumes that you are defining a single-asset problem and
produces an error at the call to set asset scenarios with four assets.

Create a PortfolioCVaR Object Using Shortcuts for Property Names

You can create a PortfolioCVaR object, p with the PortfolioCVaR function using
shortcuts for property names.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR('scenario', AssetScenarios, 'lb', 0, 'budget', 1, 'plevel', 0.95)

p = 

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9500

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 20000

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

18-1220



 PortfolioCVaR

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Direct Setting of PortfolioCVaR Object Properties

Although not recommended, you can set properties directly, however no error-checking is
done on your inputs.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p.ProbabilityLevel = 0.95;

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

disp(p)

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9500

            Turnover: []

         BuyTurnover: []
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        SellTurnover: []

        NumScenarios: 20000

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must always
be set through either the PortfolioCVaR function, the setScenarios function, or any
of the scenario simulation functions.

Construct a PortfolioCVaR Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5
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 pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1         Port2         Port3         Port4          Port5     

    AAPL      0.010984      0.073246       0.11933        0.13068    1.5092e-14

    AMZN             0             0             0              0    2.8997e-14

    CSCO             0    2.9972e-33             0     1.0015e-32    4.1869e-14

    DELL      0.022454             0             0     6.3074e-33    3.9048e-14

    EBAY             0    1.5407e-33     7.053e-38     5.3926e-33    1.3394e-15

    GOOG       0.20335       0.38055       0.56242        0.75932             1

    HPQ       0.041724     0.0099223             0     5.3607e-33    3.8894e-14

    IBM        0.44482       0.36453       0.26282           0.11    3.7902e-14

    INTC             0    3.1296e-33             0     3.0815e-32    3.8264e-14

    MSFT       0.27667       0.17175      0.055435     4.6222e-33    4.0873e-14

    ORCL    5.8775e-39             0    3.5265e-38    -8.5528e-50    3.7811e-14

    YHOO             0    3.4608e-33             0      8.026e-32     3.535e-14
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• “Creating the PortfolioCVaR Object” on page 5-24
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58
• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object” on page

5-95
• “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-112
• “Postprocessing Results to Set Up Tradable Portfolios” on page 5-123
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Input Arguments

p — Previously constructed PortfolioCVaR object
object

Previously constructed PortfolioCVaR object, specified using the PortfolioCVaR
function

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p = PortfolioCVaR('AssetList',Assets(1:12));

'AEquality' — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

'AInequality' — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

'AssetList' — cell array of character vectors
[] (default) | square matrix

Names or symbols of assets in the universe, specified as a cell array of character vectors.
Data Types: cell

'bEquality' — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double
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'bInequality' — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

'BuyCost' — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

'BuyTurnover' — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

'GroupA' — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

'GroupB' — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

'GroupMatrix' — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

'InitPort' — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
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Data Types: double

'LowerBound' — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

'LowerBudget' — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

'LowerGroup' — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

'LowerRatio' — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

'Name' — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

'NumAssets' — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

'NumScenarios' — Number of scenarios
[] (default) | integer scalar

18-1227



18 Functions — Alphabetical List

Number of scenarios, specified as an integer scalar.
Data Types: double

'ProbabilityLevel' — Value-at-risk probability level which is 1 - (loss probability)
[] (default) | scalar

Value-at-risk probability level which is 1 − (loss probability), specified as a scalar.
Data Types: double

'RiskFreeRate' — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

'SellCost' — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

'SellTurnover' — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

'Turnover' — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

'UpperBound' — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double
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'UpperBudget' — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

'UpperGroup' — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

'UpperRatio' — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

Output Arguments

p — Updated PortfolioCVaR object
object for CVaR portfolio

Updated CVaR portfolio object, returned as a PortfolioCVaR object, For more
information on using the PortfolioCVaR object, see PortfolioCVaR.

More About

Conditional Value-at-Risk Portfolio Optimization

For more information on the theory and definition of conditional value-at-risk
optimization supported by portfolio optimization tools in Financial Toolbox, see “Portfolio
Optimization Theory” on page 5-3.

PortfolioCVaR Problem Sufficiency

A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR
object if the following three conditions are met:
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• You must specify a collection of asset returns or prices known as scenarios such
that all scenarios are finite asset returns or prices. These scenarios are meant to be
samples from the underlying probability distribution of asset returns. This condition
can be satisfied by the setScenarios function or with several canned scenario
simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set
is closed and bounded. You can satisfy this condition using an extensive collection of
properties that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can be
imposed and several tools, such as the estimateBounds function, provide ways to
ensure that your problem is properly formulated.

• You must specify a probability level to locate the level of tail loss above which the
conditional value-at-risk is to be minimized. This condition can be satisfied by the
setProbabilityLevel function.

Although the general sufficient conditions for CVaR portfolio optimization go beyond
the first three conditions, the PortfolioCVaR object handles all these additional
conditions.

Shortcuts for Property Names

The PortfolioCVaR function has shorter argument names that replace longer
argument names associated with specific properties of the PortfolioCVaR object.

For example, rather than enter 'ProbabilityLevel', the PortfolioCVaR function
accepts the case-insensitive name 'plevel' to set the ProbabilityLevel property in
a PortfolioCVaR object. Every shorter argument name corresponds with a single property
in the PortfolioCVaR function. The one exception is the alternative argument name
'budget', which signifies both the LowerBudget and UpperBudget properties. When
'budget' is used, then the LowerBudget and UpperBudget properties are set to the
same value to form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

assetnames or assets AssetList

be bEquality
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Shortcut Argument Name Equivalent Argument / Property Name

bi bInequality

budget UpperBudget and LowerBudget
group GroupMatrix

lb LowerBound

n or num NumAssets

level, problevel, or plevel ProbabilityLevel

rfr RiskFreeRate

scenario or
assetscenarios

Scenarios

ub UpperBound

• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17
• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

References

For a complete list of references for the PortfolioCVaR object, see “Portfolio Optimization”
on page A-11.

See Also
estimateFrontier | plotFrontier | setScenarios

Introduced in R2012b
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PortfolioCVaR Properties

Manage Portfolio object for conditional value-at-risk portfolio optimization and analysis

Description

The main workflow for CVaR portfolio optimization is to create an instance of a
PortfolioCVaR object that completely specifies a conditional value-at-risk optimization
problem and to operate on the PortfolioCVaR object using the supported object
functions to obtain and analyze efficient portfolios.

The PortfolioCVaR object and its associated functions are an interface for conditional
value-at-risk optimization. So, almost everything you do with the PortfolioCVaR object
can be done using the associated functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the PortfolioCVaR function to create the PortfolioCVaR object or use the

various set functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a PortfolioCVaR object, you can
save and load objects from your workspace and create and manipulate arrays of objects.
After settling on a problem, which, in the case of CVaR portfolio optimization, means
that you have either scenarios, data, or moments for asset returns, a probability level,
and a collection of constraints on your portfolios, use the PortfolioCVaR function to set
the properties for the PortfolioCVaR object.

The PortfolioCVaR function lets you create an object from scratch or update an
existing object. Since the PortfolioCVaR object is a value object, it is easy to create a basic
object, then use methods to build upon the basic object to create new versions of the basic
object. This is useful to compare a basic problem with alternatives derived from the basic
problem. For details, see “Creating the PortfolioCVaR Object” on page 5-24

For more information on the workflow when using PortfolioCVaR objects, see
“PortfolioCVaR Object Workflow” on page 5-17.
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Setting Up the Object

AssetList — Names or symbols of assets in universe
[] (default) | cell array of character vectors

Names or symbols of assets in the universe, specified as a cell array of character vectors.
Data Types: cell

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
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Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

bInequality — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar
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Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double
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Portfolio Object Modeling

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

ProbabilityLevel — Value-at-risk probability level which is 1 - (loss probability)
[] (default) | scalar

Value-at-risk probability level which is 1 − (loss probability), specified as a scalar.
Data Types: double

NumScenarios — Number of scenarios
[] (default) | integer scalar

Number of scenarios, specified as an integer scalar.
Data Types: double

SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar

18-1236



 PortfolioCVaR Properties

Turnover constraint on sales, specified as a scalar.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

See Also
PortfolioCVaR

Related Examples
• “Creating the PortfolioCVaR Object” on page 5-24
• “Setting and Getting Properties” on page 5-20
• “Working with CVaR Portfolio Constraints Using Defaults” on page 5-58

More About
• “Portfolio Optimization Theory” on page 5-3
• “PortfolioCVaR Object Workflow” on page 5-17

External Websites
• CVaR Portfolio Optimization (5 min 33 sec)
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PortfolioMAD
PortfolioMAD object for mean-absolute deviation portfolio optimization and analysis

Description
The PortfolioMAD object implements mean-absolute deviation portfolio optimization,
where MAD stands for “mean-absolute deviation.” PortfolioMAD objects support
functions that are specific to MAD portfolio optimization.

The main workflow for MAD portfolio optimization is to create an instance of a
PortfolioMAD object that completely specifies a portfolio optimization problem and to
operate on the PortfolioMAD object to obtain and analyze efficient portfolios. A MAD
optimization problem is completely specified with these three elements:

• A universe of assets with scenarios of asset total returns for a period of interest,
where scenarios comprise a collection of samples from the underlying probability
distribution for asset total returns. This collection must be sufficiently large for
asymptotic convergence of sample statistics. Asset return moments and related
statistics are derived exclusively from the scenarios.

• A portfolio set that specifies the set of portfolio choices in terms of a collection of
constraints.

• A model for portfolio return and risk proxies, which, for MAD optimization, is either
the gross or net mean of portfolio returns and the mean-absolute deviation of portfolio
returns.

After these three elements have been specified unambiguously, it is possible to solve and
analyze MAD portfolio optimization problems.

The simplest MAD portfolio optimization problem has:

• Scenarios of asset total returns
• A requirement that all portfolios have nonnegative weights that sum to 1 (the

summation constraint is known as a budget constraint)
• Built-in models for portfolio return and risk proxies that use scenarios of asset total

returns

Given scenarios of asset returns in the variable AssetScenarios, this problem is
completely specified by:
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p = PortfolioMAD('Scenarios', AssetScenarios, 'LowerBound', 0, 'Budget', 1);

or equivalently by:

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

To confirm that this is a valid portfolio optimization problem, the following function
determines whether the set of PortfolioMAD choices is bounded (a necessary condition for
portfolio optimization).

[lb, ub, isbounded] = estimateBounds(p);

Given the problem specified in the PortfolioMAD object p, the efficient frontier for this
problem can be displayed with:

plotFrontier(p);

and efficient portfolios can be obtained with:

pwgt = estimateFrontier(p);

For more information on the workflow when using PortfolioMAD objects,
see“PortfolioMAD Object Workflow” on page 6-17 and for more detailed information
on the theoretical basis for mean-absolute deviation optimization, see “Portfolio
Optimization Theory” on page 6-3.

Create Object

To create a PortfolioMAD object, use the PortfolioMAD function. For more details on
working with a PortfolioMAD object, see:

• “PortfolioMAD Object Properties and Functions” on page 6-18
• “Working with PortfolioMAD Objects” on page 6-18
• “Setting and Getting Properties” on page 6-19
• “Displaying PortfolioMAD Objects” on page 6-20
• “Saving and Loading PortfolioMAD Objects” on page 6-20
• “Estimating Efficient Portfolios and Frontiers” on page 6-20
• “Arrays of PortfolioMAD Objects” on page 6-20
• “Subclassing PortfolioMAD Objects” on page 6-21
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• “Conventions for Representation of Data” on page 6-21

Properties
PortfolioMAD Properties Manage PortfolioMAD object for mean-

absolute deviation portfolio optimization
and analysis

Object Functions
setAssetList Set up list of identifiers for assets
setInitPort Set up initial or current portfolio
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
estimateAssetMoments Estimate mean and covariance of asset

returns from data
setCosts Set up proportional transaction costs
addEquality Add linear equality constraints for portfolio

weights to existing constraints
addGroupRatio Add group ratio constraints for portfolio

weights to existing group ratio constraints
addGroups Add group constraints for portfolio weights

to existing group constraints
addInequality Add linear inequality constraints for

portfolio weights to existing constraints
getBounds Obtain bounds for portfolio weights from

portfolio object
getBudget Obtain budget constraint bounds from

portfolio object
getCosts Obtain buy and sell transaction costs from

portfolio object
getEquality Obtain equality constraint arrays from

portfolio object
getGroupRatio Obtain group ratio constraint arrays from

portfolio object
getGroups Obtain group constraint arrays from

portfolio object
getInequality Obtain inequality constraint arrays from

portfolio object
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getOneWayTurnover Obtain one-way turnover constraints from
portfolio object

setGroups Set up group constraints for portfolio
weights

setInequality Set up linear inequality constraints for
portfolio weights

setBounds Set up bounds for portfolio weights
setBudget Set up budget constraints
setCosts Set up proportional transaction costs
setDefaultConstraints Set up portfolio constraints with

nonnegative weights that sum to 1
setEquality Set up linear equality constraints for

portfolio weights
setGroupRatio Set up group ratio constraints for portfolio

weights
setInitPort Set up initial or current portfolio
setOneWayTurnover Set up one-way portfolio turnover

constraints
setTurnover Set up maximum portfolio turnover

constraint
checkFeasibility Check feasibility of input portfolios against

portfolio object
estimateBounds Estimate global lower and upper bounds for

set of portfolios
estimateFrontier Estimate specified number of optimal

portfolios on the efficient frontier
estimateFrontierByReturn Estimate optimal portfolios with targeted

portfolio returns
estimateFrontierByRisk Estimate optimal portfolios with targeted

portfolio risks
estimateFrontierLimits Estimate optimal portfolios at endpoints of

efficient frontier
plotFrontier Plot efficient frontier
estimatePortReturn Estimate mean of portfolio returns
estimatePortRisk Estimate portfolio risk according to risk

proxy associated with corresponding object
setSolver Choose main solver and specify associated

solver options for portfolio optimization
setProbabilityLevel Set probability level for VaR and CVaR

calculations
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setScenarios Set asset returns scenarios by direct matrix
getScenarios Obtain scenarios from portfolio object
simulateNormalScenariosByData Simulate multivariate normal asset return

scenarios from data
simulateNormalScenariosByMoments Simulate multivariate normal asset return

scenarios from mean and covariance of asset
returns

estimateScenarioMoments Estimate mean and covariance of asset
return scenarios

estimatePortStd Estimate standard deviation of portfolio
returns

Examples

Construct a PortfolioMAD Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioMAD('AssetList',Assets(1:12));

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

p = setDefaultConstraints(p);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

 pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1         Port2         Port3         Port4          Port5     

    AAPL      0.030236      0.075387       0.11278        0.13456    1.5092e-14

    AMZN    1.6541e-21             0    1.3141e-22      4.931e-17    2.8997e-14

    CSCO    1.5007e-22             0             0      1.983e-17    4.1869e-14

    DELL     0.0089659             0    6.6943e-23     4.8004e-19    3.9048e-14
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    EBAY    2.0446e-22    8.6792e-23             0     3.8519e-33    1.3394e-15

    GOOG       0.16117       0.35201       0.54486        0.74888             1

    HPQ       0.056551      0.024037    4.9193e-24              0    3.8894e-14

    IBM        0.45905       0.37891       0.29383        0.11656    3.7902e-14

    INTC    -4.702e-38    6.1701e-22    2.0063e-23    -2.4074e-35    3.8264e-14

    MSFT       0.28403       0.16966      0.048527     2.3265e-17    4.0873e-14

    ORCL    5.3466e-21             0             0     1.2113e-17    3.7811e-14

    YHOO             0    7.6897e-23    3.3061e-24     2.9168e-17     3.535e-14

• “Creating the PortfolioMAD Object” on page 6-23
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
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• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117

References

For a complete list of references for the PortfolioMAD object, see “Portfolio Optimization”
on page A-11.

See Also
Portfolio | PortfolioCVaR

More About
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17

Introduced in R2013b
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PortfolioMAD
Create PortfolioMAD object for mean-absolute deviation portfolio optimization

Use the PortfolioMAD function to create a PortfolioMAD object for mean-absolute
deviation portfolio optimization. For more information, see PortfolioMAD.

You can use the PortfolioMAD function in several ways. To set up a portfolio
optimization problem in a PortfolioMAD object, the simplest syntax is:

p = PortfolioMAD;

This syntax creates a PortfolioMAD object, p, such that all object properties are empty.

The PortfolioMAD function also accepts collections of argument name-value pair
arguments for properties and their values. The PortfolioMAD function accepts inputs
for properties with the general syntax:

 p = PortfolioMAD('property1', value1, 'property2', value2, ... );

If a PortfolioMAD object exists, the syntax permits the first (and only the first argument)
of the PortfolioMAD function to be an existing object with subsequent argument name-
value pair arguments for properties to be added or modified. For example, given an
existing PortfolioMAD object in p, the general syntax is:

p = PortfolioMAD(p, 'property1', value1, 'property2', value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 18-1261). The PortfolioMAD function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a PortfolioMAD object is a value object so that, given
portfolio p, the following code creates two objects, p and q, that are distinct:

q = PortfolioMAD(p, ...)

After creating a PortfolioMAD object, you can use the associated object functions to set
portfolio constraints, analyze the efficient frontier, and validate the portfolio model.

For details on this workflow, see“PortfolioMAD Object Workflow” on page 6-17 and for
more detailed information on the theoretical basis for conditional value-at-risk portfolio
optimization, see “Portfolio Optimization Theory” on page 6-3.
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Syntax
p = PortfolioMAD

p = PortfolioMAD(Name,Value)

p = PortfolioMAD(p,Name,Value)

Description
p = PortfolioMAD constructs an empty PortfolioMAD object for mean-absolute
deviation portfolio optimization and analysis. You can then add elements to the
PortfolioMAD object using the supported add and set functions. For more information,
see “Creating the PortfolioMAD Object” on page 6-23.

p = PortfolioMAD(Name,Value) constructs a PortfolioMAD object for mean-absolute
deviation portfolio optimization and analysis with additional options specified by one or
more Name,Value arguments.

p = PortfolioMAD(p,Name,Value) constructs a PortfolioMAD object for mean-
absolute deviation portfolio optimization and analysis using a previously constructed
PortfolioMAD object p with additional options specified by one or more Name,Value
arguments.

Examples
Create an Empty PortfolioMAD Object

You can create a PortfolioMAD object, p, with no input arguments and display it using
disp.

p = PortfolioMAD;

disp(p);

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []
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    NumScenarios: []

            Name: []

       NumAssets: []

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: []

      UpperBound: []

     LowerBudget: []

     UpperBudget: []

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

This approach provides a way to set up a portfolio optimization problem with the
PortfolioMAD function. You can then use the associated set functions to set and modify
collections of properties in the PortfolioMAD object.

Create a PortfolioMAD Object Using a Single-Step Setup

You can use the PortfolioMAD function directly set up a “standard” portfolio
optimization problem. Given scenarios of asset returns in the variable AssetScenarios,
this problem is completely specified as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('Scenarios', AssetScenarios, ...

'LowerBound', 0, 'LowerBudget', 1, 'UpperBudget', 1)
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p = 

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 20000

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Note that the LowerBound property value undergoes scalar expansion since
AssetScenarios provides the dimensions of the problem.

Create a PortfolioMAD Object Using a Sequence of Steps

Using a sequence of steps is an alternative way to accomplish the same task of setting up
a “standard” MAD portfolio optimization problem, given AssetScenarios variable is:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
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0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = PortfolioMAD(p, 'LowerBound', 0);

p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

plotFrontier(p);
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This way works because the calls to the PortfolioMAD function are in this particular
order. In this case, the call to initialize AssetScenarios provides the dimensions for
the problem. If you were to do this step last, you would have to explicitly dimension the
LowerBound property as follows:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = PortfolioMAD(p, 'LowerBound', zeros(size(m)));

p = PortfolioMAD(p, 'LowerBudget', 1, 'UpperBudget', 1);

p = setScenarios(p, AssetScenarios);

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument,
the PortfolioMAD function assumes that you are defining a single-asset problem and
produces an error at the call to set asset scenarios with four assets.

Create a PortfolioMAD Object Using Shortcuts for Property Names

You can create a PortfolioMAD object, p with the PortfolioMAD function using
shortcuts for property names.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

18-1251



18 Functions — Alphabetical List

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD('scenario', AssetScenarios, 'lb', 0, 'budget', 1)

p = 

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 20000

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Direct Setting of PortfolioMAD Object Properties

Although not recommended, you can set properties directly, however no error-checking is
done on your inputs.
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m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p.LowerBudget = 1;

p.UpperBudget = 1;

p.LowerBound = zeros(size(m));

disp(p);

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 20000

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []
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      LowerRatio: []

      UpperRatio: []

Scenarios cannot be assigned directly to a PortfolioMAD object. Scenarios must always
be set through either the PortfolioMAD function, the setScenarios function, or any of
the scenario simulation functions.

Construct a PortfolioMAD Object and Determine Efficient Portfolios

Create efficient portfolios:

load CAPMuniverse

p = PortfolioMAD('AssetList',Assets(1:12));

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

p = setDefaultConstraints(p);

plotFrontier(p);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);

for i = 1:5

 pnames{i} = sprintf('Port%d',i);

end

Blotter = dataset([{pwgt},pnames],'obsnames',p.AssetList);

disp(Blotter);

            Port1         Port2         Port3         Port4          Port5     

    AAPL      0.030236      0.075387       0.11278        0.13456    1.5092e-14

    AMZN    1.6541e-21             0    1.3141e-22      4.931e-17    2.8997e-14

    CSCO    1.5007e-22             0             0      1.983e-17    4.1869e-14

    DELL     0.0089659             0    6.6943e-23     4.8004e-19    3.9048e-14

    EBAY    2.0446e-22    8.6792e-23             0     3.8519e-33    1.3394e-15

    GOOG       0.16117       0.35201       0.54486        0.74888             1

    HPQ       0.056551      0.024037    4.9193e-24              0    3.8894e-14

    IBM        0.45905       0.37891       0.29383        0.11656    3.7902e-14

    INTC    -4.702e-38    6.1701e-22    2.0063e-23    -2.4074e-35    3.8264e-14

    MSFT       0.28403       0.16966      0.048527     2.3265e-17    4.0873e-14

    ORCL    5.3466e-21             0             0     1.2113e-17    3.7811e-14

    YHOO             0    7.6897e-23    3.3061e-24     2.9168e-17     3.535e-14
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• “Creating the PortfolioMAD Object” on page 6-23
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39
• “Validate the MAD Portfolio Problem” on page 6-87
• “Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object” on

page 6-92
• “Estimate Efficient Frontiers for PortfolioMAD Object” on page 6-106
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• “Postprocessing Results to Set Up Tradable Portfolios” on page 6-117

Input Arguments

p — Previously constructed PortfolioMAD object
object

Previously constructed PortfolioMAD object, specified using the PortfolioMAD
function

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p = PortfolioMAD('AssetList',Assets(1:12));

'AEquality' — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

'AInequality' — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
Data Types: double

'AssetList' — Names or symbols of assets in universe
[] (default) | cell array of character vectors

Names or symbols of assets in the universe, specified as a cell array of character vectors.
Data Types: cell

'bEquality' — Linear equality constraint vector
[] (default) | vector
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Linear equality constraint vector, specified as a vector.
Data Types: double

'bInequality' — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

'BuyCost' — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

'BuyTurnover' — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

'GroupA' — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

'GroupB' — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

'GroupMatrix' — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double
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'InitPort' — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

'LowerBound' — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

'LowerBudget' — Lower-bound budget constraint
[] (default) | scalar

Lower-bound budget constraint, specified as a scalar.
Data Types: double

'LowerGroup' — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

'LowerRatio' — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

'Name' — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

'NumAssets' — Number of assets in the universe
[] (default) | integer scalar
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Number of assets in the universe, specified as an integer scalar.
Data Types: double

'NumScenarios' — Number of scenarios
[] (default) | integer scalar

Number of scenarios, specified as an integer scalar.
Data Types: double

'RiskFreeRate' — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

'SellCost' — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

'SellTurnover' — Turnover constraint on sales
[] (default) | scalar

Turnover constraint on sales, specified as a scalar.
Data Types: double

'Turnover' — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

'UpperBound' — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double
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'UpperBudget' — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

'UpperGroup' — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

'UpperRatio' — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

Output Arguments

p — Updated PortfolioMAD object
object for PortfolioMAD

Updated MAD portfolio object, returned as a PortfolioMAD, For more information on
using the PortfolioMAD object, see Portfolio.

More About

Mean-Absolute Deviation Portfolio Optimization

For more information on the theory and definition of mean-absolute deviation (MAD)
optimization supported by portfolio optimization tools in Financial Toolbox, see “Portfolio
Optimization Theory” on page 5-3.

PortfolioMAD Problem Sufficiency

A MAD portfolio optimization problem is completely specified with the PortfolioMAD
object if the following three conditions are met:

18-1260



 PortfolioMAD

• You must specify a collection of asset returns or prices known as scenarios such
that all scenarios are finite asset returns or prices. These scenarios are meant to be
samples from the underlying probability distribution of asset returns. This condition
can be satisfied by the setScenarios function or with several canned scenario
simulation functions.

• The set of feasible portfolios must be a nonempty compact set, where a compact set
is closed and bounded. You can satisfy this condition using an extensive collection of
properties that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can be
imposed and several tools, such as the estimateBounds function, provide ways to
ensure that your problem is properly formulated.

Although the general sufficient conditions for MAD portfolio optimization go beyond
these conditions, the PortfolioMAD object handles all these additional conditions.

Shortcuts for Property Names

The PortfolioMAD function has shorter argument names that replace longer argument
names associated with specific properties of the PortfolioMAD object.

For example, rather than enter 'AInequality', the PortfolioMAD function. accepts
the case-insensitive name 'ai' to set the AInequality property in a PortfolioMAD
object. Every shorter argument name corresponds with a single property in the
PortfolioMAD function. The one exception is the alternative argument name 'budget',
which signifies both the LowerBudget and UpperBudget properties. When 'budget' is
used, then the LowerBudget and UpperBudget properties are set to the same value to
form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name

ae AEquality

ai AInequality

assetnames or assets AssetList

be bEquality

bi bInequality

budget UpperBudget and LowerBudget
group GroupMatrix
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Shortcut Argument Name Equivalent Argument / Property Name

lb LowerBound

n or num NumAssets

rfr RiskFreeRate

scenario or
assetscenarios

Scenarios

ub UpperBound

• “Portfolio Optimization Theory” on page 6-3
• “PortfolioMAD Object Workflow” on page 6-17

References

For a complete list of references for the PortfolioMAD object, see “Portfolio Optimization”
on page A-11.

See Also
estimateFrontier | plotFrontier | setScenarios

Introduced in R2013b
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PortfolioMAD Properties
Manage PortfolioMAD object for mean-absolute deviation portfolio optimization and
analysis

Description

The main workflow for MAD portfolio optimization is to create an instance of a
PortfolioMAD object that completely specifies a mean-absolute deviation optimization
problem and to operate on the PortfolioMAD object using the supported object functions
to obtain and analyze efficient portfolios.

The PortfolioMAD object and its associated functions are an interface for mean-absolute
deviation optimization. So, almost everything you do with the PortfolioMAD object can be
done using the associated functions. The basic workflow is:

1 Design your portfolio problem.
2 Use the PortfolioMAD function to create the PortfolioMAD object or use the various

set functions to set up your portfolio problem.
3 Use estimate functions to solve your portfolio problem.

In addition, methods are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a PortfolioMAD object, you can
save and load objects from your workspace and create and manipulate arrays of objects.
After settling on a problem, which, in the case of MAD portfolio optimization, means
that you have either scenarios, data, or moments for asset returns, and a collection of
constraints on your portfolios, use the PortfolioMAD function to set the properties for
the PortfolioMAD object.

The PortfolioMAD function lets you create an object from scratch or update an existing
object. Since the PortfolioMAD object is a value object, it is easy to create a basic object,
then use methods to build upon the basic object to create new versions of the basic
object. This is useful to compare a basic problem with alternatives derived from the basic
problem. For details, see “Creating the PortfolioMAD Object” on page 6-23.

For more information on the workflow when using PortfolioMAD objects, see
“PortfolioMAD Object Workflow” on page 6-17 and for more detailed information on the
theoretical basis for mean-absolute deviation optimization, see “Portfolio Optimization
Theory” on page 6-3.
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Setting Up the Object

AssetList — cell array of character vectors
[] (default) | square matrix

Names or symbols of assets in the universe, specified as a cell array of character vectors
Data Types: cell

InitPort — Initial portfolio
[] (default) | vector

Initial portfolio, specified as a vector.
Data Types: double

Name — Name for instance of Portfolio object
[] (default) | character vector

Name for instance of the Portfolio object, specified as a character vector.
Data Types: char

NumAssets — Number of assets in the universe
[] (default) | integer scalar

Number of assets in the universe, specified as an integer scalar.
Data Types: double

Portfolio Object Constraints

AEquality — Linear equality constraint matrix
[] (default) | matrix

Linear equality constraint matrix, specified as a matrix.
Data Types: double

AInequality — Linear inequality constraint matrix
[] (default) | matrix

Linear inequality constraint matrix, specified as a matrix.
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Data Types: double

bEquality — Linear equality constraint vector
[] (default) | vector

Linear equality constraint vector, specified as a vector.
Data Types: double

bInequality — Linear inequality constraint
[] (default) | vector

Linear inequality constraint vector, specified as a vector.
Data Types: double

GroupA — Group A weights to be bounded by weights in group B
[] (default) | matrix

Group A weights to be bounded by weights in group B, specified as a matrix.
Data Types: double

GroupB — Group B weights
[] (default) | matrix

Group B weights, specified as a matrix.
Data Types: double

GroupMatrix — Group membership matrix
[] (default) | matrix

Group membership matrix, specified as a matrix.
Data Types: double

LowerBound — Lower-bound constraint
[] (default) | vector

Lower-bound constraint, specified as a vector.
Data Types: double

LowerBudget — Lower-bound budget constraint
[] (default) | scalar
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Lower-bound budget constraint, specified as a scalar.
Data Types: double

LowerGroup — Lower-bound group constraint
[] (default) | vector

Lower-bound group constraint, specified as a vector.
Data Types: double

LowerRatio — Minimum ratio of allocations between Groups A and B
[] (default) | vector

Minimum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double

UpperBound — Upper-bound constraint
[] (default) | vector

Upper-bound constraint, specified as a vector.
Data Types: double

UpperBudget — Upper-bound budget constraint
[] (default) | scalar

Upper-bound budget constraint, specified as a scalar.
Data Types: double

UpperGroup — Upper-bound group constraint
[] (default) | vector

Upper-bound group constraint, specified as a vector.
Data Types: double

UpperRatio — Maximum ratio of allocations between Groups A and B
[] (default) | vector

Maximum ratio of allocations between GroupA and GroupB, specified as a vector.

Data Types: double
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Portfolio Object Modeling

BuyCost — Proportional purchase costs
[] (default) | vector

Proportional purchase costs, specified as a vector.
Data Types: double

BuyTurnover — Turnover constraint on purchases
[] (default) | scalar

Turnover constraint on purchases, specified as a scalar.
Data Types: double

RiskFreeRate — Risk-free rate
[] (default) | scalar

Risk-free rate, specified as a scalar.
Data Types: double

ProbabilityLevel — Value-at-risk probability level which is 1 - (loss probability)
[] (default) | scalar

Value-at-risk probability level which is 1 − (loss probability), specified as a scalar.
Data Types: double

NumScenarios — Number of scenarios
[] (default) | integer scalar

Number of scenarios, specified as an integer scalar.
Data Types: double

SellCost — Proportional sales costs
[] (default) | vector

Proportional sales costs, specified as a vector.
Data Types: double

SellTurnover — Turnover constraint on sales
[] (default) | scalar
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Turnover constraint on sales, specified as a scalar.
Data Types: double

Turnover — Turnover constraint
[] (default) | scalar

Turnover constraint, specified as a scalar.
Data Types: double

See Also
PortfolioMAD

Related Examples
• “Creating the PortfolioMAD Object” on page 6-23
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Working with MAD Portfolio Constraints Using Defaults” on page 6-57

More About
• “Portfolio Optimization Theory” on page 6-3
• “PortfolioCVaR Object Workflow” on page 5-17
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portopt
Portfolios on constrained efficient frontier

Compatibility

portopt has been partially removed and will no longer accept ConSet or varargin
arguments. Use Portfolio instead to solve portfolio problems that are more than a
long-only fully-invested portfolio. For information on the workflow when using Portfolio
objects, see “Portfolio Object Workflow” on page 4-18. For more information on migrating
portopt code to Portfolio, see “portopt Migration to Portfolio Object” on page 3-14.

Syntax
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance)

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,

NumPorts)

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,

NumPorts, PortReturn)

Arguments

ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of
the asset returns.

NumPorts (Optional) Number of portfolios generated along the efficient
frontier. Returns are equally spaced between the maximum
possible return and the minimum risk point. If NumPorts is
empty (entered as []), computes 10 equally spaced points.

PortReturn (Optional) Expected return of each portfolio. A number of
portfolios (NPORTS-by-1 vector). If not entered or empty,
NumPorts equally spaced returns between the minimum
and maximum possible values are used.
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Description
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance)

sets up the most basic portfolio problem with weights greater than or equal to 0 that
must sum to 1. All that is necessary to solve this problem is the mean and covariance of
asset returns. The problem returns 10 equally-spaced points on the efficient frontier by
return.

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,

NumPorts) sets up the basic portfolio problem but lets you specify how many equally-
spaced points on the efficient frontier that you want in NumPorts. If you specify 1, it
returns the minimum-risk portfolio.

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,

NumPorts, PortReturn) sets up the basic portfolio problem but lets you specify target
returns on the efficient frontier in the vector PortReturn. This functionality requires
that if you set PortReturn, NumPorts should be empty.

Note: portopt generates a warning if have returns outside the range and returns the
portfolios at the endpoints of the efficient frontier.

The outputs for portopt are:

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row
represents a portfolio. The total of all weights in a portfolio is 1.

If portopt is invoked without output arguments, it writes to the current figure window.

Examples

Plot the Risk-Return Efficient Frontier

Use portopt to connect 20 portfolios along the efficient frontier having evenly spaced
returns. By default, choose among portfolios without short-selling and scale the value of
the portfolio to 1.
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ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005   -0.010    0.004

                -0.010    0.040   -0.002

                 0.004   -0.002    0.023];

NumPorts = 20;

portopt(ExpReturn, ExpCovariance, NumPorts)

• “Portfolio Construction Examples” on page 3-7
• “Plotting an Efficient Frontier Using portopt” on page 10-26
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43
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• “portopt Migration to Portfolio Object” on page 3-14

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
ewstats | frontier | portcons | portstats

Introduced before R2006a
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portrand
Randomized portfolio risks, returns, and weights

Syntax
[PortRisk, PortReturn, PortWts] = portrand(Asset, Return,

Points, Method)

portrand(Asset, Return, Points, Method)

Arguments

Asset Matrix of time series data. Each row is an observation and each
column represents a single security.

Return (Optional) Row vector where each column represents the rate of
return for the corresponding security in Asset. By default, Return
is computed by taking the average value of each column of Asset.

Points (Optional) Scalar that specifies how many random points should be
generated. Default = 1000.

Method (Optional) A character vector that specifies how to generate random
portfolios from the set of portfolios with two possible methods:

• 'uniform' – Uniformly distributed portfolio weights (default
method). The 'uniform' method generates portfolio weights
that are uniformly distributed on the set of portfolio weights.

• 'geometric' – Concentrated portfolio weights around the
geometric center of the set of portfolios. The 'geometric'
method generates portfolio weights that are concentrated
around the geometric center of the set of portfolio weights.

Note: The 'uniform' and 'geometric' methods generate
weights that are distributed symmetrically around the geometric
center of the set of weights.
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Description

[PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points,

Method) returns the risks, rates of return, and weights of random portfolio
configurations.

PortRisk Points-by-1 vector of standard deviations.
PortReturn Points-by-1 vector of expected rates of return.
PortWts Points by number of securities matrix of asset weights. Each row

of PortWts is a different portfolio configuration.

portrand(Asset, Return, Points, Method) plots the points representing each
portfolio configuration. It does not return any data to the MATLAB workspace.

Note: Portfolios are selected at random from a set of portfolios such that portfolio weights
are nonnegative and sum to 1. The sample mean and covariance of asset returns are used
to compute portfolio returns for each random portfolio.

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

References

Bodie, Kane, and Marcus. Investments. Chapter 7.

See Also
portror | portvar

Related Examples
• “Portfolio Construction Examples” on page 3-7

Introduced before R2006a
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portror
Portfolio expected rate of return

Syntax
R = portror(Return, Weight)

Arguments

Return 1-by-N matrix of rates of return. Each column of Return represents
the rate of return for a single security

Weight M-by-N matrix of weights. Each row of Weight represents a
different weighting combination of the assets in the portfolio.

Description

R = portror(Return, Weight) returns a 1-by-M vector for the expected rate of
return.

Examples

Portfolio Expected Rate of Return

This example shows a portfolio that is made up of two assets ABC and XYZ having
expected rates of return of 10% and 14%, respectively. If 40% percent of the portfolio's
funds are allocated to asset ABC and the remaining funds are allocated to asset XYZ, the
portfolio's expected rate of return is:

r = portror([.1 .14],[.4 .6])

r =

    0.1240
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• “Portfolio Construction Examples” on page 3-7

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

References

Bodie, Kane, and Marcus. Investments. Chapter 7.

See Also
portrand | portvar

Introduced before R2006a
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portsim
Monte Carlo simulation of correlated asset returns

Syntax
RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals,

NumSim, Method)

Arguments

ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix of asset return
covariances. ExpCovariance must be symmetric
and positive semidefinite (no negative eigenvalues).
The standard deviations of the returns are
ExpSigma = sqrt(diag(ExpCovariance)).

NumObs Positive scalar integer indicating the number of consecutive
observations in the return time series. If NumObs is entered
as the empty matrix [], the length of RetIntervals is
used.

RetIntervals (Optional) Positive scalar or number of observations
(NUMOBS)-by-1 vector of interval times between observations.
If RetIntervals is not specified, all intervals are assumed
to have length 1.

NumSim (Optional) Positive scalar integer indicating the number
of simulated sample paths (realizations) of NUMOBS
observations. Default = 1 (single realization of NUMOBS
correlated asset returns).

Method (Optional) Character vector indicating the type of Monte
Carlo simulation:

'Exact' (default) generates correlated asset returns in
which the sample mean and covariance match the input
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mean (ExpReturn) and covariance (ExpCovariance)
specifications.

'Expected' generates correlated asset returns in which
the sample mean and covariance are statistically equal to
the input mean and covariance specifications. (The expected
value of the sample mean and covariance are equal to the
input mean (ExpReturn) and covariance (ExpCovariance)
specifications.)

For either method, the sample mean and covariance
returned are appropriately scaled by RetIntervals.

Description

portsim simulates correlated returns of NASSETS assets over NUMOBS consecutive
observation intervals. Asset returns are simulated as the proportional increments
of constant drift, constant volatility stochastic processes, thereby approximating
continuous-time geometric Brownian motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array of correlated,
normally distributed, proportional asset returns. Asset returns over an interval of length
dt are given by

dS

S
dt dz dt dt= + = +m s m se ,

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset
price, and ε represents a random drawing from a standardized normal distribution.

Notes

• When Method is 'Exact', the sample mean and covariance of all realizations (scaled
by RetIntervals) match the input mean and covariance. When the returns are then
converted to asset prices, all terminal prices for a given asset are in close agreement.
Although all realizations are drawn independently, they produce similar terminal
asset prices. Set Method to 'Expected' to avoid this behavior.
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• The returns from the portfolios in PortWts are given by
PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in

which each row contains the asset allocations of a portfolio. Each row of PortReturn
corresponds to one of the portfolios identified in PortWts, and each column
corresponds to one of the observations taken from the first realization (the first
plane) in RetSeries. See portopt and portstats for portfolio specification and
optimization.

Examples

Distinction Between Simulation Methods

This example shows the distinction between the Exact and Expected methods of
simulation.

Consider a portfolio of five assets with the following expected returns, standard
deviations, and correlation matrix based on daily asset returns (where ExpReturn and
Sigmas are divided by 100 to convert percentages to returns).

ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;

Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;

Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855

                 0.4403  1.0000  0.7597  0.7809  0.4343

                 0.4735  0.7597  1.0000  0.6978  0.4926

                 0.4334  0.7809  0.6978  1.0000  0.4289

                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations)

ExpCovariance =

   1.0e-03 *

    0.0904    0.0597    0.0686    0.0456    0.0709

    0.0597    0.2033    0.1649    0.1232    0.0674

    0.0686    0.1649    0.2319    0.1175    0.0816

    0.0456    0.1232    0.1175    0.1224    0.0516
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    0.0709    0.0674    0.0816    0.0516    0.1183

Assume that there are 252 trading days in a calendar year, and simulate two sample
paths (realizations) of daily returns over a two-year period. Since ExpReturn and
ExpCovariance are expressed daily, set RetIntervals = 1.

StartPrice    = 100;

NumObs        = 504;  % two calendar years of daily returns

NumSim        = 2;

RetIntervals  = 1;    % one trading day

NumAssets     = 5;

To illustrate the distinction between methods, simulate two paths by each method,
starting with the same random number state.

rng('default');

RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, NumSim, 'Exact');

rng(0);

RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ...

RetIntervals, NumSim, 'Expected');

Compare the mean and covariance of RetExact with the inputs (ExpReturn and
ExpCovariance), you will observe that they are almost identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2 arrays. Now assume
an equally weighted portfolio formed from the five assets and create arrays of portfolio
returns in which each column represents the portfolio return of the corresponding sample
path of the simulated returns of the five assets. The portfolio arrays PortRetExact and
PortRetExpected are 504-by-2 matrices.

Weights         = ones(NumAssets, 1)/NumAssets;

PortRetExact    = zeros(NumObs, NumSim);

PortRetExpected = zeros(NumObs, NumSim);

for i = 1:NumSim

    PortRetExact(:,i)    = RetExact(:,:,i) * Weights;

    PortRetExpected(:,i) = RetExpected(:,:,i) * Weights;

end

Finally, convert the simulated portfolio returns to prices and plot the data. In particular,
note that since the Exact method matches expected return and covariance, the terminal
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portfolio prices are virtually identical for each sample path. This is not true for the
Expected simulation method. Although this example examines portfolios, the same
methods apply to individual assets as well. Thus, Exact simulation is most appropriate
when unique paths are required to reach the same terminal prices.

PortExact   = ret2tick(PortRetExact, ...

repmat(StartPrice,1,NumSim));

PortExpected = ret2tick(PortRetExpected, ...

repmat(StartPrice,1,NumSim));

subplot(2,1,1), plot(PortExact, '-r')

ylabel('Portfolio Prices')

title('Exact Method')

subplot(2,1,2), plot(PortExpected, '-b')

ylabel('Portfolio Prices')

title('Expected Method')
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Interaction Between ExpReturn, ExpCovariance, and RetIntervals

This example shows the interplay among ExpReturn, ExpCovariance, and
RetIntervals. Recall that portsim simulates correlated asset returns over an interval
of length dt, given by the equation

dS

S
dt dz dt dt= + = +m s m se ,

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset
price, and ε represents a random drawing from a standardized normal distribution.
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The time increment dt is determined by the optional input RetIntervals, either as
an explicit input argument or as a unit time increment by default. Regardless, the
periodicity of ExpReturn, ExpCovariance, and RetIntervals must be consistent. For
example, if ExpReturn and ExpCovariance are annualized, then RetIntervals must
be in years. This point is often misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and RetIntervals,
consider a portfolio of five assets with the following expected returns, standard
deviations, and correlation matrix based on daily asset returns.
ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;

Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;

Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855

                 0.4403  1.0000  0.7597  0.7809  0.4343

                 0.4735  0.7597  1.0000  0.6978  0.4926

                 0.4334  0.7809  0.6978  1.0000  0.4289

                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix of daily returns.
 ExpCovariance = corr2cov(Sigmas, Correlations);

Assume 252 trading days per calendar year, and simulate a single sample path of daily
returns over a four-year period. Since the ExpReturn and ExpCovariance inputs are
expressed daily, set RetIntervals = 1.
StartPrice    = 100;

NumObs        = 1008;   % four calendar years of daily returns

RetIntervals  = 1;      % one trading day

NumAssets     = length(ExpReturn);

randn('state',0);

RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ... 

RetIntervals, 1, 'Expected');

Now annualize the daily data, thereby changing the periodicity of the data, by
multiplying ExpReturn and ExpCovariance by 252 and dividing RetIntervals by
252 (RetIntervals = 1/252 of a year). Resetting the random number generator to its
initial state, you can reproduce the results.

rng('default'); 

RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ... 

NumObs, RetIntervals/252, 1, 'Expected');

Assume an equally weighted portfolio and compute portfolio returns associated with each
simulated return series.
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Weights  = ones(NumAssets, 1)/NumAssets;

PortRet1 = RetSeries2 * Weights;

PortRet2 = RetSeries2 * Weights;

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

Univariate Geometric Brownian Motion

This example shows how to simulates a univariate geometric Brownian motion process.
It is based on an example found in Hull, Options, Futures, and Other Derivatives, 5th
Edition (see example 12.2 on page 236). In addition to verifying Hull's example, it also
graphically illustrates the lognormal property of terminal stock prices by a rather large
Monte Carlo simulation.

Assume that you own a stock with an initial price of $20, an annualized expected return
of 20% and volatility of 40%. Simulate the daily price process for this stock over the
course of one full calendar year (252 trading days).
StartPrice    = 20;

ExpReturn     = 0.2; 

ExpCovariance = 0.4^2;

NumObs        = 252;

NumSim        = 10000;

RetIntervals  = 1/252;

Note that RetIntervals is expressed in years, consistent with the fact that ExpReturn
and ExpCovariance are annualized. Also, note that ExpCovariance is entered as a
variance rather than the more familiar standard deviation (volatility).

Set the random number generator state, and simulate 10,000 trials (realizations) of stock
returns over a full calendar year of 252 trading days.
rng('default');

RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ... 

RetIntervals, NumSim, 'Expected'));

The squeeze function reformats the output array of simulated returns from a 252-
by-1-by-10000 array to more convenient 252-by-10000 array. (Recall that portsim is
fundamentally a multivariate simulation engine).

In accordance with Hull's equations 12.4 and 12.5 on page 236
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convert the simulated return series to a price series and compute the sample mean and
the variance of the terminal stock prices.

StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));

SampMean = mean(StockPrices(end,:))

SampVar = var(StockPrices(end,:))

SampMean =

   24.4489

SampVar =

  101.4243

Compare these values with the values you obtain by using Hull's equations.

ExpValue = StartPrice*exp(ExpReturn)

ExpVar = ... 

StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)

ExpValue =

   24.4281

ExpVar =

  103.5391

These results are very close to the results shown in Hull's example 12.2.

Display the sample density function of the terminal stock price after one calendar year.
From the sample density function, the lognormal distribution of terminal stock prices is
apparent.

[count, BinCenter] = hist(StockPrices(end,:), 30);

figure

bar(BinCenter, count/sum(count), 1, 'r')

xlabel('Terminal Stock Price')

ylabel('Probability')

title('Lognormal Terminal Stock Prices')
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• “Portfolio Construction Examples” on page 3-7

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

References

Hull, John, C. Options, Futures, and Other Derivatives. 5th Edition. Upper Saddle River,
New Jersey: Prentice-Hall, 2003, ISBN 0-13-009056-5.

See Also
ewstats | portopt | portstats | randn | ret2tick | squeeze

Introduced before R2006a
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portstats
Portfolio expected return and risk

Syntax
[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,

PortWts)

Arguments

ExpReturn 1-by-number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of
the asset returns.

PortWts (Optional) Number of portfolios (NPORTS) by NASSETS
matrix of weights allocated to each asset. Each row
represents a different weighting combination. Default = 1/
NASSETS (equally weighted).

Description

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,

PortWts) computes the expected rate of return and risk for a portfolio of assets.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

Examples

Computes the Expected Rate of Return and Risk for a Portfolio of Assets

This example shows how to calculate the expected rate of return and risk for a portfolio of
assets.
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ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.0100   -0.0061    0.0042

                -0.0061    0.0400   -0.0252

                 0.0042   -0.0252    0.0225 ];

PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,...

PortWts)

PortRisk =

    0.0560

    0.0550

PortReturn =

    0.1400

    0.1300

• “Portfolio Construction Examples” on page 3-7
• “Portfolio Selection and Risk Aversion” on page 3-9
• “Active Returns and Tracking Error Efficient Frontier” on page 3-43

More About
• “Analyzing Portfolios” on page 3-2
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
ewstats | portalloc

Introduced before R2006a
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portvar
Variance for portfolio of assets

Syntax
V = portvar(Asset, Weight)

Arguments

Asset M-by-N matrix of M asset returns for N securities.
Weight R-by-N matrix of R portfolio weights for N securities. Each row of

Weight constitutes a portfolio of securities in Asset.

Description
V = portvar(Asset, Weight) returns the portfolio variance as an R-by-1vector
(assuming Weight is a matrix of size R-by-N) with each row representing a variance
calculation for each row of Weight.

V = portvar(Asset) assigns each security an equal weight when calculating the
portfolio variance.

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

References
Bodie, Kane, and Marcus. Investments. Chapter 7.

See Also
portrand | portror
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Related Examples
• “Portfolio Construction Examples” on page 3-7

Introduced before R2006a
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portvrisk

Portfolio value at risk (VaR)

Syntax

ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,

PortValue)

Arguments

PortReturn Number of portfolios (NPORTS)-by-1 vector or scalar of the
expected return of each portfolio over the period.

PortRisk NPORTS-by-1 vector or scalar of the standard deviation of
each portfolio over the period.

RiskThreshold (Optional) NPORTS-by-1 vector or scalar specifying the loss
probability. Default = 0.05 (5%).

PortValue (Optional) NPORTS-by-1 vector or scalar specifying the total
value of asset portfolio. Default = 1.

Description

ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,

PortValue) returns the maximum potential loss in the value of a portfolio over one
period of time (that is, monthly, quarterly, yearly, etc.) given the loss probability level
RiskThreshold.

ValueAtRisk is an NPORTS-by-1 vector of the estimated maximum loss in the portfolio,
predicted with a confidence probability of 1 − RiskThreshold. portvrisk calculates
ValueAtRisk using a normal distribution.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis. A value of 0
indicates no losses.
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Examples

Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time

This example shows how to return the maximum potential loss in the value of a portfolio
over one period of time, where ValueAtRisk is computed on a per-unit basis.

PortReturn = 0.29/100;

PortRisk = 3.08/100;

RiskThreshold = [0.01;0.05;0.10];

PortValue = 1;

ValueAtRisk = portvrisk(PortReturn,PortRisk,...

RiskThreshold,PortValue)

ValueAtRisk =

    0.0688

    0.0478

    0.0366

Compute the Maximum Potential Loss in the Value of a Portfolio Over One Period of Time Using
Actual Values

This example shows how to return the maximum potential loss in the value of a portfolio
over one period of time, where ValueAtRisk is computed with actual values.

PortReturn = [0.29/100;0.30/100];

PortRisk = [3.08/100;3.15/100];

RiskThreshold = 0.10;

PortValue = [1000000000;500000000];

ValueAtRisk = portvrisk(PortReturn,PortRisk,...

RiskThreshold,PortValue)

ValueAtRisk =

   1.0e+07 *

    3.6572

    1.8684

• “Portfolio Construction Examples” on page 3-7
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More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
portopt

Introduced before R2006a
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posvolidx
Positive volume index

Syntax
pvi = posvolidx(closep, tvolume, initpvi)

pvi = posvolidx([closep tvolume], initpvi)

pvits = posvolidx(tsobj)

pvits = posvolidx(tsobj, initpvi, 'ParameterName', ParameterValue, ...)

Arguments

closep Closing price (vector).
tvolume Volume traded (vector).
initpvi (Optional) Initial value for positive volume index. Default = 100.
tsobj Financial time series object.

Description

pvi = posvolidx(closep, tvolume, initpvi) calculates the positive volume
index from a set of stock closing prices (closep) and volume traded (tvolume) data. pvi
is a vector representing the positive volume index. If initpvi is specified, posvolidx
uses that value instead of the default (100).

pvi = posvolidx([closep tvolume], initpvi) accepts a two-column matrix, the
first column representing the closing prices (closep) and the second representing the
volume traded (tvolume). If initpvi is specified, posvolidx uses that value instead of
the default (100).

pvits = posvolidx(tsobj) calculates the positive volume index from the financial
time series object tsobj. The object must contain, at least, the series Close and Volume.
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The pvits output is a financial time series object with dates similar to tsobj and a data
series named PVI. The initial value for the positive volume index is arbitrarily set to 100.

pvits = posvolidx(tsobj, initpvi, 'ParameterName',

ParameterValue, ...) accepts parameter name/parameter value pairs as input.
These pairs specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• CloseName: closing prices series name
• VolumeName: volume traded series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Positive Volume Index

This example shows how to compute the positive volume index for Disney stock and plot
the results.

load disney.mat

dis_PosVol = posvolidx(dis);

plot(dis_PosVol)

title('Positive Volume Index for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 236–238.
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See Also
negvolidx | onbalvol

Introduced before R2006a
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power
Financial time series power

Syntax
newfts = tsobj .^ array

newfts = array .^tsobj

newfts = tsobj_1 .^ tsobj_2

Arguments

tsobj Financial time series object.
array Scalar value or array with the number of rows equal to the

number of dates in tsobj and the number of columns equal
to the number of data series in tsobj.

tsobj_1, tsobj_2 Pair of financial time series objects.

Description

newfts = tsobj .^ array raises all values in the data series of the financial time
series object tsobj element by element to the power indicated by the array value. The
results are stored in another financial time series object newfts. The newfts object
contains the same data series names as tsobj.

newfts = array .^ tsobj raises the array values element by element to the values
contained in the data series of the financial time series object tsobj. The results are
stored in another financial time series object newfts. The newfts object contains the
same data series names as tsobj.

newfts = tsobj_1 .^ tsobj_2 raises the values in the object tsobj_1 element by
element to the values in the object tsobj_2. The data series names, the dates, and the
number of data points in both series must be identical. newfts contains the same data
series names as the original time series objects.
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See Also
minus | plus | rdivide | times

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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prbyzero

Price bonds in portfolio by set of zero curves

Syntax

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates, Compounding)

Arguments

Bonds Coupon bond information used to compute prices. Bonds can be
a table or matrix. If Bonds is a table, the columns have the same
meaning as when a matrix is used, but the Maturity dates can be
serial date numbers, date character vectors, or datetime arrays.
If Bonds is a matrix, it is a number of bonds (NUMBONDS)-by-6
matrix where each row describes a bond. The first two columns are
required; the rest are optional but must be added in order. All rows
in Bonds must have the same number of columns. Columns are
[Maturity CouponRate Face Period Basis EndMonthRule]
where:
Maturity Maturity date of the bond, as a serial date

number. Use datenum to convert date
character vectors to serial date numbers. If
the input Bonds is a table, the Maturity
dates can be serial date numbers, date
character vectors, or datetime arrays.

CouponRate Decimal number indicating the annual
percentage rate used to determine the
coupons payable on a bond.

Face (Optional) Face or par value of the bond.
Default = 100.

Period (Optional) Coupons per year of the bond.
Allowed values are 0, 1, 2 (default), 3, 4, 6,
and 12.
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Basis (Optional) Day-count basis of the
instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
EndMonthRule (Optional) End-of-month rule. This rule

applies only when Maturity is an end-
of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond's coupon payment date is always
the same numerical day of the month. 1 =
set rule on (default), meaning that a bond's
coupon payment date is always the last
actual day of the month.

Settle Settle can be specified as a serial date number, date character
vector, or datetime array for the settlement date.

ZeroRates NUMDATES-by-NUMCURVES matrix of observed zero rates, as
decimal fractions. Each column represents a rate curve. Each row
represents an observation date.
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ZeroDates NUMDATES-by-1 column of dates for observed zeros, specified as a
serial date number, date character vector, or datetime array.

Compounding Scalar value representing the rate at which the input zero rates
were compounded when annualized. This argument determines the
formula for the discount factors. Compounding values are: 1, 2, 3,
4, 6, 12.

Description

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates,

Compounding) computes the bond prices in a portfolio using a set of zero curves.

BondPrices is returned as a NUMBONDS-by-NUMCURVES matrix of clean bond prices.
Each column is derived from the corresponding zero curve in ZeroRates.

In addition, you can use the Financial Instruments Toolbox method getZeroRates
for an IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for prbyzero. For more information, see “Converting an IRDataCurve or
IRFunctionCurve Object”.

Examples

Compute the Bond Prices in a Portfolio Using a Set of Zero Curves

This example uses the function zbtprice to compute a zero curve given a portfolio of
coupon bonds and their prices. It then reverses the process, using the zero curve as input
to the function prbyzero to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;

         datenum('7/1/2000') 0.06 100 2 0 0;

         datenum('7/1/2000') 0.09375 100 6 1 0;

         datenum('6/30/2001') 0.05125 100 1 3 1;

         datenum('4/15/2002') 0.07125 100 4 1 0;

         datenum('1/15/2000') 0.065 100 2 0 0;

         datenum('9/1/1999') 0.08 100 3 3 0;

         datenum('4/30/2001') 0.05875 100 2 0 0;

         datenum('11/15/1999') 0.07125 100 2 0 0;

         datenum('6/30/2000') 0.07 100 2 3 1;

         datenum('7/1/2001') 0.0525 100 2 3 0;
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         datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [ 99.375;

           99.875;

          105.75 ;

           96.875;

          103.625;

          101.125;

          103.125;

           99.375;

          101.0  ;

          101.25 ;

           96.375;

          102.75 ];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve, on an actual/365 basis.

OutputCompounding = 2;

Execute the function zbtprice which returns the zero curve at the maturity dates.

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,...

OutputCompounding)

ZeroRates =

    0.0616

    0.0609

    0.0658

    0.0590

    0.0647

    0.0655

    0.0606

    0.0601

    0.0642

    0.0621

    0.0627

ZeroDates =

      729907
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      730364

      730439

      730500

      730667

      730668

      730971

      731032

      731033

      731321

      731336

Execute the function prbyzero.

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

BondPrices =

   99.3750

   98.7980

  106.8270

   96.8750

  103.6249

  101.1250

  103.1250

   99.3637

  101.0000

  101.2500

   96.3750

  102.7384

In this example zbtprice and prbyzero do not exactly reverse each other. Many of
the bonds have the end-of-month rule off (EndMonthRule = 0). The rule subtly affects
the time factor computation. If you set the rule on (EndMonthRule = 1) everywhere
in the Bonds matrix, then prbyzero returns the original prices, except when the two
incompatible prices fall on the same maturity date.

Compute the Bond Prices in a Portfolio Using a Set of Zero Curves and datetime Inputs

This example uses the function zbtprice to compute a zero curve given a portfolio of
coupon bonds and their prices. It then reverses the process, using the zero curve as input
to the function prbyzero with datetime inputs to compute the prices.
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Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;

         datenum('7/1/2000') 0.06 100 2 0 0;

         datenum('7/1/2000') 0.09375 100 6 1 0;

         datenum('6/30/2001') 0.05125 100 1 3 1;

         datenum('4/15/2002') 0.07125 100 4 1 0;

         datenum('1/15/2000') 0.065 100 2 0 0;

         datenum('9/1/1999') 0.08 100 3 3 0;

         datenum('4/30/2001') 0.05875 100 2 0 0;

         datenum('11/15/1999') 0.07125 100 2 0 0;

         datenum('6/30/2000') 0.07 100 2 3 1;

         datenum('7/1/2001') 0.0525 100 2 3 0;

         datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [ 99.375;

           99.875;

          105.75 ;

           96.875;

          103.625;

          101.125;

          103.125;

           99.375;

          101.0  ;

          101.25 ;

           96.375;

          102.75 ];

Settle = datenum('12/18/1997');

OutputCompounding = 2;

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding);

dates = datetime(Bonds(:,1),'ConvertFrom','datenum','Locale','en_US');

data = Bonds(:,2:end);

t=[table(dates) array2table(data)];

BondPrices = prbyzero(t, datetime(Settle,'ConvertFrom','datenum','Locale','en_US'),...

ZeroRates, datetime(ZeroDates,'ConvertFrom','datenum','Locale','en_US'))

BondPrices =

   99.3750

   98.7980

  106.8270

   96.8750

  103.6249
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  101.1250

  103.1250

   99.3637

  101.0000

  101.2500

   96.3750

  102.7384

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21

See Also
datetime | tr2bonds | zbtprice

Introduced before R2006a
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prcroc
Price rate of change

Syntax
proc = prcroc(closep, nTimes)

procts = prcroc(tsobj, nTimes)

procts = prcroc(tsobj, nTimes, 'ParameterName', ParameterValue, ...)

Arguments

closep Closing price
nTimes (Optional) Time difference. Default = 12.
tsobj Financial time series object

Description

proc = prcroc(closep, nTimes) calculates the price rate of change proc from the
closing price closep. If nTimes time is specified, the price rate of change is calculated
between the current closing price and the closing price nTimes ago.

procts = prcroc(tsobj, nTimes) calculates the price rate of change procts
from the financial time series object tsobj. tsobj must contain a data series named
Close. The output procts is a financial time series object with similar dates as tsobj
and a data series named PriceROC. If nTimes is specified, the price rate of change is
calculated between the current closing price and the closing price nTimes ago.

procts = prcroc(tsobj, nTimes, 'ParameterName', ParameterValue, ...)

specifies the name for the required data series when it is different from the default name.
The valid parameter name is

• CloseName: closing price series name
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The parameter value is a character vector that represents the valid parameter name.

Note, to compute a quantity over n periods, you must specify n+1 for nTimes. If you
specify nTimes = 0, the function returns your original time series.

Examples

Compute the Price Rate of Change

This example shows how to compute the price rate of change for Disney stock and plot
the results.

load disney.mat

dis_PriceRoc = prcroc(dis);

plot(dis_PriceRoc)

title('Price Rate of Change for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 243–245.
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See Also
volroc

Introduced before R2006a
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prdisc
Price of discounted security

Syntax
Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Arguments

Settle Enter as serial date number, date character vector, or datetime
array. Settle must be earlier than Maturity.

Maturity Enter as serial date number, date character vector, or datetime
arrays.

Face Redemption (par, face) value.
Discount Bank discount rate of the security. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Description

Price = prdisc(Settle, Maturity, Face, Discount, Basis) returns the price
of a security whose yield is quoted as a bank discount rate (for example, U. S. Treasury
bills).

Examples

Calculate the Price of a Security Whose Yield is Quoted as a Bank Discount Rate

This example shows how to return the price of a security whose yield is quoted as a bank
discount rate (for example, U. S. Treasury bills).

Settle = '10/14/2000';

Maturity = '03/17/2001';

Face = 100;

Discount = 0.087;

Basis = 2;

Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Price =

   96.2783

Calculate the Price of a Security Whose Yield is Quoted as a Bank Discount Rate Using datetime
Inputs

This example shows how to use datetime inputs to return the price of a security whose
yield is quoted as a bank discount rate (for example, U. S. Treasury bills).

Settle = '10/14/2000';

Maturity = '03/17/2001';

Face = 100;

Discount = 0.087;

Basis = 2;
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Price = prdisc(datetime(Settle,'Locale','en_US'),datetime(Maturity,'Locale','en_US'), Face, Discount, Basis)

Price =

   96.2783

• “Pricing Functions” on page 2-29

More About
• “Fixed-Income Terminology” on page 2-21

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 2.

See Also
acrudisc | bndprice | datetime | discrate | prmat | ylddisc

Introduced before R2006a
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priceandvol
Price and volume chart

Syntax
priceandvol(X)

Arguments

X X can be a M-by-6 matrix or table. If X is M-by-6 matrix , the columns
are date, open, high, low, close, and volume. If X is a table, the
first column of the table is the date, and can be either serial date
numbers, date character vectors, or datetime arrays. The other
columns represent the same data as in the matrix version of the
input.

Description
priceandvol(X) plots the asset data displaying the open, high, low, and closing prices
on one axis and the volume on a second axis.

Examples
Create a Price Volume Chart

This example shows how to create a price volume chart, given asset X as an M-by-6
matrix for date, open, high, low, close, and volume.

X = [...

733299.00         41.93         42.15         41.83         41.99   15045445.00;...

733300.00         42.09         42.24         41.76         42.14   15346658.00;...

733303.00         42.00         42.20         41.78         41.93    9034397.00;...

733304.00         41.82         42.16         41.70         41.98   14486275.00;...

733305.00         41.94         42.19         41.70         41.75   16389872.00;...

733306.00         42.00         42.57         41.50         41.61   20475208.00;...
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733307.00         41.93         42.35         41.74         42.29   14833200.00;...

733310.00         42.01         42.70         42.01         42.19   18945176.00;...

733311.00         42.18         42.72         41.73         41.82   25188101.00;...

733312.00         42.57         42.57         41.33         41.93   22689878.00;...

733313.00         41.86         42.35         41.71         41.81   21084723.00;...

733314.00         41.70         41.90         41.04         41.37   27963619.00;...

733317.00         40.98         41.49         40.82         41.17   20385033.00;...

733318.00         41.50         42.15         41.21         42.02   27783775.00];

priceandvol(X)
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Create a Price Volume Chart Using datetime Input

This example shows how to use datetime input to create a price volume chart, given
asset X as an M-by-6 matrix for date, open, high, low, close, and volume.

X = [...

733299.00         41.93         42.15         41.83         41.99   15045445.00;...

733300.00         42.09         42.24         41.76         42.14   15346658.00;...

733303.00         42.00         42.20         41.78         41.93    9034397.00;...

733304.00         41.82         42.16         41.70         41.98   14486275.00;...

733305.00         41.94         42.19         41.70         41.75   16389872.00;...

733306.00         42.00         42.57         41.50         41.61   20475208.00;...

733307.00         41.93         42.35         41.74         42.29   14833200.00;...

733310.00         42.01         42.70         42.01         42.19   18945176.00;...
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733311.00         42.18         42.72         41.73         41.82   25188101.00;...

733312.00         42.57         42.57         41.33         41.93   22689878.00;...

733313.00         41.86         42.35         41.71         41.81   21084723.00;...

733314.00         41.70         41.90         41.04         41.37   27963619.00;...

733317.00         40.98         41.49         40.82         41.17   20385033.00;...

733318.00         41.50         42.15         41.21         42.02   27783775.00];

dates = datetime(X(:,1),'ConvertFrom','datenum','Locale','en_US');

data = X(:,2:end);

t=[table(dates) array2table(data)];

priceandvol(t);

• “Charting Financial Data” on page 2-12
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See Also
bolling | bolling | datetime | highlow | kagi | linebreak | movavg |
pointfig | renko | volarea

Introduced in R2008a
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prmat
Price with interest at maturity

Syntax
[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,

CouponRate, Yield, Basis)

Arguments

Settle Enter as serial date number, date character vector, or datetime
array. Settle must be earlier than Maturity.

Maturity Enter as serial date number, date character vector, or datetime
arrays.

Issue Enter as serial date number, date character vector, or datetime
array.

Face Redemption (par, face) value.
CouponRate Enter as decimal fraction.
Yield Annual yield. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Description

[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,

CouponRate, Yield, Basis) returns the price and accrued interest of a security
that pays interest at maturity. This function also applies to zero-coupon bonds or pure
discount securities by setting CouponRate = 0.

Examples

Compute the Price and Accrued Interest of a Security That Pays Interest at Maturity

This example shows how to compute the price and accrued interest of a security that
pays interest at maturity.

Settle = '02/07/2002';

Maturity = '04/13/2002';

Issue = '10/11/2001';

Face = 100;

CouponRate = 0.0608;

Yield = 0.0608;

Basis = 1;

[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,...

CouponRate, Yield, Basis)

Price =

   99.9784

AccruInterest =
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    1.9591

Compute the Price and Accrued Interest of a Security That Pays Interest at Maturity Using
datetime Inputs

This example shows how to use datetime inputs compute the price and accrued interest
of a security that pays interest at maturity.

Settle = '7-Feb-2002';

Maturity = '13-Apr-2002';

Issue = '11-Oct-2001';

Face = 100;

CouponRate = 0.0608;

Yield = 0.0608;

Basis = 1;

[Price, AccruInterest] = prmat(datetime(Settle,'Locale','en_US'), datetime(Maturity,'Locale','en_US'), datetime(Issue,'Locale','en_US'),...

Face,CouponRate, Yield, Basis)

Price =

   99.9784

AccruInterest =

    1.9591

• “Pricing Functions” on page 2-29

More About
• “Fixed-Income Terminology” on page 2-21

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 4.
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See Also
acrubond | acrudisc | bndprice | datetime | prdisc | yldmat

Introduced before R2006a
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prtbill
Price of Treasury bill

Syntax
Price = prtbill(Settle, Maturity, Face, Discount)

Arguments

Settle Enter as serial date number, date character vector, or datetime
array. Settle must be earlier than Maturity.

Maturity Enter as serial date number, date character vector, or datetime
arrays.

Face Redemption (par, face) value.
Discount Discount rate of the Treasury bill. Enter as decimal fraction.

Description

Price = prtbill(Settle, Maturity, Face, Discount) returns the price for a
Treasury bill.

Examples

Calculate the Price for a Treasury Bill

This example shows how to return the price for a Treasury bill, where the settlement
date of a Treasury bill is February 10, 2002, the maturity date is August 6, 2002, the
discount rate is 3.77%, and the par value is $1000.

Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

Price =
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  981.4642

Calculate the Price for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to return the price for a Treasury bill,
where the settlement date of a Treasury bill is February 10, 2002, the maturity date is
August 6, 2002, the discount rate is 3.77%, and the par value is $1000.

Price = prtbill(datetime('10-Feb-2002','Locale','en_US'), datetime('6-Aug-2002','Locale','en_US'), 1000, 0.0377)

Price =

  981.4642

• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

References

Bodie, Kane, and Marcus. Investments. pp. 41–43.

See Also
beytbill | datetime | yldtbill

Introduced before R2006a
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pvfix
Present value with fixed periodic payments

Syntax
PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

Arguments

rate Periodic interest rate, as a decimal fraction.
NumPeriods Number of periods.
Payment Periodic payment.
ExtraPayment (Optional) Payment received other than Payment in the last

period. Default = 0.
Due (Optional) When payments are due or made: 0 = end of

period (default), or 1 = beginning of period.

Description

PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

returns the present value of a series of equal payments.

Examples

Calculate the Present Value of a Series of Equal Payments

This example shows how to return the present value of a series of equal payments, where
$200 is paid monthly into a savings account earning 6%. The payments are made at the
end of the month for five years.

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)
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PresentVal =

   1.0345e+04

• “Analyzing and Computing Cash Flows” on page 2-17

See Also
fvfix | fvvar | payper | pvvar

Introduced before R2006a
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pvtrend

Price and Volume Trend (PVT)

Syntax

pvt = pvtrend(closep, tvolume)

pvt = pvtrend([closep tvolume])

pvtts = pvtrend(tsobj)

pvtts = pvtrend(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

closep Closing price.
tvolume Volume traded.
tsobj Financial time series object.
'ParameterName' Valid parameter names are:

• CloseName — closing prices series name
• VolumeName — volume traded series name

ParameterValue Parameter values are the character vectors that
represent the valid parameter names.

Description

pvt = pvtrend(closep, tvolume) calculates the Price and Volume Trend (PVT)
from the stock closing price (closep) data and the volume traded (tvolume) data.

pvt = pvtrend([closep tvolume]) accepts a two-column matrix in which the first
column contains the closing prices (closep) and the second contains the volume traded
(tvolume).
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pvtts = pvtrend(tsobj) calculates the PVT from the stock data contained in the
financial time series object tsobj. The object tsobj must contain the closing price series
Close and the volume traded series Volume. The output pvtts is a financial time series
object with dates similar to tsobj and a data series named PVT.

pvtts = pvtrend(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/ parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Parameter values
are the character vectors that represent the valid parameter names.

Examples

Calculate the Price and Volume Trend (PVT)

This example shows how to calculate the PVT for Disney stock and plot the results.

load disney.mat

dis_PVTrend = pvtrend(dis);

plot(dis_PVTrend)

title('Price and Volume Trend for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 239–240.
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See Also
onbalvol | volroc

Introduced before R2006a
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pvvar

Present value of varying cash flow

Syntax

PresentVal = pvvar(CashFlow, Rate, CFDates)

Arguments

CashFlow A vector of varying cash flows. Include the initial investment as
the initial cash flow value (a negative number). If CashFlow is a
matrix, each column is treated as a separate cash-flow stream.

Rate Periodic interest rate. Enter as a decimal fraction. If CashFlow
is a matrix, a scalar Rate is allowed when the same rate applies
to all cash-flow streams in CashFlow. When multiple cash-flow
streams require different discount rates, Rate must be a vector
whose length equals the number of columns in CashFlow.

CFDates (Optional) A vector of serial date numbers, date character vectors,
or datetime arrays on which the cash flows occur. Specify CFDates
when there are irregular (nonperiodic) cash flows. The default
assumes that CashFlow contains regular (periodic) cash flows. If
CashFlow is a matrix, and all cash-flow streams share the same
dates, CFDates can be a vector whose length matches the number
of rows in CashFlow. When different cash-flow streams have
different payment dates, specify CFDates as a matrix the same size
as CashFlow.

Description

PresentVal = pvvar(CashFlow, Rate, CFDates) returns the net present value of
a varying cash flow. Present value is calculated at the time the first cash flow occurs.
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Examples

This cash flow represents the yearly income from an initial investment of $10,000. The
annual interest rate is 8%.

Year 1 $2000
Year 2 $1500
Year 3 $3000
Year 4 $3800
Year 5 $5000

To calculate the net present value of this regular cash flow
PresentVal = pvvar([-10000 2000 1500 3000 3800 5000], 0.08)

returns

PresentVal =

             1715.39

An investment of $10,000 returns this irregular cash flow. The original investment and
its date are included. The periodic interest rate is 9%.

Cash Flow Dates

($10000) January 12, 1987
$2500 February 14, 1988
$2000 March 3, 1988
$3000 June 14, 1988
$4000 December 1, 1988

To calculate the net present value of this irregular cash flow

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CFDates = ['01/12/1987'

            '02/14/1988'

            '03/03/1988'

            '06/14/1988'
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            '12/01/1988'];

PresentVal = pvvar(CashFlow, 0.09, CFDates)

returns

PresentVal =

             142.16

The net present value of the same investment under different discount rates of 7%, 9%,
and 11% is obtained in a single call:
PresentVal = pvvar(repmat(CashFlow,3,1)', [.07 .09 .11], CFDates)

pv =

  419.0136  142.1648 -122.1275

See Also
datetime | fvfix | fvvar | irr | payuni | pvfix

Introduced before R2006a
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pyld2zero
Zero curve given par yield curve

Syntax
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle)

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle,

Name, Value)

Compatibility

In R2015b, the specification of optional input arguments has changed. While the
previous ordered inputs syntax is still supported, it may no longer be supported in a
future release. Use the new optional name-value pair inputs: InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.

Input Arguments

ParRates Column vector of annualized implied par yield rates, as
decimal fractions. (Par yields = coupon rates.) In aggregate,
the yield rates in ParRates constitute an implied par
yield curve for the investment horizon represented by
CurveDates.

CurveDates Column vector of maturity dates that correspond to the
par rates, specified as serial date numbers, date character
vectors, or datetime arrays.

Settle Serial date number, date character vector, or datetime array
that is the common settlement date for the par rates.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
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quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [ZeroRates,CurveDates] = pyld2zero(ParRates, CurveDates,
Settle,'OutputCompounding',3,'OutputBasis',5,'InputCompounding',4,'InputBasis',5)

'OutputCompounding' — Compounding frequency of output zero rates
if OutputCompounding is 0 (simple), -1 (continuous), or 365 (daily), the par rate
InputCompounding must also be specified a valid value. If OutputCompounding
is not specified, it is assigned the value specified for InputCompounding. If neither
InputCompounding nor OutputCompounding are specified, the default is 2
(semiannual) for both. (default) | scalar

Compounding frequency of the output zero rates, specified as a scalar with allowed
values:

• 0 — Simple interest (no compounding, zero rates only)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding (zero rates only)
• -1 — Continuous compounding (zero rates only)

Data Types: single | double

'OutputBasis' — Day count basis of output zero rates
if OutputBasis is not specified, it is assigned the value specified for InputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of output zero rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

'InputCompounding' — Compounding frequency of input par rates
if OutputCompounding is 1, 2, 3, 4, 6, or 12, and InputCompounding is not specified,
it is assigned the value of OutputCompounding. If OutputCompounding is 0 (simple),
-1 (continuous), or 365 (daily), a valid InputCompounding value must also be specified.
If neither InputCompounding nor OutputCompounding are specified, the default is 2
(semiannual) for both. (default) | scalar

Compounding frequency of the input par rates, specified as a scalar with allowed values:

• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Data Types: single | double

'InputBasis' — Day count basis of input par rates
if InputBasis is not specified, it is assigned the value specified for OutputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar
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Day count basis of input par rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

Description

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle)

returns a zero curve given a par yield curve and its maturity dates.

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle,

Name, Value) returns a zero curve given a par yield curve and its maturity dates
using optional name-value pair arguments for InputCompounding, InputBasis,
OutputCompounding, and OutputBasis.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in
ZeroRates constitute a zero curve for the investment horizon
represented by CurveDates.
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CurveDates Column vector of maturity dates corresponding to the zero rates.
This vector is the same as the input vector CurveDates, but is
sorted by ascending maturity. If either input for CurveDates or
Settle is a datetime array, CurveDates is returned as a datetime
array. Otherwise, it will be returned as a serial date number.

Examples

Compute Zero Curve Given Par Yield Curve

Define the settlement date, maturity, and zero rates.

Settle = datenum('01-Feb-2013');

CurveDates = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');

ZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;

InputCompounding = 2;

InputBasis = 1;

OutputCompounding = 2;

OutputBasis = 1;

Compute par yield curve from zero rates.

ParRates = zero2pyld(ZeroRates, CurveDates, Settle,'InputCompounding',2,...

'InputBasis',1,'OutputCompounding',2,'OutputBasis',1)

ParRates =

    0.0011

    0.0030

    0.0064

    0.0142

    0.0201

    0.0251

    0.0309

    0.0330

Compute zero curve from the par yield curve.

ZeroRates = pyld2zero(ParRates, CurveDates, Settle,'InputCompounding',2,...

'InputBasis',1,'OutputCompounding',2,'OutputBasis',1)
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ZeroRates =

    0.0011

    0.0030

    0.0064

    0.0144

    0.0207

    0.0261

    0.0329

    0.0355

Compute Zero Curve Given Par Yield Curve Using datetime Inputs

Use datetime inputs to compute the zero curve given the par yield curve.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')

    datenum('01-Feb-2015')

    datenum('01-Feb-2016')

    datenum('01-Feb-2018')

    datenum('01-Feb-2020')

    datenum('01-Feb-2023')

    datenum('01-Feb-2033')

    datenum('01-Feb-2043')];

OriginalParRates = [0.11 0.30 0.64 1.42 2.02 2.51 3.10 3.31]'/100;

InputCompounding = 1;

InputBasis = 0;

OutputCompounding = 1;

OutputBasis = 0;

Settle = datetime(Settle, 'ConvertFrom', 'datenum','Locale','en_US');

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');

[ZeroRates Dates] = pyld2zero(OriginalParRates, CurveDates, Settle, ...

'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...

'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ZeroRates =

    0.0011
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    0.0030

    0.0064

    0.0144

    0.0207

    0.0261

    0.0329

    0.0356

Dates = 

  8×1 datetime array

   01-Feb-2014

   01-Feb-2015

   01-Feb-2016

   01-Feb-2018

   01-Feb-2020

   01-Feb-2023

   01-Feb-2033

   01-Feb-2043

Demonstrate a Roundtrip From pyld2zero to zero2pyld

Given the following a par yield curve and its maturity dates, return the ZeroRates.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')

    datenum('01-Feb-2015')

    datenum('01-Feb-2016')

    datenum('01-Feb-2018')

    datenum('01-Feb-2020')

    datenum('01-Feb-2023')

    datenum('01-Feb-2033')

    datenum('01-Feb-2043')];

OriginalParRates = [0.11 0.30 0.64 1.42 2.02 2.51 3.10 3.31]'/100;

InputCompounding = 1;

InputBasis = 0;

OutputCompounding = 1;

OutputBasis = 0;
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ZeroRates = pyld2zero(OriginalParRates, CurveDates, Settle, ...

'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...

'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ZeroRates =

    0.0011

    0.0030

    0.0064

    0.0144

    0.0207

    0.0261

    0.0329

    0.0356

With the ZeroRates, use the zero2pyld function to return the ParRatesOut and
determine the roundtrip error.

ParRatesOut = zero2pyld(ZeroRates, CurveDates, Settle, ...

'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...

'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

max(abs(OriginalParRates - ParRatesOut)) % Roundtrip error

ParRatesOut =

    0.0011

    0.0030

    0.0064

    0.0142

    0.0202

    0.0251

    0.0310

    0.0331

ans =

   1.2750e-16

• “Term Structure of Interest Rates” on page 2-39
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• “Sensitivity of Bond Prices to Interest Rates” on page 10-3
• “Bond Prices and Yield Curve Parallel Shifts” on page 10-10
• “Bond Prices and Yield Curve Nonparallel Shifts” on page 10-15
• “Term Structure Analysis and Interest-Rate Swaps” on page 10-22

More About
• “Fixed-Income Terminology” on page 2-21

See Also
datetime | zero2pyld

Introduced before R2006a
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quarter
Returns the quarter of given date

Syntax

q = quarter(date)

q = quarter(date,month1)

q = quarter(date,month1,dateformat)

Description

q = quarter(date) returns the quarter of the given date, assuming the standard
calendar (starting on January 1st).

q = quarter(date,month1) returns the quarter of the date for a calendar which
starts on the month specified by month1. month1 must be an integer between 1–12
representing Jan-Dec respectively.

q = quarter(date,month1,dateformat) returns the quarter of the date for a
calendar which starts on the month specified by month1. month1 must be an integer
between 1–12 representing January to December respectively. The dateformat input
is a character vector to specify the format of your date character vector in case it is not
normally recognized by the datenum function.

Examples

Determine the Quarter for a Given Date

quarter returns the quarter of the given date, assuming the standard calendar that
starts on Jan 1st.

quarter('7-Apr-2013')

ans =
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     2

Determine the Quarter for a Given Date for an Off-Cycle Calendar

quarter returns the quarter of the date for a calendar which starts on the month
specified by month1.

quarter('7-Apr-2013',5)

ans =

     4

If the financial calendar starts in May (where month1 = 5), April would be the last month
and fall in the last quarter.

Determine the Quarter for a Given Date When the Date is Not Recognized by datenum

When using quarter, the optional input argument for dateformat is a character vector
which lets you specify the format of your date character vector in case it isn't normally
recognized by the datenum function.

quarter('07-04-2013',1)

ans =

     3

This gives the quarter 3 because by default datenum interprets the date as July 7th,
2013.

If you really meant April 7th, 2013, you can use dateformat to specify the intended
format.

quarter('07-04-2013',1,'dd-mm-yyyy')

ans =
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     2

Input Arguments

date — Date in a quarter
serial date number | date character vector

Date in a quarter, specified as serial date numbers or date character vectors.
Data Types: double | char

month1 — First month in a calendar
integer with value between 1–12

First month in a calendar, specified as an integer with a value between 1–12,
representing January to December respectively. Use month1 when the standard calendar
that starts on January 1st does not apply.
Data Types: double

dateformat — Format of date
character vector

Format of date, specified as a character vector. dateformat input is a character vector
to specify the format of your date character vector in case it is not normally recognized by
the datenum function.

Data Types: char

Output Arguments

q — Quarter for given date
integer

Quarter for given date, returned as an integer between 1–4.

See Also
datenum
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Introduced in R2015a
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rdivide
Financial time series division

Syntax
newfts = tsobj_1 ./ tsobj_2

newfts = tsobj ./ array

newfts = array ./ tsobj

Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.
array Scalar value or array with the number of rows equal to the

number of dates in tsobj and the number of columns equal
to the number of data series in tsobj.

Description

The rdivide method divides, element by element, the components of one financial time
series object by the components of the other. You can also divide the whole object by an
array or divide a financial time series object into an array.

If an object is to be divided by another object, both objects must have the same dates and
data series names, although the order need not be the same. The order of the data series,
when an object is divided by another object, follows the order of the first object.

newfts = tsobj_1 ./ tsobj_2 divides financial time series objects element by
element.

newfts = tsobj ./ array divides a financial time series object element by element
by an array.

newfts = array ./ tsobj divides an array element by element by a financial time
series object.
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For financial time series objects, the rdivide operation is identical to the mrdivide
operation.

See Also
minus | mrdivide | plus | times

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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renko
Renko chart

Syntax
renko(X)

renko(X, threshold)

Arguments

X X can be aM-by-2 matrix or a table. If X is a M-by-2 matrix, the
first column contains date numbers and the second column is the
asset price. If X is aM-by-2 table, where each column has the same
interpretation. However, in the table form, the first column may be
serial date numbers, date character vectors, or datetime arrays.

threshold (Optional) Specifies a threshold value for asset price. By default,
threshold is set to 1.

Description
renko(X) plots asset price with respect to dates.

renko(X, threshold) plots the asset data, X, adding a new box only when the price
has changed but at least the value specified by threshold.

Examples
Plot Asset Price With Respect to Dates

This example shows how to plot asset price with respect to dates, given asset X as an M-
by-2 matrix of date numbers and asset prices, generate a Renko chart.

X = [...

733299.00         41.99;...
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733300.00         42.14;...

733303.00         41.93;...

733304.00         41.98;...

733305.00         41.75;...

733306.00         41.61;...

733307.00         42.29;...

733310.00         42.19;...

733311.00         41.82;...

733312.00         41.93;...

733313.00         41.81;...

733314.00         41.37;...

733317.00         41.17;...

733318.00         42.02];

renko(X,.1)
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Plot Asset Price With Respect to Dates Using datetime Input

This example shows how to use datetime input to plot asset price with respect to dates,
given asset X as an M-by-2 matrix of date numbers and asset prices, generate a Renko
chart.

X = [...

733299.00         41.99;...

733300.00         42.14;...

733303.00         41.93;...

733304.00         41.98;...

733305.00         41.75;...

733306.00         41.61;...
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733307.00         42.29;...

733310.00         42.19;...

733311.00         41.82;...

733312.00         41.93;...

733313.00         41.81;...

733314.00         41.37;...

733317.00         41.17;...

733318.00         42.02];

dates = datetime(X(:,1),'ConvertFrom','datenum','Locale','en_US');

data = X(:,2);

t = table(dates,data);

renko(t,0.1)

• “Charting Financial Data” on page 2-12
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See Also
bolling | candle | datetime | highlow | kagi | linebreak | movavg | pointfig
| priceandvol | volarea

Introduced in R2008a
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resamplets
Downsample data

Syntax
newfts = resamplets(oldfts, samplestep)

Description

newfts = resamplets(oldfts, samplestep) downsamples the data contained in
the financial time series object oldfts every samplestep periods. For example, to have
the new financial time series object contain every other data element from oldfts, set
samplestep to 2.

newfts is a financial time series object containing the same data series (names) as the
input oldfts.

See Also
filter

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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ret2tick
Convert return series to price series

Syntax
[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,

RetIntervals, StartTime, Method)

Arguments

RetSeries Number of observations (NUMOBS) by number of assets
(NASSETS) time series array of asset returns associated
with the prices in TickSeries. The ith return is quoted for
the period TickTimes(i) to TickTimes(i+1) and is not
normalized by the time increment between successive price
observations.

StartPrice (Optional) 1-by-NASSETS vector of initial asset prices or a
single scalar initial price applied to all assets. Prices start at
1 if StartPrice is not specified.

RetIntervals (Optional) Scalar or NUMOBS-by-1 vector of interval times
between observations. If this argument is not specified, all
intervals are assumed to have length 1.

StartTime (Optional) Starting time for first observation, applied to the
price series of all assets. StartTime can be specified as a
serial date number, date character vector, or datetime array.
The default is 0. However, if StartTime is a datetime
array, TickTimes output is a datetime array. Otherwise,
TickTimes output is an array of serial date numbers.

Method (Optional) Character vector indicating the method to convert
asset returns to prices. Must be 'Simple' (default) or
'Continuous'. If Method is 'Simple', ret2tick uses
simple periodic returns. If Method is 'Continuous', the
function uses continuously compounded returns. Case is
ignored for Method.
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Description

[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,

RetIntervals, StartTime, Method) generates price values from the starting prices
of NASSETS investments and NUMOBS incremental return observations.

TickSeries is a NUMOBS+1-by-NASSETS times series array of equity prices. The first
row contains the oldest observations and the last row the most recent. Observations
across a given row occur at the same time for all columns. Each column is a price series of
an individual asset. If Method is unspecified or 'Simple', the prices are

TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]

If Method is 'Continuous', the prices are

TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]

TickTimes is a NUMOBS+1 column vector of monotonically increasing observation times
associated with the prices in TickSeries. The initial time is zero unless specified in
StartTime, and sequential observation times occur at unit increments unless specified
in RetIntervals.

Examples

Convert a Return Series to a Price Series

This example shows how to compute the price increase of two stocks over a year's time
based on three incremental return observations.

RetSeries = [0.10 0.12

             0.05 0.04

            -0.05 0.05];

RetIntervals = [182

                 91

                 92];

StartTime = datenum('18-Dec-2000');

[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...

StartTime)
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datestr(TickTimes)

TickSeries =

    1.0000    1.0000

    1.1000    1.1200

    1.1550    1.1648

    1.0973    1.2230

TickTimes =

      730838

      731020

      731111

      731203

ans =

18-Dec-2000

18-Jun-2001

17-Sep-2001

18-Dec-2001

Convert a Return Series to a Price Series Using datetime Input

This example shows how to use datetime input to compute the price increase of two
stocks over a year's time based on three incremental return observations.

RetSeries = [0.10 0.12

             0.05 0.04

            -0.05 0.05];

RetIntervals = [182

                 91

                 92];

StartTime = datetime('18-Dec-2000','Locale','en_US');

[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...

StartTime)
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TickSeries =

    1.0000    1.0000

    1.1000    1.1200

    1.1550    1.1648

    1.0973    1.2230

TickTimes = 

  4×1 datetime array

   18-Dec-2000

   18-Jun-2001

   17-Sep-2001

   18-Dec-2001

• “Data Transformation and Frequency Conversion” on page 12-12

See Also
datetime | portsim | tick2ret

Introduced before R2006a
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ret2tick (fts)

Convert return series to price series for time series object

Syntax

priceFts = ret2tick(returnFts)

priceFts = ret2tick(returnFts, 'PARAM1', VALUE1,

'PARAM2', VALUE2', ...)

Arguments

returnFts Financial time series object of returns.
'PARAM1' (Optional) StartPrice is a Numeric value and is a

scalar or 1-by-N vector of initial prices for each asset. If
StartPrice is unspecified or empty, the initial price of all
assets is 1.

'PARAM2' (Optional) StartTime is Date value for a scalar date
number or a single date character vector specifying the
starting time for the first observation. This date is applied to
the price series of all assets.

Note: The first period price value of the resulting price
series will not be reported if StartTime is not specified. The
resulting price series are scaled based on the StartPrice,
even if StartTime is not supplied.

'PARAM3' (Optional) Method is a character vector indicating the
method to convert asset returns to prices. The value must be
defined as 'Simple' (default) or 'Continuous'. If Method
is 'Simple', ret2tick uses simple periodic returns. If
Method is 'Continuous', the function uses continuously
compounded returns. Case is ignored for Method.
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Description

priceFts = ret2tick(returnFts, 'PARAM1', VALUE1, 'PARAM2',

VALUE2', ...) generates a financial time series object of prices.

If Method is unspecified or 'Simple', the prices are

PriceSeries(i+1) = PriceSeries(i)*[1 + ReturnSeries(i)]

If Method is 'Continuous', the prices are

PriceSeries(i+1) = PriceSeries(i)*exp[ReturnSeries(i)]

Examples

Compute the price series from the following return series:

RetSeries = [0.10 0.12 

             0.05 0.04 

            -0.05 0.05]

Use the following dates:

Dates = {'18-Jun-2001'; '17-Sep-2001'; '18-Dec-2001'}

where

ret = fints(Dates, RetSeries)

ret = 

desc:  (none)

freq:  Unknown (0)

'dates:  (3)'    'series1:  (3)'    'series2:  (3)'

'18-Jun-2001'    [       0.1000]    [       0.1200]

'17-Sep-2001'    [       0.0500]    [       0.0400]

'18-Dec-2001'    [      -0.0500]    [       0.0500]

PriceFtS is computed as:
PriceFts = ret2tick(ret, 'StartPrice', 100, 'StartTime', '18-Dec-2000')

PriceFts = 
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desc:  (none)

freq:  Unknown (0)

'dates:  (4)'    'series1:  (4)'    'series2:  (4)'

'18-Dec-2000'    [          100]    [          100]

'18-Jun-2001'    [     110.0000]    [     112.0000]

'17-Sep-2001'    [     115.5000]    [     116.4800]

'18-Dec-2001'    [     109.7250]    [     122.3040]

More About
• “Technical Indicators” on page 16-2

See Also
portsim | tick2ret

Introduced before R2006a
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rmfield
Remove data series

Syntax
fts = rmfield(tsobj, fieldname)

Arguments

tsobj Financial time series object.
fieldname Character vector containing the data series name to remove a

single series from the object. Cell array of character vectors for the
data series names to remove multiple data series from the object at
the same time.

Description

fts = rmfield(tsobj, fieldname) removes the data series fieldname and its
contents from the financial time series object tsobj.

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
chfield | extfield | fieldnames | getfield | isfield

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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rsindex

Relative Strength Index (RSI)

Syntax

rsi = rsindex(closep, nperiods)

rsits = rsindex(tsobj, nperiods)

rsits = rsindex(tsobj, nperiods, 'ParameterName', ParameterValue, ...)

Arguments

closep Vector of closing prices.
nperiods (Optional) Number of periods. Default = 14.
tsobj Financial time series object.

Description

rsi = rsindex(closep, nperiods) calculates the Relative Strength Index (RSI)
from the closing price vector closep.

rsits = rsindex(tsobj, nperiods) calculates the RSI from the closing price series
in the financial time series object tsobj. The object tsobj must contain at least the
series Close, representing the closing prices. The output rsits is a financial time series
object whose dates are the same as tsobj and whose data series name is RSI.

rsits = rsindex(tsobj, nperiods, 'ParameterName',

ParameterValue, ...) accepts a parameter name/parameter value pair as input. This
pair specifies the name for the required data series if it is different from the expected
default name. The valid parameter name is

CloseName: closing prices series name
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The parameter value is the character vector that represents the valid parameter name.

1 The relative strength factor is calculated by dividing the average of the gains by the
average of the losses within a specified time period:
RS = (average gains)/(average losses).

2 The first value of RSI, RISI(1), is set as NaN to preserve the dimensions of CLOSEP.

Examples

Calculate the Relative Strength Index (RSI)

This example shows how to calculate the RSI for Disney stock and plot the results.

load disney.mat

dis_RSI = rsindex(dis);

plot(dis_RSI)

title('Relative Strength Index for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Murphy, John J. Technical Analysis of the Futures Market. New York Institute of
Finance, 1986, pp. 295–302.
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See Also
negvolidx | posvolidx

Introduced before R2006a
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sde class

Stochastic Differential Equation (SDE) model

Description

The sde constructor creates and displays general stochastic differential equation (SDE)
models from user-defined drift and diffusion rate functions. Use sde objects to simulate
sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic processes.

An sde object enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

Construction

SDE = sde(DriftRate,DiffusionRate) constructs a default sde object.

SDE = sde(DriftRate,DiffusionRate,Name,Value) constructs a sde object with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.
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For more information on constructing a sde object, see sde.

Input Arguments

DriftRate — DriftRate is a user-defined drift-rate function and represents the parameter
F
vector or object of class Drift

DriftRate is a user-defined drift-rate function and represents the parameter F,
specified as a vector or object of class drift.

DriftRate is a function that returns an NVARS-by-1 drift-rate vector when called with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DriftRate can also be an object of class drift that encapsulates the
drift-rate specification. In this case, however, sde uses only the Rate parameter of the
object. For more information on the drift object, see drift.

Data Types: double

DiffusionRate — DiffusionRate is a user-defined drift-rate function and represents the
parameter G
matrix or object of class Diffusion

DiffusionRate is a user-defined drift-rate function and represents the parameter G,
specified as a matrix or object of class diffusion.

DiffusionRate is a function that returns an NVARS-by-NBROWNS diffusion-rate matrix
when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DiffusionRate can also be an object of class diffusion that
encapsulates the diffusion-rate specification. In this case, however, sde uses only the
Rate parameter of the object. For more information on the diffusion object, see
diffusion.
Data Types: double
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see sde.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using thedrift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)
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A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the constructor
diffusion constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a
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where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar
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Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, thegbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public
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GetAccess public

Data Types: function_handle

Methods

The following methods are from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

18-1373



18 Functions — Alphabetical List

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a sde Object

Construct an SDE object obj to represent a univariate geometric Brownian Motion model
of the form:

dX X dt X dW
t t t t

= +0 1 0 3. .

Create drift and diffusion functions that are accessible by the common (t,Xt) interface:

F = @(t,X) 0.1 * X;

G = @(t,X) 0.3 * X;

Pass the functions to the sde constructor to create an object obj of class sde:

obj = sde(F, G)    % dX = F(t,X)dt + G(t,X)dW

obj = 

   Class SDE: Stochastic Differential Equation

   -------------------------------------------

     Dimensions: State = 1, Brownian = 1

   -------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

obj displays like a MATLAB structure, with the following information:

• The object's class
• A brief description of the object
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• A summary of the dimensionality of the model

The object's displayed parameters are as follows:

• StartTime: The initial observation time (real-valued scalar)
• StartState: The initial state vector (NVARS-by-1 column vector)
• Correlation: The correlation structure between Brownian process
• Drift: The drift-rate function F(t,Xt)
• Diffusion: The diffusion-rate function G(t,Xt)
• Simulation: The simulation method or function.

Of these displayed parameters, only Drift and Diffusion are required inputs.

The only exception to the (t, Xt) evaluation interface is Correlation. Specifically, when
you enter Correlation as a function, the SDE engine assumes that it is a deterministic
function of time, C(t). This restriction on Correlation as a deterministic function of
time allows Cholesky factors to be computed and stored before the formal simulation.
This inconsistency dramatically improves run-time performance for dynamic correlation
structures. If Correlation is stochastic, you can also include it within the simulation
architecture as part of a more general random number generation function.

• “Representing Market Models Using SDE Objects” on page 17-34
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.
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Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sde treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y., “Testing Continuous-Time Models of the Spot Interest Rate”, The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y., “Transition Densities for Interest Rate and Other Nonlinear Diffusions”,
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-
Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol.
2, 2nd ed. New York: John Wiley & Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | interpolate | sdeld | simByEuler | simulate

More About
• Class Attributes
• Property Attributes

18-1376



 sde class

• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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sde
Construct SDE model from user-specified functions

Syntax

SDE = sde(DriftRate, DiffusionRate)

SDE = sde(DriftRate, DiffusionRate, 'Name1', Value1, 'Name2',

Value2, ...)

Class

sde

Description

This constructor creates and displays general stochastic differential equation (SDE)
models from user-defined drift and diffusion rate functions. Use sde objects to simulate
sample paths of NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic processes.

This constructor enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.
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Input Arguments

DriftRate User-defined drift-rate function, denoted by F. DriftRate is a
function that returns an NVARS-by-1 drift-rate vector when called
with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DriftRate may also be an object of class Drift that
encapsulates the drift-rate specification. In this case, however, sde
uses only the Rate parameter of the object.

DiffusionRate User-defined diffusion-rate function, denoted by G.
DiffusionRate is a function that returns an NVARS-by-NBROWNS
diffusion-rate matrix when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DiffusionRate may also be an object of class
Diffusion that encapsulates the diffusion-rate specification. In
this case, however, sde uses only the Rate parameter of the object.

Optional Input Arguments
Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.
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StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, sde applies the same initial value to all
state variables on all trials.

If StartState is a column vector, sde applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, sde applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

SDE Stochastic differential equation model (SDE) with the following
parameters:

• StartTime: Initial observation time
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• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input argument,

callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time and

state
• Diffusion: Composite diffusion-rate function, callable as a function of

time and state
• Simulation: A simulation function or method

Examples

• “Base SDE Models” on page 17-16
• Representing Market Models Using SDE Objects

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sde treats it as a static function of time and state, by that
means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
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• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
diffusion | drift

Introduced in R2008a
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sdeddo class

Stochastic Differential Equation (SDE) model from Drift and Diffusion components

Description

The sdeddo constructor creates and displays sdeddo objects, instantiated with objects
of class drift and diffusion. These restricted sdeddo objects contain the input drift and
diffusion objects; therefore, you can directly access their displayed parameters.

This abstraction also generalizes the notion of drift and diffusion-rate objects as functions
that sdeddo evaluates for specific values of time t and state Xt. Likesde objects, sdeddo
objects allow you to simulate sample paths of NVARS state variables driven by NBROWNS
Brownian motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time stochastic processes.

The sdeddo object enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

Construction

SDE = sdeddo(DriftRate,DiffusionRate) constructs a default sdeddo object.

SDE = sdeddo(DriftRate,DiffusionRate,Name,Value) constructs a sdeddo
object with additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.
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For more information on constructing a sdeddo object, see sdeddo.

Input Arguments

DriftRate — DriftRate is a user-defined drift-rate function and represents the parameter
F
vector or object of class Drift

DriftRate is a user-defined drift-rate function and represents the parameter F,
specified as a vector or object of class drift.

DriftRate is a function that returns an NVARS-by-1 drift-rate vector when called with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DriftRate can also be an object of class drift that encapsulates the
drift-rate specification. In this case, however, sde uses only the Rate parameter of the
object. For more information on the drift object, see drift.

Data Types: double

DiffusionRate — DiffusionRate is a user-defined drift-rate function and represents the
parameter G
matrix or object of class Diffusion

DiffusionRate is a user-defined drift-rate function and represents the parameter G,
specified as a matrix or object of class diffusion.

DiffusionRate is a function that returns an NVARS-by-NBROWNS diffusion-rate matrix
when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alternatively, DiffusionRate can also be an object of class diffusion that
encapsulates the diffusion-rate specification. In this case, however, sde uses only the
Rate parameter of the object. For more information on the diffusion object, see
diffusion.
Data Types: double
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see sdeddo.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)

Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using thedrift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)
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A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the constructor
diffusion constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:
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• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:
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SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, thegbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle
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Methods

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

18-1389



18 Functions — Alphabetical List

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a sdeddo Object

The sdeddo class derives from the base sde class class. To use this class, you must pass
drift and diffusion-rate objects to the sdeddo constructor. Create drift class and diffusion
class rate objects:

F = drift(0, 0.1);      % Drift rate function F(t,X)

G = diffusion(1, 0.3);  % Diffusion rate function G(t,X)

Pass the functions to the sdeddo constructor to create an object obj of class sdeddo:

obj = sdeddo(F, G)      % dX = F(t,X)dt + G(t,X)dW

obj = 

   Class SDEDDO: SDE from Drift and Diffusion Objects

   --------------------------------------------------

     Dimensions: State = 1, Brownian = 1

   --------------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 0

              B: 0.1

          Alpha: 1

          Sigma: 0.3

In this example, the object displays the additional parameters associated with input
drift and diffusion objects.

• “Representing Market Models Using SDEDDO Objects” on page 17-36
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• “Representing Market Models Using SDE Objects” on page 17-34
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdeddo treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y., “Testing Continuous-Time Models of the Spot Interest Rate” , The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y., “Transition Densities for Interest Rate and Other Nonlinear Diffusions” ,
The Journal of Finance, Vol. 54, No. 4, August 1999.
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Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-
Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol.
2, 2nd ed. New York: John Wiley & Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | interpolate | sdeld | simByEuler | simulate

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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sdeddo

Construct sdeddo model from Drift and Diffusion objects

Syntax

SDE = sdeddo(DriftRate, DiffusionRate)

SDE = sdeddo(DriftRate, DiffusionRate, 'Name1', Value1, 'Name2',

Value2, ...)

Class

sdeddo

Description

This constructor creates and displays sdeddo objects, specifically instantiated with
objects of classdrift and diffusion. These restricted sdeddo objects contain the input
drift and diffusion objects; therefore, you can directly access their displayed
parameters.

This abstraction also generalizes the notion of drift and diffusion-rate objects as functions
that sdeddo evaluates for specific values of time t and state Xt. Likesde objects, sdeddo
objects allow you to simulate sample paths of NVARS state variables driven by NBROWNS
Brownian motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time stochastic processes.

This method enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:
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• Xt is an NVARS-by-1 state vector of process variables.
• dWt is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

Input Arguments

DriftRate Object of classdrift that encapsulates a user-defined drift-rate
specification, represented as F.

DiffusionRate Object of class diffusion that encapsulates a user-defined diffusion-
rate specification, represented as G.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, sdeddo applies the same initial value to
all state variables on all trials.

18-1394



 sdeddo

If StartState is a column vector, sdeddo applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, sdeddo applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

SDE Object of class sdeddo with the following parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input

argument, callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
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• Diffusion: Composite diffusion-rate function, callable as a function
of time and state

• A: Access function for the drift-rate property A, callable as a function
of time and state

• B: Access function for the drift-rate property B, callable as a function
of time and state

• Alpha: Access function for the diffusion-rate property Alpha,
callable as a function of time and state

• Sigma: Access function for the diffusion-rate property Sigma,
callable as a function of time and state

• Simulation: A simulation function or method

Examples

• “Drift and Diffusion Models” on page 17-19
• Representing Market Models Using SDEDDO Objects

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdeddo treats as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.
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• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
sde | diffusion | drift

Introduced in R2008a
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sdeld class

SDE with Linear Drift model

Description

The sdeld constructor creates and displays SDE objects whose drift rate is expressed
in linear drift-rate form and that derive from the sdeddo (SDE from drift and diffusion
objects class).

Use sdeld objects to simulate sample paths of NVARS state variables expressed in linear
drift-rate form. They provide a parametric alternative to the mean-reverting drift form
(see sdemrd).

These state variables are driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time stochastic
processes with linear drift-rate functions.

The sdeld object allows you to simulate any vector-valued SDE of the form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )a

where:

• Xt is an NVARS-by-1 state vector of process variables.
• A is an NVARS-by-1 vector.
• B is an NVARS-by-NVARS matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Construction

SDE = sdeld(A,B,Alpha,Sigma) constructs a default sdeld object.
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SDE = sdeld(A,B,Alpha,Sigma,Name,Value) constructs a sdeld object with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a sdeld object, see sdeld.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

A — A represents the parameter A
array or deterministic function of time or deterministic function of time and state

A represents the parameter A, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVARS-by-1 column vector of intercepts.

As a deterministic function of time, when A is called with a real-valued scalar time t
as its only input, A must produce an NVARS-by-1 column vector. If you specify A as a
function of time and state, it must generate an NVARS-by-1 column vector of intercepts
when invoked with two inputs:
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• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

B — B represents the parameter B
array or deterministic function of time or deterministic function of time and state

B represents the parameter B, specified as an array or deterministic function of time.

If you specify A as an array, it must be an NVARS-by-NVARS matrix of state vector
coefficients.

As a deterministic function of time, when B is called with a real-valued scalar time t as
its only input, B must produce an NVARS-by-NVARS matrix. If you specify B as a function
of time and state, it must generate an NVARS-by-NVARS matrix of state vector coefficients
when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Alpha represents the parameter D
array or deterministic function of time or deterministic function of time and state

Alpha represents the parameter D, specified as an array or deterministic function of
time.

If you specify Alpha as an array, it represents an NVARS-by-1 column vector of
exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t
as its only input, Alpha must produce an NVARS-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVARS-by-1
column vector of exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Although thegbm constructor enforces no restrictions on the sign of Sigma volatilities,
they are specified as positive values.
Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see cev.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)
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Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:
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SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
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Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.

If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.
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If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle

Methods

Inherited Methods

The following methods are inherited from the sde class.

interpolate

simulate

simByEuler

Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.
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For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a sdeld Object

The sdeld class derives from thesdeddo class. These objects allow you to simulate
correlated paths of NVARS state variables expressed in linear drift-rate form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )a

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)
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obj = 

   Class SDELD: SDE with Linear Drift

   ----------------------------------------

     Dimensions: State = 1, Brownian = 1

   ----------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

              A: 0

              B: 0.1

          Alpha: 1

          Sigma: 0.3

sdeld objects provide a parametric alternative to the mean-reverting drift form and also
provide an alternative interface to thesdeddo parent class, because you can create an
object without first having to create its drift and diffusion-rate components.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
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static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdeld treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.

References

Ait-Sahalia, Y., “Testing Continuous-Time Models of the Spot Interest Rate” , The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y., “Transition Densities for Interest Rate and Other Nonlinear Diffusions” ,
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-
Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol.
2, 2nd ed. New York: John Wiley & Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York:
Springer-Verlag, 2004.

See Also
diffusion | drift | sdeddo | simByEuler

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
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• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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sdeld
Construct stochastic differential equation from linear drift-rate models

Syntax

SDE = sdeld(A, B, Alpha, Sigma)

SDE = sdeld(A, B, Alpha, Sigma, 'Name1', Value1, 'Name2',

Value2, ...)

Class

sdeld

Description

This constructor creates and displays SDE objects whose drift rate is expressed in linear
drift-rate form and that derive from the sdeddo (SDE from drift and diffusion objects)
class.

Use SDELD objects to simulate sample paths of NVARS state variables expressed in linear
drift-rate form. They provide a parametric alternative to the mean-reverting drift form
(see sdemrd).

These state variables are driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, approximating continuous-time stochastic
processes with linear drift-rate functions.

This method allows you to simulate any vector-valued SDE of the form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )a

where:

• Xt is an NVARS-by-1 state vector of process variables.
• A is an NVARS-by-1 vector.
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• B is an NVARS-by-NVARS matrix.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

A A represents the parameter A. If you specify A as an array, it must
be an NVARS-by-1 column vector of intercepts. As a deterministic
function of time, when A is called with a real-valued scalar time t as
its only input, A must produce an NVARS-by-1 column vector. If you
specify A as a function of time and state, it must generate an NVARS-
by-1 column vector of intercepts when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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B B represents the parameter B. If you specify B as an array, it must
be an NVARS-by-NVARS matrix of state vector coefficients. As a
deterministic function of time, when B is called with a real-valued
scalar time t as its only input, B must produce an NVARS-by-NVARS
matrix. If you specify B as a function of time and state, it must
generate an NVARS-by-NVARS matrix of state vector coefficients when
invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alpha Alpha determines the format of the parameter D. If you specify
Alpha as an array, it represents an NVARS-by-1 column vector
of exponents. As a deterministic function of time, when Alpha is
called with a real-valued scalar time t as its only input, Alpha must
produce an NVARS-by-1 column vector. If you specify it as a function
of time and state, it must return an NVARS-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an
array, it represents is an NVARS-by-NBROWNS 2-dimensional matrix
of instantaneous volatility rates. In this case, each row of Sigma
corresponds to a particular state variable. Each column of Sigma
corresponds to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state variables with
sources of uncertainty. As a deterministic function of time, when
Sigma is called with a real-valued scalar time t as its only input,
Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
it as a function of time and state, it must generate an NVARS-
by-NBROWNS matrix of volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Note: Although the constructor does not enforce restrictions on the signs of Alpha or
Sigma, each parameter is specified as a positive value.
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Optional Input Arguments
Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, sdeld applies the same initial value to
all state variables on all trials.

If StartState is a column vector, sdeld applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, sdeld applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.

A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.
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If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

SDE Object of class sdeld with the following parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input argument,

callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time and

state
• Diffusion: Composite diffusion-rate function, callable as a function of

time and state
• A: Access function for the input argument A, callable as a function of

time and state
• B: Access function for the input argument B, callable as a function of

time and state
• Alpha: Access function for the input argument Alpha, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state
• Simulation: A simulation function or method

Examples
• “Linear Drift Models” on page 17-23
• Implementing Multidimensional Equity Market Models, Implementation 3: Using

SDELD, CEV, and GBM Objects
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More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdeld treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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See Also
diffusion | drift | sdeddo
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sdemrd class

SDE with Mean-Reverting Drift model

Description

The sdemrd constructor creates and displays SDE objects whose drift rate is expressed
in mean-reverting drift-rate form and which derive from the sdeddo class (SDE from
drift and diffusion objects). Use sdemrd objects to simulate of sample paths of NVARS
state variables expressed in mean-reverting drift-rate form, and provide a parametric
alternative to the linear drift form (see sdeld). These state variables are driven by
NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation
periods, approximating continuous-time stochastic processes with mean-reverting drift-
rate functions.

The sdemrd object allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t
t

t= - +( )[ ( ) ] ( , ) ( )( )a

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS matrix of mean reversion speeds.
• L is an NVARS-by-1 vector of mean reversion levels.
• D is an NVARS-by-NVARS diagonal matrix, where each element along the main

diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Construction

SDE = sdemrd(Speed,Level,Alpha,Sigma) constructs a default sdemrd object.
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SDE = sdemrd(Speed,Level,Alpha,Sigma,Name,Value) constructs a sdemrd
object with additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is its corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

For more information on constructing a sdemrd object, see sdemrd.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

Speed — Speed represents the parameter S
array or deterministic function of time or deterministic function of time and state

Speed represents the parameter S, specified as an array or deterministic function of
time.

If you specify Speed as an array, it must be an NVARS-by-NVARS matrix of mean-
reversion speeds (the rate at which the state vector reverts to its long-run average
Level).

As a deterministic function of time, when Speed is called with a real-valued scalar
time t as its only input, Speed must produce an NVARS-by-NVARS matrix. If you specify
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Speed as a function of time and state, it calculates the speed of mean reversion. This
function must generate an NVARS-by-NVARS matrix of reversion rates when called with
two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Level — Level represents the parameter L
array or deterministic function of time or deterministic function of time and state

Level represents the parameter L, specified as an array or deterministic function of
time.

If you specify Level as an array, it must be an NVARS-by-1 column vector of reversion
levels.

As a deterministic function of time, when Level is called with a real-valued scalar time
t as its only input, Level must produce an NVARS-by-1 column vector. If you specify
Level as a function of time and state, it must generate an NVARS-by-1 column vector of
reversion levels when called with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Alpha — Alpha represents the parameter D
array or deterministic function of time or deterministic function of time and state

Alpha represents the parameter D, specified as an array or deterministic function of
time.

If you specify Alpha as an array, it represents an NVARS-by-1 column vector of
exponents.

As a deterministic function of time, when Alpha is called with a real-valued scalar time t
as its only input, Alpha must produce an NVARS-by-1 matrix.

If you specify it as a function of time and state, Alpha must return an NVARS-by-1
column vector of exponents when invoked with two inputs:
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• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Sigma — Sigma represents the parameter V
array or deterministic function of time or deterministic function of time and state

Sigma represents the parameter V, specified as an array or a deterministic function of
time.

If you specify Sigma as an array, it must be an NVARS-by-NBROWNS matrix of
instantaneous volatility rates or as a deterministic function of time. In this case, each
row of Sigma corresponds to a particular state variable. Each column corresponds to a
particular Brownian source of uncertainty, and associates the magnitude of the exposure
of state variables with sources of uncertainty.

As a deterministic function of time, when Sigma is called with a real-valued scalar time
t as its only input, Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
Sigma as a function of time and state, it must return an NVARS-by-NBROWNS matrix of
volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Data Types: double | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For more information on using optional name-value arguments, see sdemrd.

Properties

Drift — Drift rate component of continuous-time stochastic differential equations (SDEs)
value stored from drift-rate function (default) | drift object or function accessible by (t,
Xt)
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Drift rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of NVARS state
variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The drift class allows you to create drift-rate objects (using the drift constructor) of
the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

• A is an NVARS-by-1 vector-valued function accessible using the (t, Xt) interface.
• B is an NVARS-by-NVARS matrix-valued function accessible using the (t, Xt) interface.

The drift object's displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)
• A: The intercept term, A(t,Xt), of F(t,Xt)
• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate fully
encapsulates the combined effect of A and B.

When specified as MATLAB double arrays, the inputs A and B are clearly associated with
a linear drift rate parametric form. However, specifying either A or B as a function allows
you to customize virtually any drift rate specification.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: F = drift(0, 0.1) % Drift rate function F(t,X)

Attributes:
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SetAccess private

GetAccess public

Data Types: struct | double

Diffusion — Diffusion rate component of continuous-time stochastic differential equations
(SDEs)
value stored from diffusion-rate function (default) | diffusion object or functions
accessible by (t, Xt)

Diffusion rate component of continuous-time stochastic differential equations (SDEs),
specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of NVARS
state variables driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time stochastic processes.

The diffusion class allows you to create diffusion-rate objects (using the diffusion
constructor):

G t X D t X V tt t
t( , ) ( , ) ( )( )

=
a

where:

• D is an NVARS-by-NVARS diagonal matrix-valued function.
• Each diagonal element of D is the corresponding element of the state vector raised

to the corresponding element of an exponent Alpha, which is an NVARS-by-1 vector-
valued function.

• V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.
• Alpha and Sigma are also accessible using the (t, Xt) interface.

The diffusion object's displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).
• Alpha: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).
• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).
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Alpha and Sigma enable you to query the original inputs. (The combined effect of the
individual Alpha and Sigma parameters is fully encapsulated by the function stored in
Rate.) The Rate functions are the calculation engines for the drift and diffusion
objects, and are the only parameters required for simulation.

Note: You can express drift and diffusion classes in the most general form to
emphasize the functional (t, Xt) interface. However, you can specify the components A
and B as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of
appropriate dimension.

Example: G = diffusion(1, 0.3) % Diffusion rate function G(t,X)

Attributes:

SetAccess private

GetAccess public

Data Types: struct | double

StartTime — Starting time of first observation, applied to all state variables
0 (default) | scalar

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

SetAccess public

GetAccess public

Data Types: double

StartState — Initial values of state variables
1 (default) | scalar, column vector, or matrix

Initial values of state variables, specified as a scalar, column vector, or matrix.

If StartState is a scalar, the gbm constructor applies the same initial value to all state
variables on all trials.
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If StartState is a column vector, the gbm constructor applies a unique initial value to
each state variable on all trials.

If StartState is a matrix, the gbm constructor applies a unique initial value to each
state variable on each trial.

Attributes:

SetAccess public

GetAccess public

Data Types: double

Simulation — User-defined simulation function or SDE simulation method
if you do not specify a value for Simulation, the default method is simulation by Euler
approximation (simByEuler) (default) | function or SDE simulation method

User-defined simulation function or SDE simulation method, specified as a function or
SDE simulation method.

Attributes:

SetAccess public

GetAccess public

Data Types: function_handle

Methods

Inherited Methods

The following methods are inherited from thesde class.

interpolate

simulate

simByEuler
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Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

For more information, see “SDE Class Hierarchy” on page 17-5.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a sdemrd Object

The sdemrd class derives directly from thesdeddo class. It provides an interface in which
the drift-rate function is expressed in mean-reverting drift form:
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dX S t L t X dt D t X V t dWt t t
t

t= - +( )[ ( ) ] ( , ) ( )( )a

sdemrd objects provide a parametric alternative to the linear drift form by
reparameterizing the general linear drift such that:

A t S t L t B t S t( ) ( ) ( ), ( ) ( )= = -

Create an sdemrd object obj with a square root exponent to represent the model:

dX X dt X dW
t t t t

= - +0 2 0 1 0 05

1

2. ( . ) . .

obj = sdemrd(0.2, 0.1, 0.5, 0.05)   % (Speed, Level, Alpha, Sigma)

obj = 

   Class SDEMRD: SDE with Mean-Reverting Drift

   -------------------------------------------

     Dimensions: State = 1, Brownian = 1

   -------------------------------------------

      StartTime: 0

     StartState: 1

    Correlation: 1

          Drift: drift rate function F(t,X(t)) 

      Diffusion: diffusion rate function G(t,X(t)) 

     Simulation: simulation method/function simByEuler

          Alpha: 0.5

          Sigma: 0.05

          Level: 0.1

          Speed: 0.2

sdemrd objects display the familiar Speed and Level parameters instead of A and B.

• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
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• “Parametric Models” on page 17-25

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdemrd treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.
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See Also
diffusion | drift | sdeddo | simByEuler

More About
• Class Attributes
• Property Attributes
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

Introduced in R2008a
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sdemrd
Construct stochastic differential equation from mean-reverting drift-rate models

Syntax

SDE = sdemrd(Speed, Level, Alpha, Sigma)

SDE = sdemrd(Speed, Level, Alpha, Sigma, 'Name1', Value1, 'Name2',

Value2, ...)

Class

sdemrd

Description

This constructor creates and displays SDE objects whose drift rate is expressed in
mean-reverting drift-rate form and which derive from thesdeddo class (SDE from
drift and diffusion objects). Use sdemrd objects to simulate of sample paths of NVARS
state variables expressed in mean-reverting drift-rate form, and provide a parametric
alternative to the linear drift form (see sdeld). These state variables are driven by
NBROWNS Brownian motion sources of risk over NPERIODS consecutive observation
periods, approximating continuous-time stochastic processes with mean-reverting drift-
rate functions.

This method allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t
t

t= - +( )[ ( ) ] ( , ) ( )( )a

where:

• Xt is an NVARS-by-1 state vector of process variables.
• S is an NVARS-by-NVARS matrix of mean reversion speeds.
• L is an NVARS-by-1 vector of mean reversion levels.
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• D is an NVARS-by-NVARS diagonal matrix, where each element along the main
diagonal is the corresponding element of the state vector raised to the corresponding
power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.
• dWt is an NBROWNS-by-1 Brownian motion vector.

Input Arguments

Specify required input parameters as one of the following types:

• A MATLAB array. Specifying an array indicates a static (non-time-varying)
parametric specification. This array fully captures all implementation details, which
are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually
any static, dynamic, linear, or nonlinear model. This parameter is supported via an
interface, because all implementation details are hidden and fully encapsulated by the
function.

Note: You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function
accepts a scalar time t as its only input argument. Otherwise, a parameter is assumed to
be a function of time t and state X(t) and is invoked with both input arguments.

The required input parameters are:

Speed Speed represents the parameter S. If you specify Speed as an array,
it represents an NVARS-by-NVARS 2-dimensional matrix of mean-
reversion speeds (the rate or speed at which the state vector reverts
to its long-run average Level). As a deterministic function of time,
when Speed is called with a real-valued scalar time t as its only
input, Speed must produce an NVARS-by-NVARS matrix. If you
specify Speed as a function of time and state, Speed calculates the
speed of mean reversion. This function must generate an NVARS-
by-NVARS matrix of reversion rates when called with two inputs:

• A real-valued scalar observation time t.
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• An NVARS-by-1 state vector Xt.
Level Level represents the parameter L. If you specify Level as an

array, it must be an NVARS-by-1 column vector of reversion levels.
As a deterministic function of time, when Level is called with a
real-valued scalar time t as its only input, Level must produce an
NVARS-by-1column vector. If you specify Level as a function of time
and state, must generate an NVARS-by-1 column vector of reversion
levels when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Alpha Alpha determines the format of the parameter D. If you specify
Alpha as an array, it must be an NVARS-by-1 column vector of
exponents. As a deterministic function of time, when Alpha is called
with a real-valued scalar time t as its only input, Alpha must
produce an NVARS-by-1 column vector. If you specify it as a function
of time and state, it must return an NVARS-by-1 column vector of
exponents when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V. If you specify Sigma as an
array, it must be an NVARS-by-NBROWNS 2-dimensional matrix
of instantaneous volatility rates. In this case, each row of Sigma
corresponds to a particular state variable. Each column of Sigma
corresponds to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state variables with
sources of uncertainty. As a deterministic function of time, when
Sigma is called with a real-valued scalar time t as its only input,
Sigma must produce an NVARS-by-NBROWNS matrix. If you specify
it as a function of time and state, it must generate an NVARS-
by-NBROWNS matrix of volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.
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Note: Although the constructor does not enforce restrictions on the signs of these input
arguments, each argument is specified as a positive value.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

StartTime Scalar starting time of the first observation, applied to all state
variables. If you do not specify a value for StartTime, the default
is 0.

StartState Scalar, NVARS-by-1 column vector, or NVARS-by-NTRIALS matrix of
initial values of the state variables.

If StartState is a scalar, sdemrd applies the same initial value to
all state variables on all trials.

If StartState is a column vector, sdemrd applies a unique initial
value to each state variable on all trials.

If StartState is a matrix, sdemrd applies a unique initial value to
each state variable on each trial.

If you do not specify a value for StartState, all variables start at
1.

Correlation Correlation between Gaussian random variates drawn to
generate the Brownian motion vector (Wiener processes). Specify
Correlation as an NBROWNS-by-NBROWNS positive semidefinite
matrix, or as a deterministic function C(t) that accepts the current
time t and returns an NBROWNS-by-NBROWNS positive semidefinite
correlation matrix.
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A Correlation matrix represents a static condition.

As a deterministic function of time, Correlation allows you to
specify a dynamic correlation structure.

If you do not specify a value for Correlation, the default is an
NBROWNS-by-NBROWNS identity matrix representing independent
Gaussian processes.

Simulation A user-defined simulation function or SDE simulation method. If
you do not specify a value for Simulation, the default method is
simulation by Euler approximation (simByEuler).

Output Arguments

SDE Object of class SDEMRD, with the following parameters:

• StartTime: Initial observation time
• StartState: Initial state at time StartTime
• Correlation: Access function for the Correlation input argument,

callable as a function of time
• Drift: Composite drift-rate function, callable as a function of time

and state
• Diffusion: Composite diffusion-rate function, callable as a function

of time and state
• Speed: Access function for the input argument Speed, callable as a

function of time and state
• Level: Access function for the input argument Level, callable as a

function of time and state
• Alpha: Access function for the input argument Alpha, callable as a

function of time and state
• Sigma: Access function for the input argument Sigma, callable as a

function of time and state
• Simulation: A simulation function or method
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Examples

See “Creating Stochastic Differential Equations from Mean-Reverting Drift (SDEMRD)
Models” on page 17-28.

More About

Algorithms

When you specify the required input parameters as arrays, they are associated with a
specific parametric form. By contrast, when you specify either required input parameter
as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input
specification. Thus, when you invoke these parameters with no inputs, they behave like
simple properties and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the
impression of dynamic behavior. The parameters accept the observation time t and a
state vector Xt, and return an array of appropriate dimension. Even if you originally
specified an input as an array, sdemrd treats it as a static function of time and state, by
that means guaranteeing that all parameters are accessible by the same interface.
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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Introduced in R2008a

18-1435



18 Functions — Alphabetical List

simByEuler
Euler simulation of stochastic differential equations (SDEs)

Syntax

[Paths, Times, Z] = simByEuler(MDL, NPERIODS)

[Paths, Times, Z] = simByEuler(MDL, NPERIODS, 'Name1', Value1,

'Name2', Value2, ...)

Classes

All classes in the “SDE Class Hierarchy” on page 17-5.

Description

This method simulates any vector-valued SDE of the form

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• X is an NVARS-by-1 state vector of process variables (for example, short rates or
equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

simByEuler simulates NTRIALS sample paths of NVARS correlated state variables
driven by NBROWNS Brownian motion sources of risk over NPERIODS consecutive
observation periods, using the Euler approach to approximate continuous-time stochastic
processes.
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Input Arguments

MDL Stochastic differential equation object created with the sdeddo
constructor.

NPERIODS Positive scalar integer number of simulation periods. The value of
NPERIODS determines the number of rows of the simulated output
series.

Optional Input Arguments

Specify optional inputs as matching parameter name/value pairs as follows:

• Specify the parameter name as a character vector, followed by its corresponding
value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:

NTRIALS Positive scalar integer number of simulated trials (sample paths) of
NPERIODS observations each. If you do not specify a value for this
argument, the default is 1, indicating a single path of correlated state
variables.

DeltaTime Scalar or NPERIODS-by-1 column vector of positive time increments
between observations. DeltaTime represents the familiar dt found in
stochastic differential equations, and determines the times at which
the simulated paths of the output state variables are reported. If you
do not specify a value for this argument, the default is 1.

NSTEPS Positive scalar integer number of intermediate time steps within
each time increment dt (specified as DeltaTime). The simByEuler
method partitions each time increment dt into NSTEPS subintervals
of length dt/NSTEPS, and refines the simulation by evaluating
the simulated state vector at NSTEPS - 1 intermediate points.
Although simByEuler does not report the output state vector at
these intermediate points, the refinement improves accuracy by
allowing the simulation to more closely approximate the underlying
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continuous-time process. If you do not specify a value for NSTEPS, the
default is 1, indicating no intermediate evaluation.

Antithetic Scalar logical flag that indicates whether simByEuler uses antithetic
sampling to generate the Gaussian random variates that drive the
Brownian motion vector (Wiener processes).

When Antithetic is TRUE (logical 1), simByEuler performs
sampling such that all primary and antithetic paths are simulated
and stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary Gaussian
paths.

• Even trials (2,4,6,...) are the matching antithetic paths
of each pair derived by negating the Gaussian draws of the
corresponding primary (odd) trial.

If you specify Antithetic to be any value other than TRUE,
simByEuler assumes that it is FALSE (logical 0) by default, and does
not perform antithetic sampling. When you specify an input noise
process (see Z), simByEuler ignores the value of Antithetic.

Z Direct specification of the dependent random noise process used to
generate the Brownian motion vector (Wiener process) that drives the
simulation. Specify this argument as a function, or as an (NPERIODS
* NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional array of
dependent random variates. If you specify Z as a function, it must
return an NBROWNS-by-1 column vector, and you must call it with two
inputs:

• A real-valued scalar observation time t.
• An NVARS-by-1 state vector Xt.

If you do not specify a value for Z, simByEuler generates correlated
Gaussian variates based on the Correlation member of the SDE
object.

StorePaths Scalar logical flag that indicates how the output array Paths is stored
and returned to the caller. If StorePaths is TRUE (the default value)
or is unspecified, simByEuler returns Paths as a three-dimensional
time series array. If StorePaths is FALSE (logical 0), simByEuler
returns the Paths output array as an empty matrix.
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Processes Function or cell array of functions that indicates a sequence of end-of-
period processes or state vector adjustments of the form

X P t X
t t

= ( , )

simByEuler applies processing functions at the end of each
observation period. These functions must accept the current
observation time t and the current state vector Xt, and return a state
vector that may be an adjustment to the input state.

If you specify more than one processing function, simByEuler invokes
the functions in the order in which they appear in the cell array.
You can use this argument to specify boundary conditions, prevent
negative prices, accumulate statistics, plot graphs, and more.

If you do not specify a processing function, simByEuler makes no
adjustments and performs no processing.

Output Arguments

Paths (NPERIODS + 1)-by-NVARS-by-NTRIALS three-dimensional time
series array, consisting of simulated paths of correlated state
variables. For a given trial, each row of Paths is the transpose of the
state vector Xt at time t. When the input flag StorePaths = FALSE,
simByEuler returns Paths as an empty matrix.

Times (NPERIODS + 1)-by-1 column vector of observation times associated
with the simulated paths. Each element of Times is associated with
the corresponding row of Paths.

Z (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS three-dimensional
time series array of dependent random variates used to generate the
Brownian motion vector (Wiener processes) that drive the simulation.

Examples

Implementing Multidimensional Equity Market Models, Implementation 5: Using the
simByEuler Method
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More About

Algorithms

• This simulation engine provides a discrete-time approximation of the underlying
generalized continuous-time process. The simulation is derived directly from the
stochastic differential equation of motion. Thus, the discrete-time process approaches
the true continuous-time process only as DeltaTime approaches zero.

• The input argument Z allows you to directly specify the noise-generation process. This
process takes precedence over the Correlation parameter of thesde object and the
value of the Antithetic input flag. If you do not specify a value for Z, simByEuler
generates correlated Gaussian variates, with or without antithetic sampling as
requested.

• The end-of-period Processes argument allows you to terminate a given trial early.
At the end of each time step, simByEuler tests the state vector Xt for an all-NaN
condition. Thus, to signal an early termination of a given trial, all elements of the
state vector Xt must be NaN. This test enables a user-defined Processes function to
signal early termination of a trial, and offers significant performance benefits in some
situations (for example, pricing down-and-out barrier options).

• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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simulate
Simulate multivariate stochastic differential equations (SDEs)

Syntax

[Paths, Times, Z] = simulate(MDL, ...)

Classes

All classes in the “SDE Class Hierarchy” on page 17-5.

Description

This method simulates any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• X is an NVARS-by-1 state vector of process variables (for example, short rates or
equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.
• F is an NVARS-by-1 vector-valued drift-rate function.
• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

[Paths, Times, Z] = simulate(MDL, ...) simulates NTRIALS sample paths
of NVARS correlated state variables, driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating continuous-time
stochastic processes.

Input Arguments

MDL Stochastic differential equation model.
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Optional Input Arguments

The simulate method accepts any variable-length list of input arguments that the
simulation method or function referenced by the SDE.Simulation parameter requires
or accepts. It passes this input list directly to the appropriate SDE simulation method or
user-defined simulation function.

Output Arguments

Paths (NPERIODS + 1)-by-NVARS-by-NTRIALS three-dimensional time series
array, consisting of simulated paths of correlated state variables. For a
given trial, each row of Paths is the transpose of the state vector Xt at
time t.

Times (NPERIODS + 1)-by-1 column vector of observation times associated
with the simulated paths. Each element of Times is associated with a
corresponding row of Paths.

Z NTIMES-by-NBROWNS-by-NTRIALS three-dimensional time series array of
dependent random variates used to generate the Brownian motion vector
(Wiener processes) that drove the simulated results found in Paths.
NTIMES is the number of time steps at which simulate samples the
state vector. NTIMES includes intermediate times designed to improve
accuracy, which simulate does not necessarily report in the Paths
output time series.

Examples

Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction technique
called antithetic sampling. This technique attempts to replace one sequence of random
observations with another of the same expected value, but smaller variance.

In a typical Monte Carlo simulation, each sample path is independent and represents an
independent trial. However, antithetic sampling generates sample paths in pairs. The
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first path of the pair is referred to as the primary path, and the second as the antithetic
path. Any given pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends averaging the
discounted payoffs of each pair, effectively halving the number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative dependence between
paired input samples, ideally resulting in negative dependence between paired output
samples. The greater the extent of negative dependence, the more effective antithetic
sampling is.

This example applies antithetic sampling to a path-dependent barrier option. Consider
a European up-and-in call option on a single underlying stock. The evolution of this
stock's price is governed by a Geometric Brownian Motion (GBM) model with constant
parameters:

dX X dt X dW
t t t t

= +0 05 0 3. .

Assume the following characteristics:

• The stock currently trades at 105.
• The stock pays no dividends.
• The stock volatility is 30% per annum.
• The option strike price is 100.
• The option expires in three months.
• The option barrier is 120.
• The risk-free rate is constant at 5% per annum.

The goal is to simulate various paths of daily stock prices, and calculate the price of
the barrier option as the risk-neutral sample average of the discounted terminal option
payoff. Since this is a barrier option, you must also determine if and when the barrier is
crossed.

This example performs antithetic sampling by explicitly setting the Antithetic flag to
true, and then specifies an end-of-period processing function to record the maximum and
terminal stock prices on a path-by-path basis.

1 Create a GBM model using the gbm constructor:
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barrier   = 120;           % barrier

strike    = 100;           % exercise price

rate      = 0.05;          % annualized risk-free rate

sigma     = 0.3;           % annualized volatility

nPeriods  = 63;            % 63 trading days

dt        = 1 / 252;       % time increment = 252 days

T         = nPeriods * dt; % expiration time = 0.25 years

obj     = gbm(rate, sigma, 'StartState', 105);

2 Perform a small-scale simulation that explicitly returns two simulated paths:

rng('default')                % make output reproducible

[X, T] = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...

    'nTrials', 2, 'Antithetic', true);

3 Perform antithetic sampling such that all primary and antithetic paths are
simulated and stored in successive matching pairs. Odd paths (1,3,5,...) correspond to
the primary Gaussian paths. Even paths (2,4,6,...) are the matching antithetic paths
of each pair, derived by negating the Gaussian draws of the corresponding primary
(odd) path.

Verify this by examining the matching paths of the primary/antithetic pair:

plot(T, X(:,:,1), 'blue', T, X(:,:,2), 'red')

xlabel('Time (Years)'), ylabel('Stock Price'), ...

   title('Antithetic Sampling')

legend({'Primary Path' 'Antithetic Path'}, ...

   'Location', 'Best')
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To price the European barrier option, specify an end-of-period processing function to
record the maximum and terminal stock prices. This processing function is accessible
by time and state, and is implemented as a nested function with access to shared
information that allows the option price and corresponding standard error to be
calculated. For more information on using an end-of-period processing function, see
“Pricing Equity Options” on page 17-56.

1 Simulate 200 paths using the processing function method:

rng('default')             % make output reproducible

barrier  = 120;            % barrier

strike   = 100;            % exercise price

rate     = 0.05;           % annualized risk-free rate
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sigma    = 0.3;            % annualized volatility

nPeriods = 63;             % 63 trading days

dt       = 1 / 252;        % time increment = 252 days

T        = nPeriods * dt;  % expiration time = 0.25 years

obj    = gbm(rate, sigma, 'StartState', 105);

nPaths = 200;         % # of paths = 100 sets of pairs

f      = Example_BarrierOption(nPeriods, nPaths);

simulate(obj, nPeriods, 'DeltaTime' , dt, ...

   'nTrials', nPaths, 'Antithetic', true, ...

   'Processes', f.SaveMaxLast);

2 Approximate the option price with a 95% confidence interval:

optionPrice   = f.OptionPrice  (strike, rate, barrier);

standardError = f.StandardError(strike, rate, barrier,...

       true);

lowerBound    = optionPrice - 1.96 * standardError;

upperBound    = optionPrice + 1.96 * standardError;

fprintf('  Up-and-In Barrier Option Price: %8.4f\n', ...

   optionPrice)

fprintf('         Standard Error of Price: %8.4f\n', ...

   standardError)

fprintf(' Confidence Interval Lower Bound: %8.4f\n', ...

   lowerBound)

fprintf(' Confidence Interval Upper Bound: %8.4f\n', ...

   upperBound)

  Up-and-In Barrier Option Price:   6.6572

         Standard Error of Price:   0.7292

 Confidence Interval Lower Bound:   5.2280

 Confidence Interval Upper Bound:   8.0864

More About
• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79
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second
Seconds of date or time

Syntax

Seconds = second(Date)

Seconds = second(Date,F)

Description

Seconds = second(Date) returns the seconds given a serial date number or a date
character vector.

Seconds = second(Date,F) returns the second of one or more date character vectors,
Date, using format defined by the optional input F. Date can be a character array where
each row corresponds to one date character vector, or a one-dimensional cell array of
charccter vectors. All the character vectors in Date must have the same format F. F
must designate a supported date format symbol. For more information on supported date
formats, see datestr.

Examples

Determine the Seconds of the Date for Various Dates

Find the seconds of the day (Date) using a serial date number.

Seconds = second(738647.558427893)

Seconds =

    8.1700

Find the seconds of the day (Date) using a date character vector format.

Seconds = second('06-May-2022, 13:24:08.17')
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Seconds =

    8.1700

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine second
serial date number | date character vector | cell array of date character vectors

Date to determine second, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date
character vector, or a one-dimensional cell array of character vectors. All the character
vectors in Date must have the same format F. F must designate a supported date format
symbol. For more information on supported date formats, see datestr

Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol
for input argument Date. For more information on supported date character vector
formats, see datestr. Note, formats with 'Q' are not accepted.

Data Types: char

Output Arguments

Seconds — Seconds of date or time
serial date number | datetime array

Seconds of date or time, returned as a serial date number or date character vector.

See Also
datevec | minute | second
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selectreturn

Portfolio configurations from 3-D efficient frontier

Syntax

PortConfigs = selectreturn(AllMean, All Covariance, Target)

Arguments

AllMean Number of curves (NCURVES-by-1 cell array), where each
element is a 1-by-NASSETS (number of assets) vector of the
expected asset returns used to generate each curve on the
surface.

AllCovariance NCURVES-by-1 cell array where each element is an NASSETS-
by-NASSETS vector of the covariance matrix used to generate
each curve on the surface.

Target Target return value for each curve in the frontier.

Description

PortConfigs = selectreturn(AllMean, All Covariance, Target) returns the
portfolio configurations for a target return given the average return and covariance for a
rolling efficient frontier.

PortConfigs is a NASSETS-by-NCURVES matrix of asset allocation weights needed to
obtain the target rate of return.

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)
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See Also
frontier

Related Examples
• “Portfolio Construction Examples” on page 3-7

Introduced before R2006a
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setAssetList
Set up list of identifiers for assets

Use the setAssetList function with a Portfolio, PortfolioCVaR, or PorfolioMAD
object to set up list of identifiers for assets for a portfolio object.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setAssetList(obj,varargin)

Description

obj = setAssetList(obj,varargin) sets up the list of identifiers for assets for a
portfolio object.

Examples

Create a Default List of Asset Names with Three Assets for a Portfolio Object

Create a default list of asset names with three assets.

p = Portfolio('NumAssets',3);

p = setAssetList(p);

disp(p.AssetList);

    'Asset1'    'Asset2'    'Asset3'

Create an Explicitly Named List of Asset Names with Three Assets for a Portfolio Object

Create a list of asset names for three equities AGG, EEM, and VEU.

p = Portfolio;
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p = setAssetList(p, 'AGG', 'EEM', 'VEU');

disp(p.AssetList);

    'AGG'    'EEM'    'VEU'

Create a Default List of Asset Names with Three Assets for a PortfolioCVaR Object

Create a default list of asset names with three assets.

p = PortfolioCVaR('NumAssets',3);

p = setAssetList(p);

disp(p.AssetList);

    'Asset1'    'Asset2'    'Asset3'

Create an Explicitly Named List of Asset Names with Three Assets for a PortfolioCVaR Object

Create a list of asset names for three equities AGG, EEM, and VEU.

p = PortfolioCVaR;

p = setAssetList(p, 'AGG', 'EEM', 'VEU');

disp(p.AssetList);

    'AGG'    'EEM'    'VEU'

Create a Default List of Asset Names with Three Assets for a PortfolioMAD Object

Create a default list of asset names with three assets.

p = PortfolioMAD('NumAssets',3);

p = setAssetList(p);

disp(p.AssetList);

    'Asset1'    'Asset2'    'Asset3'

Create an Explicitly Named List of Asset Names with Three Assets for a PortfolioMAD Object

Create a list of asset names for three equities AGG, EEM, and VEU.

p = PortfolioMAD;

p = setAssetList(p, 'AGG', 'EEM', 'VEU');

disp(p.AssetList);
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    'AGG'    'EEM'    'VEU'

• “Common Operations on the Portfolio Object” on page 4-33
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

varargin — Asset identifiers
comma-separated list of character vectors | cell array of character vectors

Asset identifiers, specified as a comma-separated list of character vectors or a cell array
of character vectors where each character vector is an asset identifier.

If an asset list is entered as an input, this function overwrites an existing asset list in the
object if one exists.

If no asset list is entered as an input, three actions can occur:

• If NumAssets is nonempty and AssetList is empty, AssetList becomes a
numbered list of assets with default names according to the hidden property in
defaultforAssetList ('Asset').

• If NumAssets is nonempty and AssetList is nonempty, nothing happens.
• If NumAssets is empty and AssetList is empty, the default NumAssets =1 is set

and a default asset list is created ('Asset1').

Data Types: char | cell
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Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

The underlying object (obj) has a number of public hidden properties to format the asset
list:

• defaultforAssetList — Default name for assets ('Asset'). Change this name to
create default asset names such as 'ETF', 'Bond'.

• sortAssetList — Reserved for future implementation.
• uppercaseAssetList — If true, make all asset identifiers uppercase character

vectors. Otherwise do nothing. Default is false.

More About

Tips

• You can also use dot notation to set up list of identifiers for assets.

obj = obj.setAssetList(varargin);

• To clear an AssetList, call this method with[] or{[]}.

• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk |
estimateFrontierLimits

Introduced in R2011a
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setAssetMoments

Set moments (mean and covariance) of asset returns for Portfolio object

Use the setAssetMoments function with a Portfolio object to set moments (mean and
covariance) of asset returns.

For details on the workflow, see “Portfolio Object Workflow” on page 4-18.

Syntax

obj = setAssetMoments(obj,AssetMean)

obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets)

Description

obj = setAssetMoments(obj,AssetMean) obtains mean and covariance of asset
returns for a Portfolio object.

obj = setAssetMoments(obj,AssetMean,AssetCovar,NumAssets) obtains
mean and covariance of asset returns for a Portfolio object with additional options for
AssetCovar and NumAssets.

Examples

Set Asset Moments for a Portfolio Object

Set the asset moment properties, given the mean and covariance of asset returns in the
variables m and C.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];
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m = m/12;

C = C/12;

p = Portfolio;

p = setAssetMoments(p, m, C);

[assetmean, assetcovar] = getAssetMoments(p)

assetmean =

    0.0042

    0.0083

    0.0100

    0.0150

assetcovar =

    0.0005    0.0003    0.0002         0

    0.0003    0.0024    0.0017    0.0010

    0.0002    0.0017    0.0048    0.0028

         0    0.0010    0.0028    0.0102

• “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page 4-44
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see

• Portfolio

AssetMean — Mean of asset returns
vector

Mean of asset returns, specified as a vector.
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Note: If AssetMean is a scalar and the number of assets is known, scalar expansion
occurs. If the number of assets cannot be determined, this method assumes that
NumAssets = 1.

Data Types: double

AssetCovar — Covariance of asset returns
symmetric positive-semidefinite matrix

Covariance of asset returns, specified as a symmetric positive-semidefinite matrix.

Note: If AssetCovar is a scalar and the number of assets is known, a diagonal matrix
is formed with the scalar value along the diagonals. If it is not possible to determine the
number of assets, this method assumes that NumAssets = 1.

If AssetCovar is a vector, a diagonal matrix is formed with the vector along the
diagonal.

Data Types: double

NumAssets — Number of assets
integer

Number of assets, specified as an integer.

Note: If NumAssets is not already set in the object, NumAssets can be entered to resolve
array expansions with AssetMean or AssetCovar.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on
creating a portfolio object, see
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• Portfolio

More About

Tips

• You can also use dot notation to set moments (mean and covariance) of the asset
returns.
obj = obj.setAssetMoments(obj, AssetMean, AssetCovar, NumAssets);

• To clear NumAssets and AssetCovar, use this function to set these respective inputs
to [].

• “Portfolio Optimization Theory” on page 4-3
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
estimateAssetMoments | estimateFrontierByRisk

Introduced in R2011a
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setBounds
Set up bounds for portfolio weights

Use the setBounds function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up bounds for portfolio weights for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setBounds(obj,LowerBound)

obj = setBounds(obj,LowerBound,UpperBound,NumAssets)

Description

obj = setBounds(obj,LowerBound) sets up bounds for portfolio weights for portfolio
objects.

obj = setBounds(obj,LowerBound,UpperBound,NumAssets) sets up bounds
for portfolio weights for portfolio objects with additional options for UpperBound and
NumAssets.

Given bound constraints LowerBound and UpperBound, every weight in a portfolio Port
must satisfy the following:

LowerBound <= Port <= UpperBound

Examples

Set Bound Constraints for a Portfolio Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your
portfolio and bonds that can range from 25% to 50% of your portfolio. To set the bound
constraints for a balanced fund.

18-1462



 setBounds

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = Portfolio;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

     2

    0.5000

    0.2500

    0.7500

    0.5000

Set Bound Constraints for a PortfolioCVaR Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your
portfolio and bonds that can range from 25% to 50% of your portfolio. To set the bound
constraints for a balanced fund.

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioCVaR;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

     2

    0.5000

    0.2500

    0.7500

    0.5000
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Set Bound Constraints for a PortfolioMAD Object

Suppose you have a balanced fund with stocks that can range from 50% to 75% of your
portfolio and bonds that can range from 25% to 50% of your portfolio. To set the bound
constraints for a balanced fund.

lb = [ 0.5; 0.25 ];

ub = [ 0.75; 0.5 ];

p = PortfolioMAD;

p = setBounds(p, lb, ub);

disp(p.NumAssets);

disp(p.LowerBound);

disp(p.UpperBound);

     2

    0.5000

    0.2500

    0.7500

    0.5000

• “Working with Bound Constraints Using Portfolio Object” on page 4-68
• “Working with Bound Constraints Using PortfolioCVaR Object” on page 5-63
• “Working with Bound Constraints Using PortfolioMAD Object” on page 6-62
• “Portfolio Optimization Examples” on page 4-139

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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LowerBound — Lower-bound weight for each asset
vector

Lower-bound weight for each asset, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note:

• If either LowerBound or UpperBound are input as empties with [], the
corresponding attributes in the portfolio object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can
be imputed, then they undergo scalar expansion. The default value for NumAssets is
1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the
setBounds function switches bounds if necessary.

Data Types: double

UpperBound — Upper-bound weight for each asset
vector

Upper-bound weight for each asset, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note:

• If either LowerBound or UpperBound are input as empties with [], the
corresponding attributes in the portfolio object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can
be imputed, then they undergo scalar expansion. The default value for NumAssets is
1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the
setBounds function switches bounds if necessary.

Data Types: double
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NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note: NumAssets cannot be used to change the dimension of a portfolio object.

• If either LowerBound or UpperBound are input as empties with [], the
corresponding attributes in the portfolio object are cleared and set to [].

• If LowerBound or UpperBound are specified as scalars and NumAssets exists or can
be imputed, then they undergo scalar expansion. The default value for NumAssets is
1.

• If both LowerBound and UpperBound exist and they are not ordered correctly, the
setBounds function switches bounds if necessary.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to set up the bounds for portfolio weights.
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  obj = obj.setBounds(LowerBound, UpperBound, NumAssets);

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
getBounds

Introduced in R2011a
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setBudget
Set up budget constraints

Use the setBudget function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up budget constraints for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax
obj = setBudget(obj,LowerBudget)

obj = setBudget(obj,LowerBudget,UpperBudget)

Description
obj = setBudget(obj,LowerBudget) sets up budget constraints for portfolio objects.

obj = setBudget(obj,LowerBudget,UpperBudget) sets up budget constraints for
portfolio objects with an additional option for UpperBudget.

Examples

Set Budget Constraint for a Portfolio Object

Assume you have a fund that permits up to 10% leverage, which means that your
portfolio can be from 100% to 110% invested in risky assets. Given a Portfolio object p,
set the budget constraint.

p = Portfolio;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

     1

    1.1000
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Set Budget Constraint for a PortfolioCVaR Object

Assume you have a fund that permits up to 10% leverage, which means that your
portfolio can be from 100% to 110% invested in risky assets. Given a CVaR portfolio
object p, set the budget constraint.

p = PortfolioCVaR;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

     1

    1.1000

Set Budget Constraint for a PortfolioMAD Object

Assume you have a fund that permits up to 10% leverage, which means that your
portfolio can be from 100% to 110% invested in risky assets. Given PortfolioMAD object
p, set the budget constraint.

p = PortfolioMAD;

p = setBudget(p, 1, 1.1);

disp(p.LowerBudget);

disp(p.UpperBudget);

     1

    1.1000

• “Working with Budget Constraints Using Portfolio Object” on page 4-71
• “Working with Budget Constraints Using PortfolioCVaR Object” on page 5-66
• “Working with Budget Constraints Using PortfolioMAD Object” on page 6-65
• “Portfolio Optimization Examples” on page 4-139

Input Arguments
obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

LowerBudget — Lower-bound for budget constraint
scalar

Lower-bound for budget constraint, specified as a scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: Given bounds for a budget constraint in either LowerBudget or UpperBudget,
budget constraints require any portfolio in Port to satisfy:

LowerBudget <= sum(Port) <= UpperBudget

One or both constraints may be specified. The usual budget constraint for a fully invested
portfolio is to have LowerBudget = UpperBudget = 1. However, if the portfolio has
allocations in cash, the budget constraints can be used to specify the cash constraints.
For example, if the portfolio can hold between 0% and 10% in cash, the budget constraint
would be set up with

obj = setBudget(obj, 0.9, 1)

Data Types: double

UpperBudget — Upper-bound for budget constraint
scalar

Upper-bound for budget constraint, specified as a scalar for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: Given bounds for a budget constraint in either LowerBudget or UpperBudget,
budget constraints require any portfolio in Port to satisfy:

LowerBudget <= sum(Port) <= UpperBudget
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One or both constraints may be specified. The usual budget constraint for a fully invested
portfolio is to have LowerBudget = UpperBudget = 1. However, if the portfolio has
allocations in cash, the budget constraints can be used to specify the cash constraints.
For example, if the portfolio can hold between 0% and 10% in cash, the budget constraint
would be set up with

obj = setBudget(obj, 0.9, 1)

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to set up the budget constraints.

obj = obj.setBudget(LowerBudget, UpperBudget);

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
getBudget
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Introduced in R2011a
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setCosts
Set up proportional transaction costs

Use the setCosts function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up proportional transaction costs for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax
obj = setCosts(obj,BuyCost)

obj = setCosts(obj,BuyCost,SellCost,InitPort,NumAssets)

Description
obj = setCosts(obj,BuyCost) sets up proportional transaction costs for portfolio
objects.

obj = setCosts(obj,BuyCost,SellCost,InitPort,NumAssets) sets up
proportional transaction costs for portfolio objects with additional options specified for
SellCost, InitPort, and NumAssets.

Given proportional transaction costs and an initial portfolio in the variables BuyCost,
SellCost, and InitPort, the transaction costs for any portfolio Port reduce expected
portfolio return by:
BuyCost' * max{0, Port - InitPort} + SellCost' * max{0, InitPort - Port}

Examples

Set Up Transaction Costs for a Portfolio Object

Assume you have the same costs and initial portfolio as in the previous example. Given
a Portfolio object p with an initial portfolio already set, use the setCosts function to set
up transaction costs.
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bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio('InitPort', x0);

p = setCosts(p, bc, sc);

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

     5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Set Up Transaction Costs for a PortfolioCVaR Object

Given a CVaR portfolio object p with an initial portfolio already set, use the setCosts
function to set up transaction costs.

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setCosts(p, bc, sc);

18-1474



 setCosts

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

     5

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

Set Up Transaction Costs for a PortfolioMAD Object

Given PortfolioMAD object p with an initial portfolio already set, use the setCosts
function to set up transaction costs.

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];

sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setCosts(p, bc, sc);

disp(p.NumAssets);

disp(p.BuyCost);

disp(p.SellCost);

disp(p.InitPort);

     5

18-1475



18 Functions — Alphabetical List

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0013

    0.0070

    0.0013

    0.0013

    0.0024

    0.4000

    0.2000

    0.2000

    0.1000

    0.1000

• “Working with Transaction Costs” on page 4-58
• “Working with Transaction Costs” on page 5-53
• “Working with Transaction Costs” on page 6-52
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

BuyCost — Proportional transaction cost to purchase each asset
vector

Proportional transaction cost to purchase each asset, specified as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).
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Note:

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists
or can be imputed, then these values undergo scalar expansion. The default value for
NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a
cost to trade. In some cases, they can be negative valued, which implies trade credits.

Data Types: double

SellCost — Proportional transaction cost to sell each asset
vector

Proportional transaction cost to sell each asset, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note:

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists
or can be imputed, then these values undergo scalar expansion. The default value for
NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a
cost to trade. In some cases, they can be negative valued, which implies trade credits.

Data Types: double

InitPort — Initial or current portfolio weights
vector

Initial or current portfolio weights, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If no InitPort is specified, that value is assumed to be 0.

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists
or can be imputed, then these values undergo scalar expansion. The default value for
NumAssets is 1.
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• Transaction costs in BuyCost and SellCost are positive valued if they introduce a
cost to trade. In some cases, they can be negative valued, which implies trade credits.

Data Types: double

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note: NumAssets cannot be used to change the dimension of a portfolio object.

• If BuyCost, SellCost, or InitPort are specified as scalars and NumAssets exists
or can be imputed, then these values undergo scalar expansion. The default value for
NumAssets is 1.

• Transaction costs in BuyCost and SellCost are positive valued if they introduce a
cost to trade. In some cases, they can be negative valued, which implies trade credits.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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More About

Tips

• You can also use dot notation to set up proportional transaction costs.

obj = obj.setCosts(BuyCost, SellCost, InitPort, NumAssets);

• If BuyCost or SellCost are input as empties with [], the corresponding attributes
in the portfolio object are cleared and set to []. If InitPort is set to empty with [],
it will only be cleared and set to [] if BuyCost, SellCost, and Turnover are also
empty. Otherwise, it is an error.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
getCosts | setInitPort

Introduced in R2011a
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setDefaultConstraints
Set up portfolio constraints with nonnegative weights that sum to 1

Use the setDefaultConstraints function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to set up portfolio constraints with nonnegative weights that sum
to 1 for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setDefaultConstraints(obj)

obj = setDefaultConstraints(obj,NumAssets)

Description

obj = setDefaultConstraints(obj) sets up portfolio constraints with nonnegative
weights that sum to 1.

obj = setDefaultConstraints(obj,NumAssets) sets up portfolio constraints with
nonnegative weights that sum to 1 with an additional option for NumAssets.

A "default" portfolio set has LowerBound = 0 and LowerBudget = UpperBudget = 1
such that a portfolio Port must satisfy sum(Port) = 1 with Port >= 0.

Examples

Define Default Constraints for the Portfolio Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = Portfolio('NumAssets', 20);

p = setDefaultConstraints(p);
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disp(p);

  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []

        AssetMean: []

       AssetCovar: []

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 20

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [20×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Define Default Constraints for the PortfolioCVaR Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = PortfolioCVaR('NumAssets', 20);

p = setDefaultConstraints(p);

disp(p);

  PortfolioCVaR with properties:
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             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: 20

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [20×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Define Default Constraints for the PortfolioMAD Object

Assuming you have 20 assets, you can define the "default" portfolio set.

p = PortfolioMAD('NumAssets', 20);

p = setDefaultConstraints(p);

disp(p);

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []
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    NumScenarios: []

            Name: []

       NumAssets: 20

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [20×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

• “Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page
4-63

• “Setting Default Constraints for Portfolio Weights Using PortfolioCVaR Object” on
page 5-58

• “Setting Default Constraints for Portfolio Weights Using PortfolioMAD Object” on
page 6-57

• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
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• PortfolioMAD

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note: NumAssets cannot be used to change the dimension of a portfolio object. The
default for NumAssets is 1.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to set up the default portfolio set.

obj = obj.setDefaultConstraints(NumAssets);

• This function does not modify any existing constraints in a portfolio object other than
the bound and budget constraints. If an UpperBound constraint exists, it is cleared
and set to [].

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
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• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
getBounds | setBounds | setBudget

Introduced in R2011a
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setEquality
Set up linear equality constraints for portfolio weights

Use the setEquality function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up linear equality constraints for portfolio weights for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj= setEquality(obj,AEquality,bEquality)

Description

obj= setEquality(obj,AEquality,bEquality) sets up linear equality constraints
for portfolio weights for portfolio objects.

Given linear equality constraint matrix AEquality and vector bEquality, every weight
in a portfolio Port must satisfy the following:

 AEquality * Port = bEquality

Examples

Set Linear Equality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets, and you want to ensure that the first three
assets are 50% of your portfolio. Given a Portfolio object p, set the linear equality
constraints with the following.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;

p = setEquality(p, A, b);
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disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

     5

     1     1     1     0     0

    0.5000

Set Linear Equality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioCVaR object p, set the linear equality
constraints and obtain the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setEquality(p, A, b);

disp(p.NumAssets);

disp(p.AEquality);

disp(p.bEquality);

     5

     1     1     1     0     0

    0.5000

Set Linear Equality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are 50% of your portfolio. Given a PortfolioMAD object p, set the linear equality
constraints and obtain the values for AEquality and bEquality:

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setEquality(p, A, b);

[AEquality, bEquality] = getEquality(p)

18-1487



18 Functions — Alphabetical List

AEquality =

     1     1     1     0     0

bEquality =

    0.5000

• “Working with Linear Equality Constraints Using Portfolio Object” on page 4-81
• “Working with Linear Equality Constraints Using PortfolioCVaR Object” on page

5-76
• “Working with Linear Equality Constraints Using PortfolioMAD Object” on page

6-75
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

AEquality — Matrix to form linear equality constraints
matrix

Matrix to form linear equality constraints, returned as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: An error results if AEquality is empty and bEquality is nonempty.

Data Types: double
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bEquality — Vector to form linear equality constraints
vector

Vector to form linear equality constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: An error results if AEquality is nonempty and bEquality is empty.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to set up linear equality constraints for portfolio
weights.

obj = obj.setEquality(AEquality, bEquality);

• Linear equality constraints can be removed from a portfolio object by entering [] for
each property you want to remove.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
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• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
addEquality | getEquality

Introduced in R2011a

18-1490

http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html
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setGroupRatio

Set up group ratio constraints for portfolio weights

Use the setGroupRatio function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to set up group ratio constraints for portfolio weights for portfolio
objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setGroupRatio(obj,GroupA)

obj = setGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio)

Description

obj = setGroupRatio(obj,GroupA) sets up group ratio constraints for portfolio
weights for portfolio objects

obj = setGroupRatio(obj,GroupA,GroupB,LowerRatio,UpperRatio) sets up
group ratio constraints for portfolio weights for portfolio objects with additional options
specified for GroupB, LowerRatio, and UpperRatio.

Given base and comparison group matrices GroupA and GroupB and LowerRatio or
UpperRatio bounds, group ratio constraints require any portfolio in Port to satisfy the
following:
(GroupB * Port) .* LowerRatio <= GroupA * Port <= (GroupB * Port) .* UpperRatio

Caution This collection of constraints usually requires that portfolio weights be
nonnegative and that the products GroupA * Port and GroupB * Port are always
nonnegative. Although negative portfolio weights and non-Boolean group ratio matrices
are supported, use with caution.
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Examples

Set Group Ratio Constraints for a Portfolio Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your
portfolio never exceeds 50%. Assume you have six assets with three financial companies
(assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be
set with:

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = Portfolio;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     0     0     0     1     1     1

    0.5000

Set Group Ratio Constraints for a PortfolioCVaR Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your
portfolio never exceeds 50%. Assume you have six assets with three financial companies
(assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be
set with:

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = PortfolioCVaR;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);
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disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     0     0     0     1     1     1

    0.5000

Set Group Ratio Constraints for a PortfolioMAD Object

Suppose you want to ensure that the ratio of financial to nonfinancial companies in your
portfolio never exceeds 50%. Assume you have six assets with three financial companies
(assets 1-3) and three nonfinanical companies (assets 4-6). Group ratio constraints can be
set with:

GA = [ true true true false false false ];    % financial companies

GB = [ false false false true true true ];    % nonfinancial companies

p = PortfolioMAD;

p = setGroupRatio(p, GA, GB, [], 0.5);

disp(p.NumAssets);

disp(p.GroupA);

disp(p.GroupB);

disp(p.UpperRatio);

     6

     1     1     1     0     0     0

     0     0     0     1     1     1

    0.5000

• “Working with Group Ratio Constraints Using Portfolio Object” on page 4-77
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Portfolio Optimization Examples” on page 4-139
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Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

GroupA — Matrix that forms base groups for comparison
matrix

Matrix that forms base groups for comparison, specified as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: The group matrices GroupA and GroupB are usually indicators of membership
in groups, which means that their elements are usually either 0 or 1. Because of this
interpretation, GroupA and GroupB matrices can be either logical or numerical arrays.

Data Types: double

GroupB — Matrix that forms comparison groups
matrix

Matrix that forms comparison groups, specified as a matrix Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: The group matrices GroupA and GroupB are usually indicators of membership
in groups, which means that their elements are usually either 0 or 1. Because of this
interpretation, GroupA and GroupB matrices can be either logical or numerical arrays.

Data Types: double

LowerRatio — Lower bound for ratio of GroupB groups to GroupA groups
vector
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Lower bound for ratio of GroupB groups to GroupA groups, specified as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If input is scalar, LowerRatio undergoes scalar expansion to be conformable with
the group matrices.

Data Types: double

UpperRatio — Upper bound for ratio of GroupB groups to GroupA groups
vector

Upper bound for ratio of GroupB groups to GroupA groups, specified as a vector for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If input is scalar, UpperRatio undergoes scalar expansion to be conformable with
the group matrices.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About
Tips

• You can also use dot notation to set up group ratio constraints for portfolio weight.
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obj = obj.setGroupRatio(GroupA, GroupB, LowerRatio, UpperRatio);

• To remove group ratio constraints, enter empty arrays for the corresponding arrays.
To add to existing group ratio constraints, use addGroupRatio.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
addGroupRatio | getGroupRatio

Introduced in R2011a

18-1496
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setGroups
Set up group constraints for portfolio weights

Use the setGroups function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up group constraints for portfolio weights for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setGroups(obj,GroupMatrix,LowerGroup)

obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup)

Description

obj = setGroups(obj,GroupMatrix,LowerGroup) sets up group constraints for
portfolio weights for portfolio objects.

obj = setGroups(obj,GroupMatrix,LowerGroup,UpperGroup) sets up group
constraints for portfolio weights for portfolio objects with an additional option specified
for UpperGroup.

Given GroupMatrix and either LowerGroup or UpperGroup, a portfolio Port must
satisfy the following:

LowerGroup <= GroupMatrix * Port <= UpperGroup

Examples

Set Group Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute at most 30% of your portfolio. Given a Portfolio object p, set the group
constraints with the following.
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G = [ true true true false false ];

p = Portfolio;

p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

     5

     1     1     1     0     0

    0.3000

Set Group Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute at most 30% of your portfolio. Given a CVaR portfolio object p, set the
group constraints with the following.

G = [ true true true false false ];

p = PortfolioCVaR;

p = setGroups(p, G, [], 0.3);

disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

     5

     1     1     1     0     0

    0.3000

Set Group Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets constitute at most 30% of your portfolio. Given PortfolioMAD object p, set the
group constraints with the following.

G = [ true true true false false ];

p = PortfolioMAD;

p = setGroups(p, G, [], 0.3);
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disp(p.NumAssets);

disp(p.GroupMatrix);

disp(p.UpperGroup);

     5

     1     1     1     0     0

    0.3000

• “Working with Group Constraints Using Portfolio Object” on page 4-73
• “Working with Group Constraints Using PortfolioCVaR Object” on page 5-68
• “Working with Group Constraints Using PortfolioMAD Object” on page 6-67
• “Constraint Specification Using a Portfolio Object” on page 3-34
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

GroupMatrix — Group constraint matrix
logical or numeric matrix

Group constraint matrix, specified as a matrix for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note: The group matrix GroupMatrix is usually an indicator of membership in groups,
which means that its elements are usually either 0 or 1. Because of this interpretation,
GroupMatrix can be either a logical or numerical matrix.
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Data Types: double

LowerGroup — Lower bound for group constraints
vector

Lower bound for group constraints, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If input is scalar, LowerGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

UpperGroup — Upper bound for group constraints
vector

Upper bound for group constraints, returned as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If input is scalar, UpperGroup undergoes scalar expansion to be conformable with
GroupMatrix.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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More About

Tips

• You can also use dot notation to set up group constraints for portfolio weights.

obj = obj.setGroups(GroupMatrix, LowerGroup, UpperGroup);

• To remove group constraints, enter empty arrays for the corresponding arrays. To add
to existing group constraints, use addGroups.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
addGroups | getGroups

Introduced in R2011a

18-1501

http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html
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setInequality
Set up linear inequality constraints for portfolio weights

Use the setInequality function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to set up linear inequality constraints for portfolio weights for
portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setInequality(obj,AInequality,bInequality)

Description

obj = setInequality(obj,AInequality,bInequality) sets up linear inequality
constraints for portfolio weights for portfolio objects.

Given a linear inequality constraint matrix AInequality and vector bInequality,
every weight in a portfolio Port must satisfy the following:

AInequality * Port <= bInequality

Examples

Set Linear Inequality Constraints for a Portfolio Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are no more than 50% of your portfolio. Given a Portfolio object p, set the linear
inequality constraints with the following.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = Portfolio;
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p = setInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0

    0.5000

Set Linear Inequality Constraints for a PortfolioCVaR Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are no more than 50% of your portfolio. Given a CVaR portfolio object p, set the
linear inequality constraints with the following.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioCVaR;

p = setInequality(p, A, b);

disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0

    0.5000

Set Linear Inequality Constraints for a PortfolioMAD Object

Suppose you have a portfolio of five assets and you want to ensure that the first three
assets are no more than 50% of your portfolio. Given PortfolioMAD object p, set the linear
inequality constraints with the following.

A = [ 1 1 1 0 0 ];

b = 0.5;

p = PortfolioMAD;

p = setInequality(p, A, b);
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disp(p.NumAssets);

disp(p.AInequality);

disp(p.bInequality);

     5

     1     1     1     0     0

    0.5000

• “Working with Linear Inequality Constraints Using Portfolio Object” on page 4-84
• “Working with Linear Inequality Constraints Using PortfolioCVaR Object” on page

5-79
• “Working with Linear Inequality Constraints Using PortfolioMAD Object” on page

6-78
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

AInequality — Matrix to form linear inequality constraints
matrix

Matrix to form linear inequality constraints, specified as a matrix for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: An error results if AInequality is empty and bInequality is nonempty.
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Data Types: double

bInequality — Vector to form linear inequality constraints
vector

Vector to form linear inequality constraints, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: An error results if AInequality is nonempty and bInequality is empty.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to set up linear inequality constraints for portfolio
weights.

obj = obj.setInequality(AInequality, bInequality);

• To remove inequality constraints, enter empty arguments. To add to existing
inequality constraints, use addInequality.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
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• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
addInequality | getInequality

Introduced in R2011a

18-1506
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setInitPort
Set up initial or current portfolio

Use the setInitPort function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up initial or current portfolio for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setInitPort(obj,InitPort)

obj = setInitPort(obj,InitPort,NumAssets)

Description

obj = setInitPort(obj,InitPort) sets up initial or current portfolio for portfolio
objects.

obj = setInitPort(obj,InitPort,NumAssets) sets up initial or current portfolio
for portfolio objects with an additional options specified for NumAssets.

Examples

Set the InitPort Property for a Portfolio Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort
property.

p = Portfolio('NumAssets', 4);

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

    0.3000

    0.2000
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    0.2000

         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a Portfolio Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = Portfolio('NumAssets', 4);

p = setInitPort(p, 1/4, 4);

disp(p.InitPort);

    0.2500

    0.2500

    0.2500

    0.2500

Set the InitPort Property for a PortfolioCVaR Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort
property.

p = PortfolioCVaR('NumAssets', 4);

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

    0.3000

    0.2000

    0.2000

         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a PortfolioCVaR Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = PortfolioCVaR('NumAssets', 4);

p = setInitPort(p, 1/4, 4);

disp(p.InitPort);

    0.2500

    0.2500

    0.2500
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    0.2500

Set the InitPort Property for a PortfolioMAD Object

Given an initial portfolio in x0, use the setInitPort function to set the InitPort
property.

p = PortfolioMAD('NumAssets', 4);

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = setInitPort(p, x0);

disp(p.InitPort);

    0.3000

    0.2000

    0.2000

         0

Set InitPort to Create an Equally-Weighted Portfolio of Four Assets for a PortfolioMAD Object

Create an equally weighted portfolio of four assets using the setInitPort function.

p = PortfolioMAD('NumAssets', 4);

p = setInitPort(p, 1/4, 4);

disp(p.InitPort);

    0.2500

    0.2500

    0.2500

    0.2500

• “Common Operations on the Portfolio Object” on page 4-33
• “Common Operations on the PortfolioCVaR Object” on page 5-32
• “Common Operations on the PortfolioMAD Object” on page 6-31
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object
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Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

InitPort — Initial or current portfolio weights
vector

Initial or current portfolio weights, specified as a vector for a Portfolio,
PortfolioCVaR, or PortfolioMAD input object (obj).

Note: If InitPort is specified as a scalar and NumAssets exists, then InitPort
undergoes scalar expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note:  If it is not possible to obtain a value for NumAssets, it is assumed that
NumAssets is 1.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see
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• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

• You can also use dot notation to set up an initial or current portfolio.

obj = obj.setInitPort(InitPort, NumAssets);

• To remove an initial portfolio, call this method with an empty argument [] for
InitPort.

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
setCosts | setTurnover

Introduced in R2011a
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setOneWayTurnover
Set up one-way portfolio turnover constraints

Use the setOneWayTurnover function with a Portfolio, PortfolioCVaR, or
PortfolioMAD object to set up one-way portfolio turnover constraints for portfolio
objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setOneWayTurnover(obj,BuyTurnover)

obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,InitPort,

NumAssets)

Description

obj = setOneWayTurnover(obj,BuyTurnover) sets up one-way portfolio turnover
constraints for portfolio objects.

obj = setOneWayTurnover(obj,BuyTurnover,SellTurnover,InitPort,

NumAssets) sets up one-way portfolio turnover constraints for portfolio objects with
additional options specified for SellTurnover, InitPort, and NumAssets.

Given an initial portfolio in InitPort and an upper bound for portfolio turnover on
purchases in BuyTurnover or sales in SellTurnover, the one-way turnover constraints
require any portfolio Port to satisfy the following:

1' * max{0, Port - InitPort} <= BuyTurnover

1' * max{0, InitPort - Port} <= SellTurnover

Note: If Turnover =BuyTurnover = SellTurnover, the constraint is not equivalent to:

1' * | Port - InitPort | <= Turnover
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To set this constraint, use setTurnover.

Examples

Set One-Way Turnover Constraints for a Portfolio Object

Set one-way turnover constraints.

p = Portfolio('AssetMean',[0.1, 0.2, 0.15], 'AssetCovar',...

[ 0.005, -0.010,  0.004; -0.010,  0.040, -0.002;  0.004, -0.002,  0.023]);

p = setBudget(p, 1, 1);

p = setOneWayTurnover(p, 1.3, 0.3, 0); %130-30 portfolio

plotFrontier(p);
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Set One-Way Turnover Constraints for a PortfolioCVaR Object

Set one-way turnover constraints.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover)

disp(p.SellTurnover)

disp(p.InitPort);

    10
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    0.3000

    0.2000

    0.1200

    0.0900

    0.0800

    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000

Set One-Way Turnover Constraints for a PortfolioMAD Object

Set one-way turnover constraints.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setOneWayTurnover(p, 0.3, 0.2);

disp(p.NumAssets);

disp(p.BuyTurnover)

disp(p.SellTurnover)

disp(p.InitPort);

    10

    0.3000

    0.2000

    0.1200

    0.0900

    0.0800

    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000
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• “Working with One-way Turnover Constraints Using Portfolio Object” on page 4-91
• “Working with One-way Turnover Constraints Using PortfolioCVaR Object” on page

5-86
• “Working with One-way Turnover Constraints Using PortfolioMAD Object” on page

6-84
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

BuyTurnover — Turnover constraint on purchases
nonnegative and finite scalar

Turnover constraint on purchases, specified as a nonnegative and finite scalar for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

SellTurnover — Turnover constraint on sales
nonnegative and finite scalar

Turnover constraint on sales, specified as a nonnegative and finite scalar for a
Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

InitPort — Initial or current portfolio weights
0 (default) | finite vector with NumAssets > 0 elements

Initial or current portfolio weights, specified as a finite vector with NumAssets > 0
elements for a Portfolio, PortfolioCVaR, PortfolioMAD input object (obj).
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Note: If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes
scalar expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note:  If it is not possible to obtain a value for NumAssets, it is assumed that
NumAssets is 1.

Data Types: double

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About
One-way Turnover Constraint

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales.
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The constraints take the form

1 0 0
T

B
x xmax , -{ } £ t

1 0 0
T

Sx xmax , -{ } £ t

with

• x — The portfolio (NumAssets vector)
• x0 — Initial portfolio (NumAssets vector)
• τB — Upper-bound for turnover constraint on purchases (scalar)
• τS — Upper-bound for turnover constraint on sales (scalar)

Specify one-way turnover constraints using the following properties in a supported
portfolio object: BuyTurnover for τB, SellTurnover for τS, and InitPort for x0.

Note: The average turnover constraint (which is set using setTurnover) is not just the
combination of the one-way turnover constraints with the same value for the constraint.

Tips

You can also use dot notation to set up one-way portfolio turnover constraints.
obj = obj.setOneWayTurnover(BuyTurnover,SellTurnover,InitPort,NumAssets)

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
getOneWayTurnover | setCosts | setInitPort | setTurnover

Introduced in R2011a
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setProbabilityLevel
Set probability level for VaR and CVaR calculations

Use the setProbabilityLevel function with a PortfolioCVaR object to set
probability level for VaR and CVaR calculations.

For details on the workflow, see “PortfolioCVaR Object Workflow” on page 5-17.

Syntax

obj = setProbabilityLevel(obj,ProbabilityLevel)

Description

obj = setProbabilityLevel(obj,ProbabilityLevel) sets probability level for
VaR and CVaR calculations for a PortfolioCVaR object.

Examples

Set Probability Level for a PortfolioCVaR Object

Set the ProbabilityLevel for a CVaR portfolio object.

p = PortfolioCVaR;

p = setProbabilityLevel(p, 0.95);

disp(p.ProbabilityLevel)

    0.9500

• “What Are Scenarios?” on page 5-41

Input Arguments

obj — Object for portfolio
object
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Object for portfolio, specified using a PortfolioCVaR object.

For more information on creating a PortfolioCVaR object, see

• PortfolioCVaR

ProbabilityLevel — Probability level which is 1 minus the probability of losses greater
than the value-at-risk
scalar with value from 0 to 1

Probability level which is 1 minus the probability of losses greater than the value-at-risk,
specified as a scalar with value from 0 to 1.

Note: ProbabilityLevel must be a value from 0 to 1 and, in most cases, should be a
value from 0.9 to 0.99.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR object. For more information on
creating a portfolio object, see

• PortfolioCVaR

More About

Tips

You can also use dot notation to set the probability level for VaR and CVaR calculations:
obj = obj.setProbabilityLevel(ProbabilityLevel)

• “Conditional Value-at-Risk” on page 5-6
• CVaR Portfolio Optimization (5 min 33 sec)
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• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)

See Also
setScenarios

Introduced in R2012b
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setSolver
Choose main solver and specify associated solver options for portfolio optimization

Use the setSolver function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to choose main solver and specify associated solver options for portfolio
optimization for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setSolver(obj,solverType)

obj = setSolver(obj,solverType,varargin)

Description

obj = setSolver(obj,solverType) chooses main solver and specify associated
solver options for portfolio optimization for portfolio objects.

obj = setSolver(obj,solverType,varargin) chooses main solver and specify
associated solver options for portfolio optimization for portfolio objects with additional
options specified for varargin by using one or more Name,Value pair arguments, or an
optimoptions object.

After you specify a solver, the varargin argument accepts either name-value pair
arguments to set options or, for the case of solvers from Optimization Toolbox software, a
structure created by optimoptions.

Examples

Set Solver Type for a Portfolio Object

If you use the quadprog function as the solverType, the default is the interior-
point-convex version of quadprog.
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load CAPMuniverse

p = Portfolio('AssetList',Assets(1:12));

p = setDefaultConstraints(p);

p = setSolver(p, 'quadprog');

display(p.solverType);

quadprog

You can switch back to lcprog with:

p = setSolver(p, 'lcprog');

display(p.solverType);

lcprog

Set the Solver Type as 'fmincon'for a PortfolioCVaR Object

Use 'fmincon' as the solverType.

p = PortfolioCVaR;

p = setSolver(p, 'fmincon');

display(p.solverType);

fmincon

Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm for a
PortfolioCVaR Object

Use 'fmincon' as the solverType and use name-value pair arguments to set the
algorithm to 'trust-region-reflective' and to turn off the display.

p = PortfolioCVaR;

p = setSolver(p, 'fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off

Set the Solver Type as 'fmincon' and Use an optimoptions Object to Set the Algorithm for a
PortfolioCVaR Object

Use 'fmincon' as the solverType and use an optimoptions object to set the
algorithm to 'trust-region-reflective' and to turn off the display.

p = PortfolioCVaR;
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options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');

p = setSolver(p, 'fmincon', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off

Set 'cuttingplane' as the Solver Type with Default Options for a PortfolioCVaR Object

Use 'cuttingplane' as the solverType with default options.

p = PortfolioCVaR;

p = setSolver(p,'cuttingplane');

display(p.solverType);

cuttingplane

Set 'cuttingplane' as the Solver Type with Maximum Iterations for a PortfolioCVaR Object

Use the Name-Value pair 'MaxIter' to set the maximum number of iterations to 1500.

p = PortfolioCVaR;

p = setSolver(p,'cuttingplane','MaxIter',1500);

display(p.solverType);

display(p.solverOptions);

cuttingplane

                MaxIter: 1500

                 AbsTol: 1.0000e-06

                 RelTol: 1.0000e-05

    MasterSolverOptions: [1×1 optim.options.Linprog]

Set 'cuttingplane' as the Solver Type and Change the Master Solver Option for a PortfolioCVaR
Object

For the master solver, continue using the dual-simplex algorithm with no display, but
tighten its termination tolerance to 1e-8.

p = PortfolioCVaR;

options = optimoptions('linprog','Algorithm','Dual-Simplex','Display','off','OptimalityTolerance',1e-8);

p = setSolver(p,'cuttingplane','MasterSolverOptions',options);

display(p.solverType)

display(p.solverOptions)
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display(p.solverOptions.MasterSolverOptions.Algorithm)

display(p.solverOptions.MasterSolverOptions.Display)

display(p.solverOptions.MasterSolverOptions.TolFun)

cuttingplane

                MaxIter: 1000

                 AbsTol: 1.0000e-06

                 RelTol: 1.0000e-05

    MasterSolverOptions: [1×1 optim.options.Linprog]

dual-simplex

off

   1.0000e-08

For the master solver, use the interior-point algorithm with no display, and with a
termination tolerance of 1e-7.

p = PortfolioCVaR;

options = optimoptions('linprog','Algorithm','interior-point','Display','off','OptimalityTolerance',1e-7);

p = setSolver(p,'cuttingplane','MasterSolverOptions',options);

display(p.solverType)

display(p.solverOptions)

display(p.solverOptions.MasterSolverOptions.Algorithm)

display(p.solverOptions.MasterSolverOptions.Display)

display(p.solverOptions.MasterSolverOptions.TolFun)

cuttingplane

                MaxIter: 1000

                 AbsTol: 1.0000e-06

                 RelTol: 1.0000e-05

    MasterSolverOptions: [1×1 optim.options.Linprog]

interior-point

off

   1.0000e-07

Set Solver Type as 'fmincon' for a PortfolioMAD Object

Use 'fmincon' as the solverType.

p = PortfolioMAD;

p = setSolver(p, 'fmincon');

display(p.solverType);
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fmincon

Set the Solver Type as 'fmincon' and Use Name-Value Pair Arguments to Set the Algorithm for a
PortfolioMAD Object

Use 'fmincon' as the solverType and use name-value pair arguments to set the
algorithm to|'sqp'| and to turn on the display.

p = PortfolioMAD;

p = setSolver(p, 'fmincon', 'Algorithm', 'sqp', 'Display', 'final');

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

sqp

final

Set Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm for a
PortfolioMAD Object

Use 'fmincon' as the solverType and use an optimoptions object to set the
algorithm to 'trust-region-reflective' and to turn off the display.

p = PortfolioMAD;

options = optimoptions('fmincon', 'Algorithm', 'trust-region-reflective', 'Display', 'off');

p = setSolver(p, 'fmincon', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

trust-region-reflective

off

Set the Solver Type as 'fmincon' and Use an optimoptions Structure to Set the Algorithm and
Use of Gradients for a PortfolioMAD Object

Use 'fmincon' as the solverType and use an optimoptions object to set the
algorithm to 'active-set' and to set the gradients flag 'on' for 'GradObj' and turn
off the display.

p = PortfolioMAD;

options = optimoptions('fmincon','algorithm','active-set','display','off','gradobj','on');

p = setSolver(p, 'fmincon', options);

display(p.solverOptions.Algorithm);

display(p.solverOptions.Display);

active-set
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off

• “Working with One-way Turnover Constraints Using Portfolio Object” on page 4-91
• “Working with One-way Turnover Constraints Using PortfolioCVaR Object” on page

5-86
• “Working with One-way Turnover Constraints Using PortfolioMAD Object” on page

6-84
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Name-Value Pair Arguments for varargin or optimoptions Object

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p = setSolver(p,'cuttingplane','MasterSolverOptions',options)

'solverType' — Solver to use for portfolio optimization
character vector

Solver to use for portfolio optimization, specified using a character vector, or
optimoptions object.

The SolverType input argument depends on which type of object (obj) is being used for
a portfolio optimization.

For a Portfolio object:
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• The default solverType for the Portfolio object is 'lcprog' with the control
variables 'maxiter', 'tiebreak', 'tolpiv'

• The Portfolio object can also use 'quadprog', which has several different options
that can be set with optimoptions. Like Optimization Toolbox software which uses
the interior-point-convex algorithm as the default algorithm for quadprog,
the portfolio optimization tools also uses the interior-point-convex algorithm.
For more information about quadprog and quadratic programming algorithms and
options, see “Quadratic Programming Algorithms”.

For a PortfolioCVaR object:

• The supported solverType are:

• 'fmincon'

• 'cuttingplane'

• The default is 'fmincon' using the 'sqp' algorithm.

For a PortfolioMAD object:

• The supported solverType is:

• 'fmincon'

• The default is 'fmincon' using the 'sqb' algorithm and 'GradObj' set to 'on'

'varargin' — Options to control the solver specified in solverType as name-value pair
arguments or an optimoptions object
optimoptions object | character vector

Options to control the solver specified in solverType as name-value pair arguments or
an optimoptions object. Note, optimoptions is the default and recommended method
to set solver options, however optimset is also supported.

The varargin input argument depends on which type of object (obj) is being used for a
portfolio optimization

For a Portfolio object:

• The default solverType for the Portfolio object is 'lcprog' with the control
variables 'maxiter', 'tiebreak', 'tolpiv'

• The Portfolio object can also use a solverType of 'quadprog', which has several
different options that can be set with optimoptions. Like Optimization Toolbox
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software which uses the interior-point-convex algorithm as the default
algorithm for quadprog, the portfolio optimization tools also uses the interior-
point-convex algorithm. For more information about quadprog and quadratic
programming algorithms and options, see “Quadratic Programming Algorithms”.

For a PortfolioCVaR object:

• For the default solverType, 'fmincon', PortfolioCVaR by default sets the
algorithm to 'sqp', uses objective function gradients, and turns off the display.
All fmincon options are supported, either as name-value pair arguments or using
an optimoptions object. For more information about fmincon and quadratic
programming algorithms and options, see “Quadratic Programming Algorithms”.

• For the cuttingplane solver, the following solver options are available as name-
value pair arguments:

• MaxIter

• AbsTol

• RelTol

• MasterSolverOptions

For a PortfolioMAD object:

• For the default solverType 'fmincon', PortfolioMAD, by default, sets the
algorithm to 'sqp' and turns off the display. While all variations of fmincon from
Optimization Toolbox are accepted, use of 'sqp' and 'active-set' algorithms
for fmincon are recommended and the use of 'interior-point' and 'trust-
region-reflective' algorithms are not recommended for MAD portfolio
optimization.

• All fmincon options are supported either as name-value pair arguments or using an
optimoptions object.

• optimoptions is the default and recommended method to set solver options,
however optimset is also supported. For details about fmincon and constrained
nonlinear optimization algorithms and options, see “Constrained Nonlinear
Optimization Algorithms”.

Data Types: char

'MaxIter' — Maximum number of iterations
1000 (default) | positive integer
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Maximum number of iterations, specified as a positive integer when using a
PortfolioCVaR object.

Data Types: char | double

'AbsTol' — Absolute stopping tolerance
1e-6 (default) | positive scalar

Absolute stopping tolerance, specified as a positive scalar when using a PortfolioCVaR
object.
Data Types: char | double

'RelTol' — Relative stopping tolerance
1e-5 (default) | positive scalar

Relative stopping tolerance, specified as a positive scalar when using a PortfolioCVaR
object.
Data Types: char | double

'MasterSolverOptions' — Options for the master solver
optimoptions('linprog','Algorithm','Dual-Simplex','Display','off')

(default) | optimoptions object

Options for the master solver linprog, specified as an optimoptions object when using
a PortfolioCVaR object. For more information about linprog and linear programming
algorithms and options, see “Linear Programming Algorithms”.
Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD
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More About

Tips

You can also use dot notation to choose the solver and specify associated solver options.

obj = obj.setSolver(solverType, varargin);

Algorithms

One version of the CVaR portfolio optimization problem minimizes risk, measured as
the CVaR of the portfolio, subject to a target return and other linear constraints on the
portfolio. For the definition of the CVaR function, see “Risk Proxy” on page 5-6.

minimize CVaR xx a
( )

subject to  y x TargetReturnT
≥

Ax b£

A x beq eq=

lb x ub£ £

Vector y  is the mean return vector (the column-wise mean of the scenario matrix Y), so

that y xT  is the expected return of portfolio x. The first constraint says that the expected
return must be at least as good as a target return.

An alternative version of the CVaR portfolio optimization problem maximizes the
expected return of the portfolio, subject to a target risk and other linear constraints on
the portfolio.

maximize y xx
T

subject to   CVaR x CVaRLimit
a

( ) £

Ax b£

18-1531



18 Functions — Alphabetical List

A x beq eq=

lb x ub£ £

The first constraint in this case says that the portfolio CVaR cannot exceed a given CVaR
limit.

By default, the CVaR portfolio object uses fmincon to solve the CVaR portfolio
optimization problems. For information about fmincon and quadratic programming
algorithms and options, see “Quadratic Programming Algorithms”.

Alternatively, the CVaR portfolio optimization problems can be solved with
'cuttingplane’, an implementation of Kelley’s cutting-plane method. For more
information, see Kelley [45] at “Portfolio Optimization” on page A-11.
• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)
• CVaR Portfolio Optimization (5 min 33 sec)

References

Kelley, J. E. "The Cutting-Plane Method for Solving Convex Programs." Journal of the
Society for Industrial and Applied Mathematics. Vol. 8, No. 4, December 1960, pp. 703–
712.

Rockafellar, R. T. and S. Uryasev "Optimization of Conditional Value-at-Risk." Journal of
Risk. Vol. 2, No. 3, Spring 2000, pp. 21–41.

Rockafellar, R. T. and S. Uryasev "Conditional Value-at-Risk for General Loss
Distributions." Journal of Banking and Finance. Vol. 26, 2002, pp. 1443–1471.

See Also
getOneWayTurnover | setCosts | setInitPort | setTurnover

Introduced in R2011a
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setScenarios
Set asset returns scenarios by direct matrix

Use the setScenarios function with a PortfolioCVaR or PortfolioMAD objects to set
asset returns scenarios by direct matrix.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax
obj = setScenarios(obj,AssetScenarios)

obj = setScenarios(obj,AssetScenarios,Name,Value)

Description
obj = setScenarios(obj,AssetScenarios) sets asset returns scenarios by direct
matrix for PortfolioCVaR or PortfolioMAD objects.

obj = setScenarios(obj,AssetScenarios,Name,Value) set asset returns
scenarios by direct matrix for PortfolioCVaR or PortfolioMAD objects using
additional options specified by one or more Name,Value pair arguments.

Examples
Set Asset Returns Scenarios for a PortfolioCVaR Object

Given a PortfolioCVaR object p, use the setScenarios function to set asset return
scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;
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AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

disp(p)

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9500

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 20000

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Set Asset Returns Scenarios for a PortfolioMAD Object

Given PortfolioMAD object p, use the setScenarios function to set asset return
scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
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C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

disp(p)

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 20000

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
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• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

Input Arguments
obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

AssetScenarios — Scenarios for asset returns or prices
matrix

Scenarios for asset returns or prices, specified as a matrix. If the input data are prices,
they can be converted into returns with the ‘DataFormat’ name-value argument, where
the default format is assumed to be 'Returns'. Be careful using price data because
portfolio optimization usually requires total returns and not simply price returns.

This function sets up a function handle to indirectly access input AssetScenarios
without needing to make a copy of the data.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p = setScenarios(p,
AssetScenarios,'DataFormat','Returns','GetAssetList',false);

'DataFormat' — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified using a character vector with
the values:
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• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char

'GetAssetList' — Flag indicating which asset names to use for the asset list
false (default) | logical with value true or false

Flag indicating which asset names to use for the asset list, specified as a logical with a
value of true or false. Acceptable values for GetAssetList are:

• false — Do not extract or create asset names.
• true — Extract or create asset names from fints object.

If a fints object is passed into this function and the GetAssetList flag is true, the
series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are
created based on the AbstractPortfolio property defaultforAssetList, which is
currently 'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.

Data Types: logical

Output Arguments
obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For
more information on creating a portfolio object, see

• PortfolioCVaR
• PortfolioMAD

More About
Tips

You can also use dot notation to set asset return scenarios.
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obj = obj.setScenarios(AssetScenarios);

• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
getScenarios

Introduced in R2012b
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setTrackingError
Set up maximum portfolio tracking error constraint

Syntax

obj = setTrackingError(obj,TrackingError)

obj = setTrackingError( ___ ,TrackingPort,NumAssets)

Description

obj = setTrackingError(obj,TrackingError) sets up a maximum portfolio
tracking error constraint.

obj = setTrackingError( ___ ,TrackingPort,NumAssets) sets up a maximum
portfolio tracking error constraint using optional arguments for TrackingPort and
NumAssets.

Examples

Set up a Tracking Error Constraint

Create a Portfolio object.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];

AssetCovar = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', AssetMean, 'covar', AssetCovar, 'lb', 0, 'budget', 1)

p = 

  Portfolio with properties:

          BuyCost: []
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         SellCost: []

     RiskFreeRate: []

        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 4

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Estimate the Sharpe ratio for the Portfolio object p and define the tracking error.

x0 = estimateMaxSharpeRatio(p);

te = 0.08;

p = setTrackingError(p, te, x0);

display(p.NumAssets);

display(p.TrackingError);

display(p.TrackingPort);

     4

    0.0800

    0.6608

    0.1622

18-1540



 setTrackingError

    0.0626

    0.1143

• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-95
• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see Portfolio.

TrackingError — Upper bound for portfolio tracking error
nonnegative and finite scalar

Upper bound for portfolio tracking error, specified using a nonnegative and finite scalar.

Given an upper bound for portfolio tracking error in TrackingError and a tracking
portfolio in TrackingPort, the tracking error constraint requires any portfolio in Port to
satisfy

(Port - TrackingPort)'*AssetCovar*(Port - TrackingPort) <= TrackingError^2 .

For more information, see “Tracking Error Constraints” on page 4-15.
Data Types: double

TrackingPort — Tracking portfolio weights
finite vector

Tracking portfolio weights, specified using a vector. TrackingPort must be a finite
vector with NumAssets > 0 elements.

If no TrackingPort is specified, it is assumed to be 0. If TrackingPort is specified as a
scalar and NumAssets exists, then TrackingPort undergoes scalar expansion.

Data Types: double

NumAssets — Number of assets in portfolio
scalar
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Number of assets in portfolio, specified using a scalar. If it is not possible to obtain a
value for NumAssets, it is assumed that NumAssets is 1.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on
creating a portfolio object, see Portfolio.

Note: The tracking error constraints can be used with any of the other supported
constraints in the Portfolio object without restrictions. However, since the portfolio
set necessarily and sufficiently must be a non-empty compact set, the application of a
tracking error constraint can result in an empty portfolio set. Use estimateBounds to
confirm that the portfolio set is non-empty and compact.

More About

Tips

You can also use dot notation to set up a maximum portfolio tracking error constraint.

obj = obj.setTrackingError(TrackingError, NumAssets);

To remove a tracking portfolio, call this function with an empty argument ([]) for
TrackingError.

obj = setTrackingError(obj, [ ]);

• “Tracking Error Constraints” on page 4-15
• “Setting Up a Tracking Portfolio” on page 4-41

See Also
Portfolio | setTrackingPort
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Introduced in R2015b
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setTrackingPort
Set up benchmark portfolio for tracking error constraint

Syntax

obj = setTrackingPort(obj,TrackingPort)

obj = setTrackingPort( ___ ,NumAssets)

Description

obj = setTrackingPort(obj,TrackingPort) sets up a benchmark portfolio for a
tracking error constraint.

obj = setTrackingPort( ___ ,NumAssets) sets up a benchmark portfolio for a
tracking error constraint using an optional input argument for NumAssets.

Examples

Set up a Tracking Port

Create a Portfolio object.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];

AssetCovar = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

p = Portfolio('mean', AssetMean, 'covar', AssetCovar, 'lb', 0, 'budget', 1)

p = 

  Portfolio with properties:

          BuyCost: []

         SellCost: []

     RiskFreeRate: []
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        AssetMean: [4×1 double]

       AssetCovar: [4×4 double]

    TrackingError: []

     TrackingPort: []

         Turnover: []

      BuyTurnover: []

     SellTurnover: []

             Name: []

        NumAssets: 4

        AssetList: []

         InitPort: []

      AInequality: []

      bInequality: []

        AEquality: []

        bEquality: []

       LowerBound: [4×1 double]

       UpperBound: []

      LowerBudget: 1

      UpperBudget: 1

      GroupMatrix: []

       LowerGroup: []

       UpperGroup: []

           GroupA: []

           GroupB: []

       LowerRatio: []

       UpperRatio: []

Estimate the Sharpe ratio for the Portfolio object p and define the tracking port.

x0 = estimateMaxSharpeRatio(p);

p = setTrackingPort(p, x0);

display(p.NumAssets);

display(p.TrackingPort);

     4

    0.6608

    0.1622

    0.0626

    0.1143

• “Working with Tracking Error Constraints Using Portfolio Object” on page 4-95
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• “Portfolio Optimization Examples” on page 4-139

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a Portfolio object. For more information on
creating a portfolio object, see Portfolio.

TrackingPort — Tracking portfolio weights
vector

Tracking portfolio weights, specified using a vector. If TrackingPort is specified as a
scalar and NumAssets exists, then TrackingPort undergoes scalar expansion.

Data Types: double

NumAssets — Number of assets in portfolio
scalar

Number of assets in portfolio, specified using a scalar. If it is not possible to obtain a
value for NumAssets, it is assumed that NumAssets is 1.

Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio object. For more information on
creating a portfolio object, see Portfolio.

Note: The tracking error constraints can be used with any of the other supported
constraints in the Portfolio object without restrictions. However, since the portfolio
set necessarily and sufficiently must be a non-empty compact set, the application of a
tracking error constraint can result in an empty portfolio set. Use estimateBounds to
confirm that the portfolio set is non-empty and compact.

18-1546



 setTrackingPort

More About

Tips

You can also use dot notation to set up a benchmark portfolio for tracking error
constraint.

obj = obj.setTrackingPort(TrackingPort, NumAssets);

To remove a tracking portfolio, call this function with an empty argument ([]) for
TrackingPort.

obj = setTrackingPort(obj, [ ]);

• “Tracking Error Constraints” on page 4-15
• “Setting Up a Tracking Portfolio” on page 4-41

See Also
Portfolio | setTrackingError

Introduced in R2015b
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setTurnover
Set up maximum portfolio turnover constraint

Use the setTurnover function with a Portfolio, PortfolioCVaR, or PortfolioMAD
object to set up maximum portfolio turnover constraint for portfolio objects.

For details on the respective workflows when using these different objects, see “Portfolio
Object Workflow” on page 4-18, “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = setTurnover(obj,Turnover)

obj = setTurnover(obj,Turnover,InitPort,NumAssets)

Description

obj = setTurnover(obj,Turnover) sets up maximum portfolio turnover constraint
for portfolio objects.

obj = setTurnover(obj,Turnover,InitPort,NumAssets) sets up maximum
portfolio turnover constraint for portfolio objects with additional options specified for
Turnover, InitPort, and NumAssets.

Given an upper bound for portfolio turnover in Turnover and an initial portfolio in
InitPort, the turnover constraint requires any portfolio in Port to satisfy the following:

1' *1/2* | Port - InitPort | <= Turnover

Examples

Set Turnover Constraint for a Portfolio Object

Given a Portfolio object p, to ensure that average turnover is no more than 30% with an
initial portfolio of 10 assets in a variable x0, use the setTurnover method to set the
turnover constraint.
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x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

    10

    0.3000

    0.1200

    0.0900

    0.0800

    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000

Set Turnover Constraint for a CVaR Portfolio Object

Given a CVaR portfolio object p, to ensure that average turnover is no more than 30%
with an initial portfolio of 10 assets in a variable x0, use the setTurnover method to set
the turnover constraint.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioCVaR('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

    10

    0.3000

    0.1200

    0.0900

    0.0800
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    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000

Set Turnover Constraint for a MAD Portfolio Object

Given PortfolioMAD object p, to ensure that average turnover is no more than 30% with
an initial portfolio of 10 assets in a variable x0, use the setTurnover method to set the
turnover constraint.

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = PortfolioMAD('InitPort', x0);

p = setTurnover(p, 0.3);

disp(p.NumAssets);

disp(p.Turnover);

disp(p.InitPort);

    10

    0.3000

    0.1200

    0.0900

    0.0800

    0.0700

    0.1000

    0.1000

    0.1500

    0.1100

    0.0800

    0.1000

• “Working with Average Turnover Constraints Using Portfolio Object” on page 4-87
• “Working with Average Turnover Constraints Using PortfolioCVaR Object” on page

5-82
• “Portfolio Optimization Examples” on page 4-139
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Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

Turnover — Portfolio turnover constraint
nonnegative and finite scalar

Portfolio turnover constraint, specified as a nonnegative and finite scalar for a
Portfolio, PortfolioCVaR, or PortfolioMADinput object (obj).

InitPort — Initial or current portfolio weights
0 (default) | finite vector with NumAssets > 0 elements.

Initial or current portfolio weights, specified as a finite vector with NumAssets > 0
elements for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Note:  If no InitPort is specified, that value is assumed to be 0.

If InitPort is specified as a scalar and NumAssets exists, then InitPort undergoes
scalar expansion.

Data Types: double

NumAssets — Number of assets in portfolio
1 (default) | scalar

Number of assets in portfolio, specified as a scalar for a Portfolio, PortfolioCVaR, or
PortfolioMAD input object (obj).

Note:  If it is not possible to obtain a value for NumAssets, it is assumed that
NumAssets is 1.
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Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a Portfolio, PortfolioCVaR, or PortfolioMAD
object. For more information on creating a portfolio object, see

• Portfolio
• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to set up the maximum portfolio turnover constraint.

obj = obj.setTurnover(Turnover, InitPort, NumAssets);

• “Portfolio Set for Optimization Using Portfolio Object” on page 4-8
• “Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-8
• “Portfolio Set for Optimization Using PortfolioMAD Object” on page 6-8
• Getting Started with Portfolio Optimization (13 min 31 sec)
• CVaR Portfolio Optimization (5 min 33 sec)

See Also
getOneWayTurnover | setInitPort | setOneWayTurnover

Introduced in R2011a
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simulateNormalScenariosByData

Simulate multivariate normal asset return scenarios from data

Use the simulateNormalScenariosByData function with a PortfolioCVaR or
PortfolioMAD objects to simulate multivariate normal asset return scenarios from data.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = simulateNormalScenariosByData(obj,AssetReturns)

obj = simulateNormalScenariosByData(obj,AssetReturns,NumScenarios,

Name,Value)

Description

obj = simulateNormalScenariosByData(obj,AssetReturns) simulates
multivariate normal asset return scenarios from data for portfolio object for
PortfolioCVaR or PortfolioMAD objects.

obj = simulateNormalScenariosByData(obj,AssetReturns,NumScenarios,

Name,Value) simulates multivariate normal asset return scenarios from data for
portfolio object for PortfolioCVaR or PortfolioMAD objects using additional options
specified by one or more Name,Value pair arguments.

This function estimates the mean and covariance of asset returns from either price or
return data and then uses these estimates to generate the specified number of scenarios
with the function mvnrnd.

Data can in be either a NumSamples-by-NumAssets matrix of NumSamples prices or
returns at a given periodicity for a collection of NumAssets assets or a fints object with
NumSamples observations and NumAssets time series.
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Note: If you want to use the method multiple times and you want to simulate identical
scenarios each time the function is called, precede each function call with rng(seed) using
a specified integer seed.

Examples

Simulate Multivariate Normal Asset Return Scenarios from Data for a PortfolioCVaR Object

Given a PortfolioCVaR object p, use the simulateNormalScenariosByData function to
simulate multivariate normal asset return scenarios from data.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

RawData = mvnrnd(m, C, 240);

NumScenarios = 2000;

p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, RawData, NumScenarios)

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.9);

disp(p);

p = 

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 2000

                Name: []
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           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: []

          UpperBound: []

         LowerBudget: []

         UpperBudget: []

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9000

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 2000

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []
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              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Simulate Multivariate Normal Asset Return Scenarios from Market Data for a PortfolioCVaR
Object

Create a PortfolioCVaR object p and use the simulateNormalScenariosByData
function with market data loaded from CAPMuniverse.mat to simulate multivariate
normal asset return scenarios.

load CAPMuniverse

p = PortfolioCVaR('AssetList',Assets(1:12));

disp(p);

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: []

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: []

                Name: []

           NumAssets: 12

           AssetList: {1×12 cell}

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: []

          UpperBound: []

         LowerBudget: []

         UpperBudget: []

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []
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          LowerRatio: []

          UpperRatio: []

Simulate the scenarios from the data for each of the 12 assets from CAPMuniverse.mat.

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

Estimate Mean and Covariance of Asset Returns from Data for a PortfolioMAD Object

Given a PortfolioMAD object p, use the simulateNormalScenariosByData function to
simulate multivariate normal asset return scenarios from data.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

RawData = mvnrnd(m, C, 240);

NumScenarios = 2000;

p = PortfolioMAD;

p = simulateNormalScenariosByData(p, RawData, NumScenarios);

p = setDefaultConstraints(p);

disp(p);

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 2000

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []

     bInequality: []
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       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Estimate Mean and Covariance of Asset Returns from Market Data for a PortfolioMAD Object

Create a PortfolioMAD object p and use the simulateNormalScenariosByData
function with market data loaded from CAPMuniverse.mat to simulate multivariate
normal asset return scenarios.

load CAPMuniverse

p = PortfolioMAD('AssetList',Assets(1:12));

disp(p);

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: []

            Name: []

       NumAssets: 12

       AssetList: {1×12 cell}

        InitPort: []

     AInequality: []

     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: []

      UpperBound: []
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     LowerBudget: []

     UpperBudget: []

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

Simulate the scenarios from the data for each of the 12 assets from CAPMuniverse.mat.

p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true);

• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

AssetReturns — Asset data that can be converted into asset returns
fints object | matrix

Asset data that can be converted into asset returns, specified as a fints object or
NumSamples-by-NumAssets matrix

Data Types: double

NumScenarios — Number of scenarios to simulate
positive integer

Number of scenarios to simulate, specified as a positive integer.
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Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: p =
simulateNormalScenariosByData(p,RawData,NumScenarios,'DataFormat','Returns','MissingData',true,'GetAssetList',true)

'DataFromat' — Flag to convert input data as prices into returns
'Returns' (default) | character vector with values 'Returns' or 'Prices'

Flag to convert input data as prices into returns, specified using a character vector with
the values:

• 'Returns' — Data in AssetReturns contains asset total returns.
• 'Prices' — Data in AssetReturns contains asset total return prices.

Data Types: char

'MissingData' — Flag to use ECM algorithm to handle NaN values
false (default) | logical with values true or false

Flag to use ECM algorithm to handle NaN values, as a logical with a value of true or
false.

• false — Do not use ECM algorithm to handle NaN values (exclude NaN values).
• true — Use ECM algorithm to handle NaN values.

Data Types: logical

'GetAssetList' — Flag indicating which asset names to use for the asset list
false (default) | logical with values true or false

Flag indicating which asset names to use for the asset list, specified as a logical with a
value of true or false.

• false — Do not extract or create asset names.
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• true — Extract or create asset names from fints object.

If a fints object is passed into this function and the GetAssetList flag is true, the
series names from the fints object are used as asset names in obj.AssetList.

If a matrix is passed and the GetAssetList flag is true, default asset names are
created based on the AbstractPortfolio property defaultforAssetList, which is
'Asset'.

If the GetAssetList flag is false, no action occurs, which is the default behavior.

Data Types: logical

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For
more information on creating a portfolio object, see

• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to simulate multivariate normal asset return scenarios
from data for a PortfolioCVaR or PortfolioMAD object.
obj = obj.simulateNormalScenariosByData(AssetReturns, NumScenarios, varargin);

• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
fints | rng | simulateNormalScenariosByMoments
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Introduced in R2012b
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simulateNormalScenariosByMoments
Simulate multivariate normal asset return scenarios from mean and covariance of asset
returns

Use the simulateNormalScenariosByMoments function with a PortfolioCVaR or
PortfolioMAD objects to simulate multivariate normal asset return scenarios from
mean and covariance of asset returns.

For details on the workflows, see “PortfolioCVaR Object Workflow” on page 5-17, and
“PortfolioMAD Object Workflow” on page 6-17.

Syntax

obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovar,

NumScenarios)

obj = simulateNormalScenariosByMoments(obj,AssetMean,

AssetCovarNumScenarios,NumAssets)

Description

obj = simulateNormalScenariosByMoments(obj,AssetMean,AssetCovar,

NumScenarios) simulates multivariate normal asset return scenarios from mean and
covariance of asset returns for PortfolioCVaR or PortfolioMAD objects.

obj = simulateNormalScenariosByMoments(obj,AssetMean,

AssetCovarNumScenarios,NumAssets) simulates multivariate normal asset return
scenarios from mean and covariance of asset returns for PortfolioCVaR or PortfolioMAD
objects using the optional input NumScenarios.

Note: This function overwrites existing scenarios associated with PortfolioCVaR or
PortfolioMAD objects, and also, possibly, NumScenarios.

If you want to use the function multiple times and you want to simulate identical
scenarios each time the function is called, precede each function call with rng(seed) using
a specified integer seed.
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Examples

Simulate Multivariate Normal Asset Return Scenarios from Moments for a PortfolioCVaR Object

Given PortfolioCVaR object p, use the simulateNormalScenariosByMoments function
to simulate multivariate normal asset return scenarios from moments.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

p = setProbabilityLevel(p, 0.95);

AssetMean = [.5]

AssetCovar = [.5]

NumScenarios = 100

p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenarios)

AssetMean =

    0.5000

AssetCovar =

    0.5000

NumScenarios =

   100
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p = 

  PortfolioCVaR with properties:

             BuyCost: []

            SellCost: []

        RiskFreeRate: []

    ProbabilityLevel: 0.9500

            Turnover: []

         BuyTurnover: []

        SellTurnover: []

        NumScenarios: 100

                Name: []

           NumAssets: 4

           AssetList: []

            InitPort: []

         AInequality: []

         bInequality: []

           AEquality: []

           bEquality: []

          LowerBound: [4×1 double]

          UpperBound: []

         LowerBudget: 1

         UpperBudget: 1

         GroupMatrix: []

          LowerGroup: []

          UpperGroup: []

              GroupA: []

              GroupB: []

          LowerRatio: []

          UpperRatio: []

Simulate Multivariate Normal Asset Return Scenarios from Moments for a PortfolioMAD Object

Given PortfolioMAD object p, use the simulateNormalScenariosByMoments function
to simulate multivariate normal asset return scenarios from moments.

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;

    0.00408 0.0289 0.0204 0.0119;

    0.00192 0.0204 0.0576 0.0336;

    0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;
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AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;

p = setScenarios(p, AssetScenarios);

p = setDefaultConstraints(p);

AssetMean = [.5]

AssetCovar = [.5]

NumScenarios = 100

p = simulateNormalScenariosByMoments(p, AssetMean, AssetCovar, NumScenarios)

AssetMean =

    0.5000

AssetCovar =

    0.5000

NumScenarios =

   100

p = 

  PortfolioMAD with properties:

         BuyCost: []

        SellCost: []

    RiskFreeRate: []

        Turnover: []

     BuyTurnover: []

    SellTurnover: []

    NumScenarios: 100

            Name: []

       NumAssets: 4

       AssetList: []

        InitPort: []

     AInequality: []
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     bInequality: []

       AEquality: []

       bEquality: []

      LowerBound: [4×1 double]

      UpperBound: []

     LowerBudget: 1

     UpperBudget: 1

     GroupMatrix: []

      LowerGroup: []

      UpperGroup: []

          GroupA: []

          GroupB: []

      LowerRatio: []

      UpperRatio: []

• “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-40
• “Asset Returns and Scenarios Using PortfolioMAD Object” on page 6-39

Input Arguments

obj — Object for portfolio
object

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

• PortfolioCVaR
• PortfolioMAD

AssetMean — Mean of asset returns
vector

Mean of asset returns, specified as a vector.

Note: If AssetMean is a scalar and the number of assets is known, scalar expansion
occurs. If the number of assets cannot be determined, this function assumes that
NumAssets = 1.
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Data Types: double

AssetCovar — Covariance of asset returns
symmetric positive-semidefinite matrix

Covariance of asset returns, specified as a symmetric positive-semidefinite matrix.

Note:

• If AssetCovar is a scalar and the number of assets is known, a diagonal matrix is
formed with the scalar value along the diagonals. If it is not possible to determine the
number of assets, this method assumes that NumAssets = 1.

• If AssetCovar is a vector, a diagonal matrix is formed with the vector along the
diagonal.

Data Types: double

NumScenarios — Number of scenarios to simulate
positive integer

Number of scenarios to simulate, specified as a positive integer.
Data Types: double

NumAssets — Number of assets
scalar

Number of assets, specified as a scalar.
Data Types: double

Output Arguments

obj — Updated portfolio object
object for portfolio

Updated portfolio object, returned as a PortfolioCVaR or PortfolioMAD object. For
more information on creating a portfolio object, see
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• PortfolioCVaR
• PortfolioMAD

More About

Tips

You can also use dot notation to simulate multivariate normal asset return scenarios
from a mean and covariance of asset returns for a PortfolioCVaR or PortfolioMAD
object.
obj = obj.simulateNormalScenariosByMoments(AssetMean, AssetCovar, NumScenarios, NumAssets);

• CVaR Portfolio Optimization (5 min 33 sec)
• Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50

min 42 sec)

See Also
rng | simulateNormalScenariosByData

Introduced in R2012b
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setfield
Set content of specific field

Syntax
newfts = setfield(tsobj, field, V)

newfts = setfield(tsobj, field, {dates}, V)

Description

setfield treats the contents of fields in a time series object (tsobj) as fields in a
structure.

newfts = setfield(tsobj, field, V) sets the contents of the specified field to the
value V. This is equivalent to the syntax S.field = V.

newfts = setfield(tsobj, field, {dates}, V) sets the contents of the specified
field for the specified dates. dates can be individual cells of date character vectors or a
cell of a date character vector’s range using the :: operator, for example,
'03/01/99::03/31/99'. Dates can contain time-of-day information.

Examples

Example 1. Set the closing value for all days to 3890.

load dji30short 

format bank

myfts1 = setfield(myfts1, 'Close', 3890) 

myfts1 = 

 

    desc:  DJI30MAR94.dat

    freq:  Daily (1)

    'dates:  (20)'    'Open:  (20)'    'High:  (20)'    'Low:  (20)'    'Close:  (20)'

    '04-Mar-1994'     [    3830.90]    [    3868.04]    [   3800.50]    [     3890.00]

    '07-Mar-1994'     [    3851.72]    [    3882.40]    [   3824.71]    [     3890.00]

    '08-Mar-1994'     [    3858.48]    [    3881.55]    [   3822.45]    [     3890.00]

    '09-Mar-1994'     [    3853.97]    [    3874.52]    [   3817.95]    [     3890.00]
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    '10-Mar-1994'     [    3852.57]    [    3865.51]    [   3801.63]    [     3890.00]

    '11-Mar-1994'     [    3832.58]    [    3872.83]    [   3806.69]    [     3890.00]

    '14-Mar-1994'     [    3870.29]    [    3894.21]    [   3835.96]    [     3890.00]

    '15-Mar-1994'     [    3863.41]    [    3888.46]    [   3826.85]    [     3890.00]

    '16-Mar-1994'     [    3851.03]    [    3879.53]    [   3819.94]    [     3890.00]

    '17-Mar-1994'     [    3853.62]    [    3891.34]    [   3821.66]    [     3890.00]

    '18-Mar-1994'     [    3865.42]    [    3911.78]    [   3838.65]    [     3890.00]

    '21-Mar-1994'     [    3878.38]    [    3898.25]    [   3838.65]    [     3890.00]

    '22-Mar-1994'     [    3865.71]    [    3896.23]    [   3840.66]    [     3890.00]

    '23-Mar-1994'     [    3868.88]    [    3901.41]    [   3839.80]    [     3890.00]

    '24-Mar-1994'     [    3849.88]    [    3865.42]    [   3792.58]    [     3890.00]

    '25-Mar-1994'     [    3827.13]    [    3826.85]    [   3774.73]    [     3890.00]

    '28-Mar-1994'     [    3776.46]    [    3793.45]    [   3719.74]    [     3890.00]

    '29-Mar-1994'     [    3757.17]    [    3771.86]    [   3689.23]    [     3890.00]

    '30-Mar-1994'     [    3688.36]    [    3718.88]    [   3612.36]    [     3890.00]

    '31-Mar-1994'     [    3639.71]    [    3673.10]    [   3544.12]    [     3890.00]

Example 2. Set values for specific times on specific days.

First create a financial time series containing time-of-day data.
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

                       times]);

myfts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...

              'My FINTS')

myfts = 

 

    desc:  My FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [        NaN]

    '     "     '    '12:00'          [          6]

Now use setfield to replace the data in myfts with new data starting at 12:00 on
January 1, 2001 and ending at 11:00 on January 3, 2001.
S = setfield(myfts,'Data1',...

            {'01-Jan-2001 12:00::03-Jan-2001 11:00'},(102:105)')

S = 

 

    desc:  My FINTS

    freq:  Daily (1)
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    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [       1.00]

    '     "     '    '12:00'          [     102.00]

    '02-Jan-2001'    '11:00'          [     103.00]

    '     "     '    '12:00'          [     104.00]

    '03-Jan-2001'    '11:00'          [     105.00]

    '     "     '    '12:00'          [       6.00]

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
chfield | fieldnames | getfield | isfield | rmfield

Introduced before R2006a
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sharpe
Compute Sharpe ratio for one or more assets

Syntax
sharpe(Asset)

sharpe(Asset, Cash)

Ratio = sharpe(Asset, Cash)

Arguments

Asset NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES
observations of asset returns for NUMSERIES asset return
series.

Cash (Optional) Either a scalar return for a riskless asset or a
vector of asset returns to be a proxy for a riskless asset. In
either case, the return periodicity must be the same as the
periodicity of Asset. For example, if Asset is monthly data,
then Cash must be monthly returns. If no value is supplied,
the default value for Cash returns is 0.

Description

Given NUMSERIES assets with NUMSAMPLES returns for each asset in a NUMSAMPLES-
by-NUMSERIES matrix Asset and given either a scalar Cash asset return or a vector of
Cash asset returns, the Sharpe ratio is computed for each asset.

The output is Ratio, a 1-by-NUMSERIES row vector of Sharpe ratios for each series in
Asset. Any series in Asset with standard deviation of returns equal to 0 has a NaN
value for its Sharpe ratio.

Note: If Cash is a vector, Asset and Cash need not have the same number of returns but
must have the same periodicity of returns. The classic Sharpe ratio assumes that Cash
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is riskless. In reality, a short-term cash rate is not necessarily riskless. NaN values in the
data are ignored.

Examples

See “Sharpe Ratio” on page 7-6.

More About
• “Performance Metrics Overview” on page 7-2

References

William F. Sharpe. "Mutual Fund Performance." Journal of Business. Vol. 39, No. 1, Part
2, January 1966, pp. 119–138.

See Also
inforatio | portalpha

Introduced in R2006b
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size

Number of dates and data series

Syntax

szfts = size(tsobj, dim)

[numRows, numCols] = size(tsobj)

Arguments

tsobj Financial time series object.
dim (Optional) A scalar that specifies the following dimension:

dim = 1 returns number of dates (rows).

dim = 2 returns number of data series (columns).

Description

szfts = size(tsobj) returns the number of dates (rows) and the number of data
series (columns) in the financial time series object tsobj. The result is returned in the
vector szfts, whose first element is the number of dates and second is the number of
data series.

szfts = size(tsobj, dim) specifies the dimension you want to extract.

numRows returns a scalar representing the number of dates (rows).

numCols returns a scalar representing the number of data series (columns).

See Also
length | size
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Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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smoothts

Smooth data

Syntax

output = smoothts(input)

output = smoothts(input, 'b', wsize)

output = smoothts(input, 'g', wsize, stdev)

output = smoothts(input, 'e', n)

Arguments

input Financial time series object or a row-oriented matrix. In a
row-oriented matrix, each row represents an individual set of
observations.

'b', 'g', or 'e' Smoothing method (essentially the type of filter used). Can be
Exponential (e), Gaussian (g), or Box (b). Default = b.

wsize Window size (scalar). Default = 5.
stdev Scalar that represents the standard deviation of the Gaussian

window. Default = 0.65.
n For Exponential method, specifies window size or exponential

factor, depending upon value.

• n > 1 (window size) or period length
• n < 1 and > 0 (exponential factor: alpha)
• n = 1 (either window size or alpha)

If n is not supplied, the defaults are wsize = 5 and alpha =
0.3333.
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Description

smoothts smooths the input data using the specified method.

output = smoothts(input) smooths the input data using the default Box method
with window size, wsize, of 5.

output = smoothts(input, 'b', wsize) smooths the input data using the Box
(simple, linear) method. wsize specifies the width of the box to be used.

output = smoothts(input, 'g', wsize, stdev) smooths the input data using
the Gaussian window method.

output = smoothts(input, 'e', n) smooths the input data using the Exponential
method. n can represent the window size (period length) or alpha. If n > 1, n represents
the window size. If 0 < n < 1, n represents alpha, where

a =

+

2

1wsize
.

If input is a financial time series object, output is a financial time series object
identical to input except for contents. If input is a row-oriented matrix, output is a
row-oriented matrix of the same length.

See Also
tsmovavg

Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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sortfts

Sort financial time series

Syntax

sfts = sortfts(tsobj)

sfts = sortfts(tsobj, flag)

sfts = sortfts(tsobj, seriesnames, flag)

[sfts, sidx] = sortfts(...)

Arguments

tsobj Financial time series object.
flag (Optional) Sort order:

flag = 1; increasing order (default)

flag = -1; decreasing order
seriesnames (Optional) Character vector containing a data series name or cell

array of character vectors containing a list of data series names.

Description

sfts = sortfts(tsobj) sorts the financial time series object tsobj in increasing
order based only upon the 'dates' vector if tsobj does not contain time-of-day
information. If the object includes time-of-day information, the sort is based upon a
combination of the 'dates' and 'times' vectors. The 'times' vector cannot be sorted
individually.

sfts = sortfts(tsobj, flag) sets the order of the sort. flag = 1: increasing date
and time order. flag = -1: decreasing date and time order.
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sfts = sortfts(tsobj, seriesnames, flag) sorts the financial time series object
tsobj based upon the data series name(s) seriesnames. The seriesnames argument
can be a single character vector containing a data series name or a cell array of character
vectors containing a list of data series names. If the optional flag is set to -1, the sort is
in decreasing order.

[sfts, sidx] = sortfts(...) also returns the index of the original object tsobj
sorted based on 'dates' or specified data series name(s).

More About
• “What Is the Financial Time Series App?” on page 13-2

See Also
issorted | sort | sortrows

Related Examples
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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spctkd
Slow stochastics

Syntax
[spctk, spctd] = spctkd(fastpctk, fastpctd)

[spctk, spctd] = spctkd([fastpctk fastpctd])

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)

[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)

skdts = spctkd(tsobj)

skdts = spctkd(tsobj, dperiods, dmamethod)

skdts = spctkd(tsobj, dperiods, dmamethod, 'ParameterName',

ParameterValue, ...)

Arguments

fastpctk Fast stochastic F%K (vector).
fastpctd Fast stochastic F%D (vector).
dperiods (Optional) %D periods. Default = 3.
dmamethod (Optional) %D moving average method. Default = 'e'

(exponential).
tsobj Financial time series object.

Description

[spctk, spctd] = spctkd(fastpctk, fastpctd) calculates the slow stochastics
S%K and S%D. spctk and spctd are column vectors representing the respective slow
stochastics. The inputs must be single column-oriented vectors containing the fast
stochastics F%K and F%D.
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[spctk, spctd] = spctkd([fastpctk fastpctd]) accepts a two-column matrix as
input. The first column contains the fast stochastic F%K values, and the second contains
the fast stochastic F%D values.

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)

calculates the slow stochastics, S%K and S%D, using the value of dperiods to set the
number of periods and dmamethod to indicate the moving average method. The inputs
fastpctk and fastpctk must contain the fast stochastics, F%K and F%D, in column
orientation. spctk and spctd are column vectors representing the respective slow
stochastics.

Valid moving average methods for %D are exponential ('e'), triangular ('t'), and
modified ('m'). See tsmovavg for explanations of these methods.

[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)

accepts a two-column matrix rather than two separate vectors. The first column contains
the F%K values, and the second contains the F%D values.

skdts = spctkd(tsobj) calculates the slow stochastics, S%K and S%D. tsobj
must contain the fast stochastics, F%K and F%D, in data series named PercentK and
PercentD. The skdts output is a financial time series object with the same dates as
tsobj. Within tsobj the two series SlowPctK and SlowPctD represent the respective
slow stochastics.

skdts = spctkd(tsobj, dperiods, dmamethod) lets you specify the length and the
method of the moving average used to calculate S%D values.

skdts = spctkd(tsobj, dperiods, dmamethod, 'ParameterName',

ParameterValue, ...) accepts parameter name/parameter value pairs as input.
These pairs specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• KName: F%K series name
• DName: F%D series name

Parameter values are the character vectors that represent the valid parameter names.
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Examples

Calculate the Slow Stochastics

This example shows how to calculate the slow stochastics for Disney stock and plot the
results.

load disney.mat

dis_FastStoch = fpctkd(dis);

dis_SlowStoch = spctkd(dis_FastStoch);

plot(dis_SlowStoch)

title('Slow Stochastics for Disney')

• “Technical Analysis Examples” on page 16-4
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More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 268–271.

See Also
fpctkd | stochosc | tsmovavg

Introduced before R2006a
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std
Standard deviation

Syntax
tsstd = std(tsobj)

tsstd = std(tsobj, flag)

Arguments

tsobj Financial time series object.
flag (Optional) Normalization factor:

flag = 1 normalizes by n (number of observations).

flag = 0 normalizes by n-1.

Description

tsstd = std(tsobj) computes the standard deviation of each data series in the
financial time series object tsobj and returns the results in tsstd. The tsstd output is
a structure with field name(s) identical to the data series name(s).

tsstd = std(tsobj, flag) normalizes the data as indicated by flag.

See Also
hist | mean

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25
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Introduced before R2006a
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stochosc
Stochastic oscillator

Syntax
stosc = stochosc(highp, lowp, closep)

stosc = stochosc([highp lowp closep])

stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)

stosc = stochosc([highp lowp closep], kperiods, dperiods, dmamethod)

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,

'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
closep Closing price (vector).
kperiods (Optional) %K periods. Default = 10.
dperiods (Optional) %D periods. Default = 3.
damethod (Optional) %D moving average method. Default = 'e'

(exponential).
tsobj Financial time series object.

Description

stosc = stochosc(highp, lowp, closep) calculates the fast stochastics F%K
and F%D from the stock price data highp (high prices), lowp (low prices), and closep
(closing prices). stosc is a two-column matrix whose first column is the F%K values and
second is the F%D values.
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stosc = stochosc([highp lowp closep]) accepts a three-column matrix of high
(highp), low (lowp), and closing prices (closep), in that order.

stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)

calculates the fast stochastics F%K and F%D from the stock price data highp (high
prices), lowp (low prices), and closep (closing prices). kperiods sets the %K period.
dperiods sets the %D period. damethod specifies the %D moving average method.
Valid moving average methods for %D are exponential ('e') and triangular ('t'). See
tsmovavg for explanations of these methods.

stosc= stochosc([highp lowp closep], kperiods, dperiods, dmamethod)

accepts a three-column matrix of high (highp), low (lowp), and closing prices (closep),
in that order.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod) calculates the
fast stochastics F%K and F%D from the stock price data in the financial time series
object tsobj. tsobj must minimally contain the series High (high prices), Low (low
prices), and Close (closing prices). stoscts is a financial time series object with similar
dates to tsobj and two data series named SOK and SOD.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,

'ParameterName', ParameterValue, ...) accepts parameter name/parameter
value pairs as input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Stochastic Oscillator

This example shows how to compute the stochastic oscillator for Disney stock and plot
the results.

load disney.mat

dis_StochOsc = stochosc(dis);

plot(dis_StochOsc)
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title('Stochastic Oscillator for Disney')

• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References
Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 268–271.
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See Also
fpctkd | spctkd

Introduced before R2006a
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subsasgn
Content assignment

Syntax
subasgn

Description

subasgn assigns content to a component within a financial time series object. subasgn
supports integer indexing or date character vector indexing into the time series object
with values assigned to the designated components. Serial date numbers cannot be used
as indices. To use date character vector indexing, enclose the date character vector(s) in a
pair of single quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It will
return the appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An assigned value
must be either a scalar or a column vector.

Examples

Given a time series myfts with a default data series name of series1,

myfts.series1('07/01/98::07/03/98') = [1 2 3]'; 

assigns the values 1, 2, and 3 corresponding to the first three days of July, 1998.

myfts('07/01/98::07/05/98')

ans =

      desc:  Data Assignment 

      freq:  Daily (1) 

      'dates:  (5)'    'series1:  (5)'
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      '01-Jul-1998'    [            1]

      '02-Jul-1998'    [            2]

      '03-Jul-1998'    [            3]

      '04-Jul-1998'    [       4561.2]

      '05-Jul-1998'    [       5612.3]

When the financial time series object contains a time-of-day specification, you can assign
data to a specific time on a specific day. For example, create a financial time series object
called timeday containing both dates and times:
dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

times]);

timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

Use integer indexing to assign the value 999 to the first item in the object.

timeday(1) = 999

timeday = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [        999]

    '     "     '    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]
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For value assignment using date character vectors, enclose the character vector in single
quotation marks. If a date has multiple times, designating only the date and assigning a
value results in every element of that date taking on the assigned value. For example, to
assign the value 0.5 to all times-of-day on January 1, 2001, enter

timedata('01-Jan-2001') = 0.5

The result is

timedata = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [     0.5000]

    '     "     '    '12:00'          [     0.5000]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

    '     "     '    '12:00'          [          6]

To access the individual components of the financial time series object, use the structure
syntax. For example, to assign a range of data to all the data items in the series Data1,
you can use

timedata.Data1 = (0: .1 : .5)'

timedata = 

 

    desc:  My first FINTS

    freq:  Daily (1)

    'dates:  (6)'    'times:  (6)'    'Data1:  (6)'

    '01-Jan-2001'    '11:00'          [          0]

    '     "     '    '12:00'          [     0.1000]

    '02-Jan-2001'    '11:00'          [     0.2000]

    '     "     '    '12:00'          [     0.3000]

    '03-Jan-2001'    '11:00'          [     0.4000]

    '     "     '    '12:00'          [     0.5000]

See Also
datestr | subsref
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subsref
Subscripted reference

Syntax
subref

Description

subsref implements indexing for a financial time series object. Integer indexing or date
(and time) character vector indexing is allowed. Serial date numbers cannot be used as
indices.

To use date character vector indexing, enclose the date character vector(s) in a pair of
single quotation marks ''.

You can use integer indexing on the object as in any other MATLAB matrix. It returns
the appropriate entry(ies) from the object.

Additionally, subsref lets you access the individual components of the object using the
structure syntax.

Examples

Create a time series named myfts:
myfts = fints((datenum('07/01/98'):datenum('07/01/98')+4)',... 

[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [], 'Daily',... 

'Data Reference');

Extract the data for the single day July 1, 1998:

myfts('07/01/98')

ans =

     desc:  Data Reference
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     freq:  Daily (1) 

     'dates:  (1)'    'series1:  (1)'

     '01-Jul-1998'    [       1234.6]

Now, extract the data for the range of dates July 1, 1998, through July 5, 1998:

myfts('07/01/98::07/03/98')

ans =

     desc:  Data Reference 

     freq:  Daily (1) 

     'dates:  (3)'    'series1:  (3)'

     '01-Jul-1998'    [       1234.6]

     '02-Jul-1998'    [       2345.6]

     '03-Jul-1998'    [       3456.1]

You can use the MATLAB structure syntax to access the individual components of a
financial time series object. To get the description field of myfts, enter

myfts.desc

at the command line, which returns

ans =

Data Reference

Similarly

myfts.series1

returns

 ans =

     desc:  Data Reference 

     freq:  Daily (1) 

     'dates:  (5)'    'series1:  (5)'

     '01-Jul-1998'    [       1234.6]

     '02-Jul-1998'    [       2345.6]

     '03-Jul-1998'    [       3456.1]

     '04-Jul-1998'    [       4561.2]

     '05-Jul-1998'    [       5612.3]

The syntax for integer indexing is the same as for any other MATLAB matrix. Create a
new financial time series object containing both dates and times:
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dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...

         '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),... 

                       times]);

anewfts = fints(dates_times,(1:6)',{'Data1'},1,'Another FinTs');

Use integer indexing to extract the second and third data items from the object.
anewfts(2:3)

ans = 

    desc:  Another FinTs

    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'

    '01-Jan-2001'    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

For date character vector, enclose the indexing character vector in a pair of single
quotation marks.

If there is one date with multiple times, indexing with only the date returns all the times
for that specific date:
anewfts('01-Jan-2001')

ans = 

    desc:  Another FinTs

    freq:  Daily (1)

    'dates:  (2)'    'times:  (2)'    'Data1:  (2)'

    '01-Jan-2001'    '11:00'          [          1]

    '     "     '    '12:00'          [          2]

To specify one specific date and time, index with that date and time:
anewfts('01-Jan-2001 12:00')

ans =  

    desc:  Another FinTs

    freq:  Daily (1)

    'dates:  (1)'    'times:  (1)'    'Data1:  (1)'

    '01-Jan-2001'    '12:00'          [          2]
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To specify a range of dates and times, use the double colon (::) operator:
anewfts('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans = 

 

    desc:  Another FinTs

    freq:  Daily (1)

    'dates:  (4)'    'times:  (4)'    'Data1:  (4)'

    '01-Jan-2001'    '12:00'          [          2]

    '02-Jan-2001'    '11:00'          [          3]

    '     "     '    '12:00'          [          4]

    '03-Jan-2001'    '11:00'          [          5]

To request all the dates, times, and data, use the :: operator without specifying any
specific date or time:

anewfts('::')

See Also
datestr | fts2mat | subsasgn

Introduced before R2006a
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targetreturn
Portfolio weight accuracy

Syntax
return = targetreturn(Universe, Window, Offset, Weights)

Arguments

Universe Number of observations (NUMOBS) by number of assets plus one
(NASSETS + 1) array containing total return data for a group of
securities. Each row represents an observation. Column 1 contains
MATLAB serial date numbers. The remaining columns contain the
total return data for each security.

Window Number of data periods used to calculate frontier.
Offset Increment in number of periods at which each frontier is generated.
Weights Number of assets (NASSETS) by number of curves (NCURVES) matrix

of asset allocation weights needed to obtain the target rate of
return.

Description
return = targetreturn(Universe, Window, Offset, Weights) computes
target return values for each window of data and given portfolio weights. These values
should match the input target return used with selectreturn.

More About
• “Portfolio Optimization Functions” on page 3-4
• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
frontier | portopt
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Related Examples
• “Portfolio Construction Examples” on page 3-7

Introduced before R2006a
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taxedrr
After-tax rate of return

Syntax
Return = taxedrr(PreTaxReturn, TaxRate)

Arguments

PreTaxReturn Nominal rate of return. Enter as a decimal fraction.
TaxRate Tax rate. Enter as a decimal fraction.

Description
Return = taxedrr(PreTaxReturn, TaxRate) calculates the after-tax rate of return.

Examples
Calculate the After-Tax Rate of Return

This example shows how to calculate the after-tax rate of return, given an investment
that has a 12% nominal rate of return and is taxed at a 30% rate.

Return = taxedrr(0.12, 0.30)

Return =

    0.0840

• “Analyzing and Computing Cash Flows” on page 2-17

More About
• Getting Started with Portfolio Optimization (13 min 31 sec)
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See Also
effrr | irr | mirr | nomrr | xirr

Introduced before R2006a
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tbilldisc2yield

Convert Treasury bill discount to equivalent yield

Syntax

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

Arguments

Discount Discount rate of Treasury bills in decimal. The discount rate basis is
actual/360.

Settle Settlement date, specified as a serial date number, date character
vector, or datetime array. Settle must be earlier than Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

Inputs must either be a scalar or a vector of size equal to the number of Treasury bills
(NTBILLS) by 1 or 1-by-NTBILLS.

Description

[BEYield MMYield] = tbilldisc2yield(Yield, Settle, Maturity) converts
the discount rate on Treasury bills into their respective money-market or bond-
equivalent yields.

BEYield is an NTBILLS-by-1 vector of bond-equivalent yields. The bond-equivalent yield
basis is actual/365.

MMYield is an NTBILLS-by-1 vector of money-market yields. The money-market yield
basis is actual/360.
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Examples

Convert the Discount Rate on Treasury Bills

This example shows how to convert the discount rate on Treasury bills into their
respective money-market or bond-equivalent yields, given a Treasury bill with the
following characteristics.

Discount = 0.0497;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield =

    0.0517

MMYield =

    0.0510

Convert the Discount Rate on Treasury Bills Using datetime Inputs

This example shows how to use datetime inputs to convert the discount rate on
Treasury bills into their respective money-market or bond-equivalent yields, given a
Treasury bill with the following characteristics.

Discount = 0.0497;

Settle = datetime('01-Oct-02','Locale','en_US');

Maturity = datetime('31-Mar-03','Locale','en_US');

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield =

    0.0517

MMYield =
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    0.0510

• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest., Volume 1, 3rd edition, pp. 44–45 (on Treasury bills), and Money Market
and Bond Calculation. by Stigum and Robinson.

See Also
datetime | tbillyield2disc | zeroyield

Introduced before R2006a
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tbillprice

Price Treasury bill

Syntax

Price = tbillprice(Rate, Settle, Maturity, Type)

Arguments

Rate Bond-equivalent yield, money-market yield, or discount rate in
decimal.

Settle Settlement date, specified as a serial date number, date character
vector, or datetime array. Settle must be earlier than Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

Type (Optional) Rate type. Determines how to interpret values entered in
Rate. 1 = money market (default). 2 = bond-equivalent. 3 = discount
rate.

All arguments must be a scalar or some Treasury bills (NTBILLS-by-1 ) or (1-
by-NTBILLS) vector.

Note The bond-equivalent yield basis is actual/365. The money-market yield basis is
actual/360. The discount rate basis is actual/360.

Description

Price = tbillprice(Rate, Settle, Maturity, Type) computes the price of a
Treasury bill given a yield or discount rate.

Price is an NTBILLS-by-1 vector of T-bill prices for every $100 face.
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Examples

Example 1. Given a Treasury bill with these characteristics, compute the price of the
Treasury bill using the bond-equivalent yield as input.

Rate = 0.045;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

Type = 2;

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

   97.8172

Example 2. Use tbillprice to price a portfolio of Treasury bills.

Rate = [0.045; 0.046];

Settle = {'02-Jan-02'; '01-Mar-02'};

Maturity = {'30-June-02'; '30-June-02'};

Type = [2 3];

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

   97.8408

   98.4539

Example 3. Use tbillprice to price a portfolio of Treasury bills using datetime
input.
Rate = [0.045; 0.046];

Type = [2 3];

Settle = datetime({'02-Jan-2002'; '01-Mar-2002'},'Locale','en_US');

Maturity = datetime({'30-June-2002'; '30-June-2002'},'Locale','en_US');

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

   97.8408

   98.4539
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More About
• “Treasury Bills Defined” on page 2-34

References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest., Volume 1, 3rd edition, pp. 44–45 (on Treasury bills), and Money Market
and Bond Calculation. by Stigum and Robinson.

See Also
datetime | tbillyield | zeroprice

Introduced before R2006a
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tbillrepo

Break-even discount of repurchase agreement

Syntax

TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,

SaleDate, Maturity)

Arguments

RepoRate The annualized, 360-day based repurchase rate, in decimal.
InitialDiscount Discount on the Treasury bill on the day of purchase, in

decimal.
PurchaseDate Date the Treasury bill is purchased, specified as a serial date

number, date character vector, or datetime array.
SaleDate Date the Treasury bill repurchase term is due, specified as a

serial date number, date character vector, or datetime array.
Maturity Treasury bill maturity date, specified as a serial date

number, date character vector, or datetime array.

All arguments must be a scalar or some Treasury bills (NTBILLS-by-1) or a (1-
by-NTBILLS) vector.

All dates must be in serial date number format.

Description

TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,

SaleDate, Maturity) computes the true break-even discount of a repurchase
agreement. TBEDiscount can be a scalar or vector of size NTBills-by-1.
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Examples

Compute the True Break-Even Discount

This example shows how to compute the true break-even discount of a Treasury bill
repurchase agreement.

RepoRate = [0.045; 0.0475];

InitialDiscount = 0.0475;

PurchaseDate = '3-Jan-2002';

SaleDate = '3-Feb-2002';

Maturity = '3-Apr-2002';

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...

PurchaseDate, SaleDate, Maturity)

TBEDiscount =

    0.0491

    0.0478

Compute the True Break-Even Discount Using datetime Inputs

This example shows how to use datetime inputs to compute the true break-even
discount of a Treasury bill repurchase agreement.

RepoRate = [0.045; 0.0475];

InitialDiscount = 0.0475;

PurchaseDate = datetime('3-Jan-2002','Locale','en_US');

SaleDate = datetime('3-Feb-2002','Locale','en_US');

Maturity = datetime('3-Apr-2002','Locale','en_US');

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...

PurchaseDate, SaleDate, Maturity)

TBEDiscount =

    0.0491

    0.0478

• “Computing Treasury Bill Price and Yield” on page 2-35
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More About
• “Treasury Bills Defined” on page 2-34

References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest., Volume 1, 3rd edition, pp. 44–45 (on Treasury bills), and Money Market
and Bond Calculation. by Stigum and Robinson.

See Also
datetime | tbillprice | tbillval01 | tbillyield

Introduced before R2006a
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tbillval01
Value of one basis point

Syntax
[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Arguments

Settle Settlement date of Treasury bills, specified as a serial date number,
date character vector, or datetime array. Settle must be earlier than
Maturity.

Maturity Maturity date of Treasury bills, specified as a serial date number, date
character vector, or datetime array.

Description

[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

calculates the value of one basis point of $100 Treasury bill face value on the discount
rate, money-market yield, or bond-equivalent yield.

Val01Disc is the value of one basis point of discount rate.

Val01MMY is the value of one basis point of money-market yield.

Val01BEY is the value of one basis point of bond-equivalent yield.

All outputs are of size equal to the number of Treasury bills (NTBILLS) by 1.

Examples

Compute the Value of One Basis Point

This example shows how to compute the value of one basis point, given a Treasury bill
with the following settle and maturity dates.
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Settle = '01-Mar-03';

Maturity = '30-June-03';

[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc =

    0.0034

Val01MMY =

    0.0034

Val01BEY =

    0.0033

Compute the Value of One Basis Point Using datetime Inputs

This example shows how to use datetime inputs to compute the value of one basis point,
given a Treasury bill with the following settle and maturity dates.

Settle = datetime('01-Mar-03','Locale','en_US');

Maturity = datetime('30-June-03','Locale','en_US');

[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc =

    0.0034

Val01MMY =

    0.0034

Val01BEY =

    0.0033
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• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest. Vol. 1, 3rd edition, pp 108–115, on zero coupon instrument pricing.

See Also
datetime | tbilldisc2yield | tbillprice | tbillyield | tbillyield2disc

Introduced before R2006a
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tbillyield

Yield on Treasury bill

Syntax

[MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)

Arguments

Price Price of Treasury bills for every $100 face value.
Settle Settlement date, specified as a serial date number, date character

vector, or datetime array. Settle must be earlier than Maturity.
Maturity Maturity date, specified as a serial date number, date character

vector, or datetime array.

All arguments must be a scalar or some Treasury bills (NTBILLS-by-1) or (1-by-NTBILLS)
vector.

Description

[MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)

computes the yield of U.S. Treasury bills given Price, Settle, and Maturity. MMYield
is the money-market yields of the Treasury bills. BEYield is the bond equivalent yields
of the Treasury bills. Discount is the discount rates of the Treasury bills.

All outputs are NTBILLS-by-1 vectors.

Note The money-market yield basis is actual/360. The bond-equivalent yield basis is
actual/365. The discount rate basis is actual/360.
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Examples

Compute the Yield of U.S. Treasury Bills

This example shows how to compute the yield of U.S. Treasury bills, given a Treasury bill
with the following characteristics.

Price = 98.75;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,...

Maturity)

MMYield =

    0.0252

BEYield =

    0.0255

Discount =

    0.0249

Compute the Yield of U.S. Treasury Bills Using datetime Inputs

This example shows how to use datetime inputs to compute the yield of U.S. Treasury
bills, given a Treasury bill with the following characteristics.

Price = 98.75;

Settle = datetime('01-Oct-2002','Locale','en_US');

Maturity = datetime('31-Mar-2003','Locale','en_US');

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,Maturity)

MMYield =

    0.0252
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BEYield =

    0.0255

Discount =

    0.0249

• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest. Vol. 1, 3rd edition, pp. 44–45 (on Treasury bills), and Money Market and
Bond Calculation by Stigum and Robinson.

See Also
datetime | tbilldisc2yield | tbillprice | tbillyield2disc | zeroyield

Introduced before R2006a
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tbillyield2disc

Convert Treasury bill yield to equivalent discount

Syntax

Discount = tbillyield2disc(Yield, Settle, Maturity, Type)

Arguments

Yield Yield of Treasury bills in decimal.
Settle Settlement date, specified as a serial date number, date character

vector, or datetime array. Settle must be earlier than Maturity.
Maturity Maturity date, specified as a serial date number, date character

vector, or datetime array.
Type (Optional) Yield type. Determines how to interpret values entered in

Yield. 1 = money market (default). 2 = bond-equivalent.

Inputs must either be a scalar or a vector of size equal to the number of Treasury bills
(NTBILLS-by-1) or (1-by-NTBILLS).

Note The money-market yield basis is actual/360. The bond-equivalent yield basis is
actual/365. The discount rate basis is actual/360.

Description

Discount = tbillyield2disc(Yield, Settle, Maturity, Type) converts the
yield on some Treasury bills into their respective discount rates.

Discount is a NTBILLS-by-1 vector of T-bill discount rates.
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Examples

Given a Treasury bill with these characteristics, compute the discount rate on a money-
market basis.

Yield = 0.0497;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

Discount = tbillyield2disc(Yield, Settle, Maturity)

Discount =

    0.0485

Again, given a Treasury bill with these characteristics, compute the discount rate on a
money-market basis using datetime inputs.

Yield = 0.0497;

Settle = datetime('01-Oct-2002','Locale','en_US');

Maturity = datetime('31-Mar-2003','Locale','en_US');

Discount = tbillyield2disc(Yield, Settle, Maturity)

Discount =

    0.0485

Now recompute the discount on a bond-equivalent basis.

Discount = tbillyield2disc(Yield, Settle, Maturity, 2)

Discount =

    0.0478

More About
• “Treasury Bills Defined” on page 2-34
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References

This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest., Vol. 1, 3rd edition, pp. 44–45 (on Treasury bills), and Money Market
and Bond Calculation. by Stigum and Robinson.

See Also
datetime | tbilldisc2yield

Introduced before R2006a
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tbl2bond

Treasury bond parameters given Treasury bill parameters

Syntax

[TBondMatrix, Settle] = tbl2bond(TBillMatrix)

Arguments

TBillMatrix Treasury bill parameters can be a n-by-5 matrix or a n-by-5
table. If TBillMatrix is an n-by-5 table, the first column
represents Maturity dates and these dates can be serial
date numbers, date character vectors, or datetime arrays. If
TBillMatrix is an n-by-5 matrix where each row describes a
Treasury bill. n is the number of Treasury bills. Columns are
[Maturity DaysMaturity Bid Asked AskYield] where:

Maturity Maturity date serial date number. Use datenum to convert date
character vectors to serial date numbers. If TBillMatrix is an
n-by-5 table, the first column represents Maturity dates and
these dates can be serial date numbers, date character vectors, or
datetime arrays.

DaysMaturity Days to maturity, as an integer. Days to maturity is quoted on
a skip-day basis; the actual number of days from settlement to
maturity is  DaysMaturity + 1.

Bid Bid bank-discount rate: the percentage discount from face value
at which the bill could be bought, annualized on a simple-interest
basis. A decimal fraction.

Asked Asked bank-discount rate, as a decimal fraction.
AskYield Asked yield: the bond-equivalent yield from holding the bill to

maturity, annualized on a simple-interest basis and assuming a
365-day year. A decimal fraction.
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Description
[TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury bill
market parameters in U.S. Treasury bond form as zero-coupon bonds. This function
makes Treasury bills directly comparable to Treasury bonds and notes.

TBondMatrix Treasury bond parameters. If the input TBillMatrix is a table,
then TBondmatrix is returned as a table. In this case, the second
column, representing Maturity dates, will be the same class used
for Maturity dates in the input matrix. For example, if Maturity
dates are datetime arrays in TBillMatrix, they will also be
datetime arrays in TBondMatrix. The columns of TBondMatrix
are [CouponRate Maturity Bid Asked AskYield] where

CouponRate Coupon rate, which is always 0.
Maturity Maturity date, as a serial date number. This date is the same as

the Treasury bill Maturity date. If Maturity dates are datetime
arrays in TBillMatrix, they will also be datetime arrays in
TBondMatrix

Bid Bid price based on $100 face value.
Asked Asked price based on $100 face value.
AskYield Asked yield to maturity: the effective return from holding the bond

to maturity, annualized on a compound-interest basis.
Settle N-by-1 vector of settlement dates implied by the maturity dates

and the number of days to maturity quote. Settle will be in serial
date number by default. Settle will be returned as a datetime
array only if the input TBillMatrix is a table containing datetime
arrays for Maturity in the first column.

Examples

Restate U.S. Treasury Bill in U.S. Treasury Bond Form

This example shows how to restate U.S. Treasury bill market parameters in U.S.
Treasury bond form, given published Treasury bill market parameters for December 22,
1997.

TBill = [datenum('jan 02 1998')  10  0.0526  0.0522  0.0530

18-1622



 tbl2bond

         datenum('feb 05 1998')  44  0.0537  0.0533  0.0544

         datenum('mar 05 1998')  72  0.0529  0.0527  0.0540];

TBond = tbl2bond(TBill)

TBond =

   1.0e+05 *

         0    7.2976    0.0010    0.0010    0.0000

         0    7.2979    0.0010    0.0010    0.0000

         0    7.2982    0.0010    0.0010    0.0000

Restate U.S. Treasury Bill in U.S. Treasury Bond Form Using datetime Input

This example shows how to use datetime input to restate U.S. Treasury bill market
parameters in U.S. Treasury bond form, given published Treasury bill market
parameters for December 22, 1997.

TBill = [datenum('jan 02 1998')  10  0.0526  0.0522  0.0530

         datenum('feb 05 1998')  44  0.0537  0.0533  0.0544

         datenum('mar 05 1998')  72  0.0529  0.0527  0.0540];

dates = datetime(TBill(:,1), 'ConvertFrom', 'datenum','Locale','en_US');

data = TBill(:,2:end);

t=[table(dates) array2table(data)];

[TBond, Settle] = tbl2bond(t)

TBond = 

    CouponRate     Maturity       Bid      Asked     AskYield

    __________    ___________    ______    ______    ________

    0             02-Jan-1998    99.854    99.855     0.053  

    0             05-Feb-1998    99.344    99.349    0.0544  

    0             05-Mar-1998    98.942    98.946     0.054  

Settle = 

  3×1 datetime array
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   22-Dec-1997

   22-Dec-1997

   22-Dec-1997

• “Term Structure of Interest Rates” on page 2-39
• “Computing Treasury Bill Price and Yield” on page 2-35

More About
• “Treasury Bills Defined” on page 2-34

See Also
datetime | tr2bonds

Introduced before R2006a
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thirdwednesday

Find third Wednesday of month

Syntax

[BeginDates,EndDates] = thirdwednesday(Month,Year)

[BeginDates,EndDates] = thirdwednesday(Month,Year,outputType)

Description

[BeginDates,EndDates] = thirdwednesday(Month,Year) computes the beginning
and end period date for a LIBOR contract (third Wednesdays of delivery months).

[BeginDates,EndDates] = thirdwednesday(Month,Year,outputType), using
optional input arguments, computes the beginning and end period date for a LIBOR
contract (third Wednesdays of delivery months).

The type of the outputs depends on the input outputType. If this variable is
'datenum', BeginDates and EndDates are serial date numbers. If outputType
is 'datetime', thenBeginDates and EndDates are datetime arrays. By default,
outputType is set to 'datenum'.

Examples

Determine the Third Wednesday for Given Months and Years

Find the third Wednesday dates for swaps commencing in the month of October in the
years 2002, 2003, and 2004.

Months = [10; 10; 10];

Year = [2002; 2003; 2004];

[BeginDates, EndDates] = thirdwednesday(Months, Year);

datestr(BeginDates)

datestr(EndDates)
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ans =

16-Oct-2002

15-Oct-2003

20-Oct-2004

ans =

16-Jan-2003

15-Jan-2004

20-Jan-2005

Find the third Wednesday dates for swaps commencing in the month of October in the
years 2002, 2003, and 2004 using an outputType of 'datetime'.

Months = [10; 10; 10];

Year = [2002; 2003; 2004];

[BeginDates, EndDates] = thirdwednesday(Months, Year,'datetime')

BeginDates = 

  3×1 datetime array

   16-Oct-2002

   15-Oct-2003

   20-Oct-2004

EndDates = 

  3×1 datetime array

   16-Jan-2003

   15-Jan-2004

   20-Jan-2005

• “Handle and Convert Dates” on page 2-4
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Input Arguments

Month — Month of delivery for Eurodollar futures
integer from 1 through 12 | vector of integers from 1 through 12

Month of delivery for Eurodollar futures, specified as an N-by-1 vector of integers from 1
through 12.

Duplicate dates are returned when identical months and years are supplied.
Data Types: single | double

Year — Delivery year for Eurodollar futures/Libor contracts corresponding to Month
four-digit nonnegative integer | vector of four-digit nonnegative integers

Delivery year for Eurodollar futures/Libor contracts corresponding to Month, specified as
an N-by-1 vector of our-digit nonnegative integers.

Duplicate dates are returned when identical months and years are supplied.
Data Types: single | double

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'

Output date format, specified as a character vector with values 'datenum' or
'datetime'. If outputType is 'datenum', then BeginDates and EndDates are
serial date numbers. However, if outputType is 'datetime', then BeginDates and
EndDates are datetime arrays.

Data Types: char

Output Arguments

BeginDates — Third Wednesday of given month and year
serial date number | date character vector

Third Wednesday of given month and year, returned as serial date numbers or date
character vectors, or datetime arrays. This is also the beginning of the 3-month period
contract.
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The type of the outputs depends on the input outputType. If this variable is
'datenum', BeginDates and EndDates are serial date numbers. If outputType
is 'datetime', thenBeginDates and EndDates are datetime arrays. By default,
outputType is set to 'datenum'.

EndDates — End of three-month period contract for given month and year
serial date number | date character vector

End of three-month period contract for given month and year, returned as serial date
numbers or date character vectors, or datetime arrays.

The type of the outputs depends on the input outputType. If this variable is
'datenum', BeginDates and EndDates are serial date numbers. If outputType
is 'datetime', thenBeginDates and EndDates are datetime arrays. By default,
outputType is set to 'datenum'.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
datetime | tr2bonds

Introduced before R2006a
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thirtytwo2dec

Thirty-second quotation to decimal

Syntax

OutNumber = thirtytwo2dec(InNumber,InFraction)

Description

OutNumber = thirtytwo2dec(InNumber,InFraction) changes the price quotation
for a bond or bond future from a fraction with a denominator of 32 to a decimal.

Examples

Change the Price Quotation for a Bond or Bond Future From a Fraction

This example shows how to change the price quotation for a bond or bond future from a
fraction with a denominator of 32 to a decimal, given two bonds that are quoted as 101-25
and 102-31.

InNumber  = [101; 102];

InFraction = [25; 31];

OutNumber = thirtytwo2dec(InNumber, InFraction)

OutNumber =

  101.7813

  102.9688

• “Format Currency” on page 2-11
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Input Arguments

InNumber — Input number
integer

Input number, specified as a scalar or an N-by-1 vector of integers representing price
without the fractional components.
Data Types: double

InFraction — Fractional portions of each element in InNumber
numeric decimal fraction

Fractional portions of each element in InNumber, specified as a scalar or an N-by-1 vector
of numeric decimal fractions.
Data Types: double

Output Arguments

OutNumber — Output number that represents sum of InNumber and InFraction
decimal

Output number that represents sum of InNumber and InFraction, returned as a
decimal.

See Also
dec2thirtytwo

Introduced before R2006a
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tick2ret
Convert price series to return series

Syntax

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method)

Arguments

TickSeries Number of observations (NUMOBS) by number of assets (NASSETS)
matrix of prices of equity assets. Each column is a price series of an
individual asset. First row is oldest observation. Last row is most
recent. Observations across a given row occur at the same time for
all columns.

TickTimes (Optional) NUMOBS-by-1 increasing vector of observation times
associated with the prices in TickSeries. Times are specified as a
serial date numbers, date character vectors, or datetime arrays. If
TickTimes is empty or missing, sequential observation times from
1, 2, ... NUMOBS are assumed.

Method (Optional) Character vector indicating the method to convert prices
to asset returns. Must be 'Simple' (default) or 'Continuous'.
If Method is 'Simple', tick2ret computes simple periodic
returns. If Method is 'Continuous', returns are continuously
compounded. Case is ignored for Method.

Description

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method)

computes the asset returns realized between NUMOBS observations of prices of NASSETS
assets.

RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns associated
with the prices in TickSeries. The ith return is quoted for the period TickTimes(i) to
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TickTimes(i+1) and is not normalized by the time increment between successive price
observations. If Method is unspecified or 'Simple', the returns are:

RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1

If Method is 'Continuous', the returns are:

RetSeries(i) = log[TickSeries(i+1)/TickSeries(i)]

RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times between
observations. If TickTimes is empty or unspecified, all intervals are assumed to have
length 1.

Examples

Convert Price Series to Return Series

This example shows how to convert price series to return series, given periodic returns of
two stocks observed in the first, second, third, and fourth quarters.

TickSeries = [100 80

              110 90

              115 88

              110 91];

TickTimes = [0

             6

             9

             12];

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =

    0.1000    0.1250

    0.0455   -0.0222

   -0.0435    0.0341

RetIntervals =

     6
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     3

     3

Convert Price Series to Return Series Using datetime Input

This example shows how to use datetime input to convert price series to return series,
given periodic returns of two stocks observed in the first, second, third, and fourth
quarters.

TickSeries = [100 80

110 90

115 88

110 91];

TickTimes = datenum({'1/1/2015','1/7/2015','1/16/2015','1/28/2015'});

TickTimes = datetime(TickTimes, 'ConvertFrom','datenum','Locale','en_US');

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =

    0.1000    0.1250

    0.0455   -0.0222

   -0.0435    0.0341

RetIntervals =

     6

     9

    12

• “Data Transformation and Frequency Conversion” on page 12-12

See Also
datetime | ewstats | ret2tick

Introduced before R2006a
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tick2ret (fts)
Convert price series to return series for time series object

Syntax
returnFts = tick2ret(priceFts)

returnFts = tick2ret(priceFts, 'PARAM1', VALUE1,

'PARAM2', VALUE2', ...)

Arguments

priceFts Financial time series object of prices.
'PARAM1' (Optional) Method is a character vector indicating the

method to convert asset returns to prices. The value must be
defined as 'Simple' (default) or 'Continuous'. If Method
is 'Simple', tick2ret uses simple periodic returns. If
Method is 'Continuous', the function uses continuously
compounded returns. Case is ignored for Method.

Description

returnFts = tick2ret(priceFts, 'PARAM1', VALUE1, 'PARAM2',

VALUE2', ...) generates a financial time series object of returns.

Note: The i'th return is quoted for the period PriceSeries(i) to PriceSeries(i+1) and
is not normalized by the time increment between successive price observations.

If Method is unspecified or 'Simple', the prices are

ReturnSeries(i) = PriceSeries(i+1)/PriceSeries(i)-1

If Method is 'Continuous', the prices are

ReturnSeries(i) = log[PriceSeries(i+1)/PriceSeries(i)]
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Examples

Convert Price Series to Return Series for a fints Object

Compute the return series from the following price series:

PriceSeries = [100.0000  100.0000

110.0000  112.0000

115.5000  116.4800

109.7250  122.3040]

PriceSeries =

  100.0000  100.0000

  110.0000  112.0000

  115.5000  116.4800

  109.7250  122.3040

Use the following dates:

Dates = {'18-Dec-2000'

'18-Jun-2001'

'17-Sep-2001'

'18-Dec-2001'}

Dates =

  4×1 cell array

    '18-Dec-2000'

    '18-Jun-2001'

    '17-Sep-2001'

    '18-Dec-2001'

The fints object is:

p = fints(Dates, PriceSeries)

 

p = 
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    desc:  (none)

    freq:  Unknown (0)

    'dates:  (4)'    'series1:  (4)'    'series2:  (4)'

    '18-Dec-2000'    [          100]    [          100]

    '18-Jun-2001'    [          110]    [          112]

    '17-Sep-2001'    [     115.5000]    [     116.4800]

    '18-Dec-2001'    [     109.7250]    [     122.3040]

returnFts is computed as:

 tick2ret(p)

 

ans = 

 

    desc:  (none)

    freq:  Unknown (0)

    'dates:  (3)'    'series1:  (3)'    'series2:  (3)'

    '18-Jun-2001'    [       0.1000]    [       0.1200]

    '17-Sep-2001'    [       0.0500]    [       0.0400]

    '18-Dec-2001'    [      -0.0500]    [       0.0500]

Note that for n dates in the original time series, there are ( n-1) dates returned for
returnFts from tick2ret. The formula for the date output dates is described as:
RetDate(i) = PriceDate (i+1).

• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

See Also
portsim | ret2tick

Introduced before R2006a
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time2date
Dates from time and frequency

Syntax

Dates = time2date(Settle,TFactors)

Dates = time2date(Settle,TFactors,Compounding,Basis,

EndMonthRule)

Description

Dates = time2date(Settle,TFactors) computes Dates corresponding to
compounded rate quotes between Settle and TFactors. time2dateis the inverse of
date2time.

Dates = time2date(Settle,TFactors,Compounding,Basis,

EndMonthRule) computes Dates corresponding to compounded rate quotes between
Settle and TFactors using optional input arguments for Compounding, Basis, and
EndMonthRule. time2dateis the inverse of date2time.

Examples

Calculate Dates Using time2date

Show that date2time and time2date are the inverse of each other. First compute the
time factors using date2time.

Settle = '1-Sep-2002';

Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';

                 '31-Dec-2006']);

Compounding = 2;

Basis = 0;

EndMonthRule = 1;

TFactors = date2time(Settle, Dates, Compounding, Basis,...

EndMonthRule)
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TFactors =

    5.9945

    6.9945

    7.5738

    8.6576

Now use the calculated TFactors in time2date and compare the calculated dates with
the original set.

Dates_calc = time2date(Settle, TFactors, Compounding, Basis,...

EndMonthRule)

datestr(Dates_calc)

Dates_calc =

      732555

      732736

      732843

      733042

ans =

31-Aug-2005

28-Feb-2006

15-Jun-2006

31-Dec-2006

Show time2date support for datetime input for Settle.

Settle = '1-Sep-2002';

Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';

                 '31-Dec-2006']);

Compounding = 2;

Basis = 0;

EndMonthRule = 1;

TFactors = date2time(Settle, Dates, Compounding, Basis,...

EndMonthRule);

Dates_calc = time2date(datetime(Settle,'Locale','en_US'), TFactors,...

Compounding, Basis, EndMonthRule)
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Dates_calc = 

  4×1 datetime array

   31-Aug-2005

   28-Feb-2006

   15-Jun-2006

   31-Dec-2006

• “Handle and Convert Dates” on page 2-4

Input Arguments

Settle — Settlement date
nonnegative integer | date character vector | datetime object

Settlement date, specified as a serial date number, date character vector, or datetime
array.
Data Types: double | char | datetime

TFactors — Time factors
vector

Time factors, corresponding to the compounding value, specified as a vector. TFactors
must be equal to or greater than zero.
Data Types: double

Compounding — Rate at which input zero rates are compounded when annualized
2 (Semiannual compounding) (default) | scalar with numeric values of 0, 1, 2, 3, 4, 5, 6,
12, 365, –1

Rate at which input zero rates are compounded when annualized, specified as a scalar
with numeric values of: 0, 1, 2, 3, 4, 5, 6, 12, 365, or –1. Allowed values are defined as:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
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• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

The optional Compounding argument determines the formula for the discount factors
(Disc):

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero
rate, and T is the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T
is a number of days elapsed computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Basis — Day-count basis
0 (actual/actual) (default) | numeric with value 0 through 13 | vector of numerics with
values 0 through 13

Day-count basis, specified as an integer with a value of 0 through 13 or a N-by-1 vector of
integers with values 0 through 13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

EndMonthRule — End-of-month rule flag for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for month having 30 or fewer days, specified as scalar
nonnegative integer [0, 1] or a using a N-by-1 vector of values. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of
the month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments

Dates — Dates corresponding to compounded rate quotes between Settle and TFactors
serial date number | datetime array

Dates corresponding to compounded rate quotes between Settle and TFactors,
returned as a scalar or a N-by-1 vector using serial date numbers or datetime arrays.

Data Types: double | datetime

See Also
cfamounts | cftimes | date2time | datetime

Introduced before R2006a
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times
Financial time series multiplication

Syntax
newfts = tsobj_1 .* tsobj_2

newfts = tsobj .* array

newfts = array .* tsobj

Arguments

tsobj_1, tsobj_2 Pair of financial time series objects.
array A scalar value or array with the number of rows equal to the

number of dates in tsobj and the number of columns equal
to the number of data series in tsobj.

Description

The times method multiplies element by element the components of one financial time
series object by the components of the other. You can also multiply the entire object by an
array.

If an object is to be multiplied by another object, both objects must have the same dates
and data series names, although the order need not be the same. The order of the data
series, when an object is multiplied by another object, follows the order of the first object.

newfts = tsobj_1 .* tsobj_2 multiplies financial time series objects element by
element.

newfts = tsobj .* array multiplies a financial time series object element by
element by an array.

newfts = array .* tsobj and newfts = array / tsobj multiplies an array
element by element by a financial time series object.
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For financial time series objects, the times operation is identical to the mtimes
operation.

See Also
minus | mtimes | plus | rdivide

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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tmfactor
Time factors of arbitrary dates

Syntax
TFactors = tmfactor(Settle, Maturity)

Arguments

Settle Settlement date. A vector of serial date numbers, date character
vectors, or datetime arrays. Settle must be earlier than
Maturity.

Maturity Maturity date. A vector of serial date numbers, date character
vectors, or datetime arrays.

Description

TFactors = tmfactor(Settle, Maturity) determines the time factors from a
vector of Settlement dates to a vector of Maturity dates.

Examples

Find the TFactors for Settle and Maturity dates.

TFactors = tmfactor('1-Jan-2015','1-Jan-2016')

TFactors =

     2

Find the TFactors for Settle and Maturity dates using a datetime array.
TFactors = tmfactor(datetime('1-Jan-2015','Locale','en_US'),'1-Jan-2016')

TFactors =
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     2

See Also
cfamounts | cftimes | datetime

Introduced before R2006a
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toannual
Convert to annual

Syntax
newfts = toannual(oldfts)

newfts = toannual(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description
newfts = toannual(oldfts) converts a financial time series of any frequency to one
of an annual frequency. The default end-of-year is the last business day of the December.
toannual uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
'00:00' for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toannual triggers the use of
the defaults.

newfts = toannual(oldfts, 'ParameterName', ParameterValue, ...)

accepts parameter name/parameter value pairs as input, as specified in the following
table.

Parameter Name Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values within each
year. Data for missing dates are given the value 0.

CalcMethod Exact Returns the exact value at the end-of-year date. No
data manipulation occurs.
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Parameter Name Parameter Value Description

CalcMethod Nearest (Default) Returns the values located at the end-of-year
dates. If there is missing data, Nearest returns the
nearest data point preceding the end-of-year date.

CalcMethod SimpAvg Returns an averaged annual value that only takes
into account dates with data (non-NaN) within each
year.

CalcMethod v21x This mode is compatible with previous versions of
this function (Version 2.1.x and earlier). It returns
an averaged end-of-year value using a previous
toannual algorithm. This algorithm takes into
account all dates and data. For dates that do not
contain any data, the data is assumed to be 0.

Note If you set CalcMethod to v21x, settings for all the following parameter name/
parameter value pairs are not supported.
BusDays 0 Returns a financial time series that ranges from (or

between) the first date to the last date in oldfts
(includes NYSE nonbusiness days and holidays).

BusDays 1 (Default) Generates a monthly financial time series
that ranges from the first date to the last date in
oldfts (excludes NYSE nonbusiness days and
holidays and weekends based on AltHolidays
and Weekend). If an end-of-month date falls on a
nonbusiness day or NYSE holiday, returns the last
business day of the month.

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).
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Parameter Name Parameter Value Description

DateFilter Absolute (Default) Returns all annual dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

DateFilter Relative Returns only the annual dates that exist in oldfts.
Some dates may be disregarded if BusDays = 1.

ED 0 Annual period ends on the last day or last business
day of the month.

ED 1 - 31 Specifies a particular annual day. Months that do not
contain the specified day return the last day (or last
business day) of the month (for example, ED = 31
does not exist for February.)

EM 1 - 12 (Default) The annual period ends on the last day
(or last business day) of the specified month. All
subsequent annual dates are calculated from this
month. Default annual month is December (12).

18-1648



 toannual

Parameter Name Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute
an odd annual period at the endpoints of the time
series (before the first-time series date and after the
last end-of-year date).

Begin and End must be -1 or any positive integer
greater than or equal to 0.

A single value input for 'EndPtTol' is the same as
specifying that single value for Begin and End.

-1   Exclude odd annual period dates and data from
calculations.

0    (Default) Include odd annual period dates and
data in calculations.

n   Number of days (any positive integer) that
constitute an odd annual period. If there are
insufficient days for a complete year, the endpoint
data is ignored.

The following diagram is a general depiction of the factors involved in the determination
of endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.
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Parameter Name Parameter Value Description

TimeSpec Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

AltHolidays -1 Excludes all holidays.
Weekend   Vector of length 7 containing 0's and 1's. The value

1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Annual Values

This example shows how to transform a time series object from weekly to annual values.

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]
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    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]

    '31-Dec-1999'     [      28.5665]
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Use toannual to obtain the annual aggregate for the x0 times series.

x1 = toannual(x0)

 

x1 = 

 

    desc:  TOANNUAL: Index

    freq:  Annual (6)

    'dates:  (1)'    'Metric:  (1)'

    '31-Dec-1999'    [     28.5665]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | todaily | tomonthly | toquarterly | tosemi | toweekly

Introduced before R2006a
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todaily
Convert to daily

Syntax
newfts = todaily(oldfts)

newfts = todaily(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object

Description
newfts = todaily(oldfts) converts a financial time series of any frequency to a
daily frequency. todaily uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
'00:00' for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for todaily trigger the use of
the defaults.

newfts = todaily(oldfts, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description

CalcMethod Exact Returns the value at specific dates/times. No data
manipulation occurs.

CalcMethod v21x This mode is compatible with previous versions of this
function (Version 2.1.x and earlier). It returns a five-
day business week that starts on Monday and ends on
Friday.
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Parameter Name Parameter Value Description

Note If you set CalcMethod to v21x, settings for all the following parameter name/
parameter value pairs are not supported.
BusDays 0 Generates a financial time series that ranges from

(or between) the first date to the last date in oldfts
(includes NYSE nonbusiness days and holidays).

BusDays 1 (Default) Generates a daily financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend).

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).

DateFilter Absolute (Default) Displays all daily dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

DateFilter Relative Displays only dates that exist in oldfts. Some dates
may be disregarded if BusDays = 1.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

TimeSpec Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

AltHolidays -1 Excludes all holidays.

18-1654



 todaily

Parameter Name Parameter Value Description

Weekend   Vector of length 7 containing 0's and 1's. The value
1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Daily Values

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]
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    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]

    '31-Dec-1999'     [      28.5665]

Use todaily to obtain the daily aggregate for the x0 times series.

x1 = todaily(x0)

 

x1 = 

 

    desc:  TODAILY: Index
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    freq:  Daily (1)

    'dates:  (252)'    'Metric:  (252)'

    '04-Jan-1999'      [           NaN]

    '05-Jan-1999'      [           NaN]

    '06-Jan-1999'      [           NaN]

    '07-Jan-1999'      [           NaN]

    '08-Jan-1999'      [       97.0847]

    '11-Jan-1999'      [           NaN]

    '12-Jan-1999'      [           NaN]

    '13-Jan-1999'      [           NaN]

    '14-Jan-1999'      [           NaN]

    '15-Jan-1999'      [      109.6312]

    '19-Jan-1999'      [           NaN]

    '20-Jan-1999'      [           NaN]

    '21-Jan-1999'      [           NaN]

    '22-Jan-1999'      [      105.5743]

    '25-Jan-1999'      [           NaN]

    '26-Jan-1999'      [           NaN]

    '27-Jan-1999'      [           NaN]

    '28-Jan-1999'      [           NaN]

    '29-Jan-1999'      [      108.4028]

    '01-Feb-1999'      [           NaN]

    '02-Feb-1999'      [           NaN]

    '03-Feb-1999'      [           NaN]

    '04-Feb-1999'      [           NaN]

    '05-Feb-1999'      [      134.4882]

    '08-Feb-1999'      [           NaN]

    '09-Feb-1999'      [           NaN]

    '10-Feb-1999'      [           NaN]

    '11-Feb-1999'      [           NaN]

    '12-Feb-1999'      [      117.5581]

    '16-Feb-1999'      [           NaN]

    '17-Feb-1999'      [           NaN]

    '18-Feb-1999'      [           NaN]

    '19-Feb-1999'      [      106.6683]

    '22-Feb-1999'      [           NaN]

    '23-Feb-1999'      [           NaN]

    '24-Feb-1999'      [           NaN]

    '25-Feb-1999'      [           NaN]

    '26-Feb-1999'      [      118.2912]

    '01-Mar-1999'      [           NaN]

    '02-Mar-1999'      [           NaN]

    '03-Mar-1999'      [           NaN]
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    '04-Mar-1999'      [           NaN]

    '05-Mar-1999'      [      105.6835]

    '08-Mar-1999'      [           NaN]

    '09-Mar-1999'      [           NaN]

    '10-Mar-1999'      [           NaN]

    '11-Mar-1999'      [           NaN]

    '12-Mar-1999'      [      128.5836]

    '15-Mar-1999'      [           NaN]

    '16-Mar-1999'      [           NaN]

    '17-Mar-1999'      [           NaN]

    '18-Mar-1999'      [           NaN]

    '19-Mar-1999'      [      115.1746]

    '22-Mar-1999'      [           NaN]

    '23-Mar-1999'      [           NaN]

    '24-Mar-1999'      [           NaN]

    '25-Mar-1999'      [           NaN]

    '26-Mar-1999'      [      131.2854]

    '29-Mar-1999'      [           NaN]

    '30-Mar-1999'      [           NaN]

    '31-Mar-1999'      [           NaN]

    '01-Apr-1999'      [           NaN]

    '05-Apr-1999'      [           NaN]

    '06-Apr-1999'      [           NaN]

    '07-Apr-1999'      [           NaN]

    '08-Apr-1999'      [           NaN]

    '09-Apr-1999'      [      123.1684]

    '12-Apr-1999'      [           NaN]

    '13-Apr-1999'      [           NaN]

    '14-Apr-1999'      [           NaN]

    '15-Apr-1999'      [           NaN]

    '16-Apr-1999'      [      107.2975]

    '19-Apr-1999'      [           NaN]

    '20-Apr-1999'      [           NaN]

    '21-Apr-1999'      [           NaN]

    '22-Apr-1999'      [           NaN]

    '23-Apr-1999'      [       91.5625]

    '26-Apr-1999'      [           NaN]

    '27-Apr-1999'      [           NaN]

    '28-Apr-1999'      [           NaN]

    '29-Apr-1999'      [           NaN]

    '30-Apr-1999'      [       78.5738]

    '03-May-1999'      [           NaN]

    '04-May-1999'      [           NaN]

    '05-May-1999'      [           NaN]
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    '06-May-1999'      [           NaN]

    '07-May-1999'      [       65.2904]

    '10-May-1999'      [           NaN]

    '11-May-1999'      [           NaN]

    '12-May-1999'      [           NaN]

    '13-May-1999'      [           NaN]

    '14-May-1999'      [       70.8581]

    '17-May-1999'      [           NaN]

    '18-May-1999'      [           NaN]

    '19-May-1999'      [           NaN]

    '20-May-1999'      [           NaN]

    '21-May-1999'      [       72.4807]

    '24-May-1999'      [           NaN]

    '25-May-1999'      [           NaN]

    '26-May-1999'      [           NaN]

    '27-May-1999'      [           NaN]

    '28-May-1999'      [       72.9190]

    '01-Jun-1999'      [           NaN]

    '02-Jun-1999'      [           NaN]

    '03-Jun-1999'      [           NaN]

    '04-Jun-1999'      [       64.3460]

    '07-Jun-1999'      [           NaN]

    '08-Jun-1999'      [           NaN]

    '09-Jun-1999'      [           NaN]

    '10-Jun-1999'      [           NaN]

    '11-Jun-1999'      [       59.8743]

    '14-Jun-1999'      [           NaN]

    '15-Jun-1999'      [           NaN]

    '16-Jun-1999'      [           NaN]

    '17-Jun-1999'      [           NaN]

    '18-Jun-1999'      [       55.0026]

    '21-Jun-1999'      [           NaN]

    '22-Jun-1999'      [           NaN]

    '23-Jun-1999'      [           NaN]

    '24-Jun-1999'      [           NaN]

    '25-Jun-1999'      [       49.4032]

    '28-Jun-1999'      [           NaN]

    '29-Jun-1999'      [           NaN]

    '30-Jun-1999'      [           NaN]

    '01-Jul-1999'      [           NaN]

    '02-Jul-1999'      [       49.9485]

    '06-Jul-1999'      [           NaN]

    '07-Jul-1999'      [           NaN]

    '08-Jul-1999'      [           NaN]
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    '09-Jul-1999'      [       47.8061]

    '12-Jul-1999'      [           NaN]

    '13-Jul-1999'      [           NaN]

    '14-Jul-1999'      [           NaN]

    '15-Jul-1999'      [           NaN]

    '16-Jul-1999'      [       61.0517]

    '19-Jul-1999'      [           NaN]

    '20-Jul-1999'      [           NaN]

    '21-Jul-1999'      [           NaN]

    '22-Jul-1999'      [           NaN]

    '23-Jul-1999'      [       58.9313]

    '26-Jul-1999'      [           NaN]

    '27-Jul-1999'      [           NaN]

    '28-Jul-1999'      [           NaN]

    '29-Jul-1999'      [           NaN]

    '30-Jul-1999'      [       53.9584]

    '02-Aug-1999'      [           NaN]

    '03-Aug-1999'      [           NaN]

    '04-Aug-1999'      [           NaN]

    '05-Aug-1999'      [           NaN]

    '06-Aug-1999'      [       44.8472]

    '09-Aug-1999'      [           NaN]

    '10-Aug-1999'      [           NaN]

    '11-Aug-1999'      [           NaN]

    '12-Aug-1999'      [           NaN]

    '13-Aug-1999'      [       45.0463]

    '16-Aug-1999'      [           NaN]

    '17-Aug-1999'      [           NaN]

    '18-Aug-1999'      [           NaN]

    '19-Aug-1999'      [           NaN]

    '20-Aug-1999'      [       45.1088]

    '23-Aug-1999'      [           NaN]

    '24-Aug-1999'      [           NaN]

    '25-Aug-1999'      [           NaN]

    '26-Aug-1999'      [           NaN]

    '27-Aug-1999'      [       56.4897]

    '30-Aug-1999'      [           NaN]

    '31-Aug-1999'      [           NaN]

    '01-Sep-1999'      [           NaN]

    '02-Sep-1999'      [           NaN]

    '03-Sep-1999'      [       61.2449]

    '07-Sep-1999'      [           NaN]

    '08-Sep-1999'      [           NaN]

    '09-Sep-1999'      [           NaN]

18-1660



 todaily

    '10-Sep-1999'      [       58.1012]

    '13-Sep-1999'      [           NaN]

    '14-Sep-1999'      [           NaN]

    '15-Sep-1999'      [           NaN]

    '16-Sep-1999'      [           NaN]

    '17-Sep-1999'      [       50.8974]

    '20-Sep-1999'      [           NaN]

    '21-Sep-1999'      [           NaN]

    '22-Sep-1999'      [           NaN]

    '23-Sep-1999'      [           NaN]

    '24-Sep-1999'      [       46.5143]

    '27-Sep-1999'      [           NaN]

    '28-Sep-1999'      [           NaN]

    '29-Sep-1999'      [           NaN]

    '30-Sep-1999'      [           NaN]

    '01-Oct-1999'      [       38.0806]

    '04-Oct-1999'      [           NaN]

    '05-Oct-1999'      [           NaN]

    '06-Oct-1999'      [           NaN]

    '07-Oct-1999'      [           NaN]

    '08-Oct-1999'      [       33.6664]

    '11-Oct-1999'      [           NaN]

    '12-Oct-1999'      [           NaN]

    '13-Oct-1999'      [           NaN]

    '14-Oct-1999'      [           NaN]

    '15-Oct-1999'      [       34.2992]

    '18-Oct-1999'      [           NaN]

    '19-Oct-1999'      [           NaN]

    '20-Oct-1999'      [           NaN]

    '21-Oct-1999'      [           NaN]

    '22-Oct-1999'      [       33.4202]

    '25-Oct-1999'      [           NaN]

    '26-Oct-1999'      [           NaN]

    '27-Oct-1999'      [           NaN]

    '28-Oct-1999'      [           NaN]

    '29-Oct-1999'      [       36.9287]

    '01-Nov-1999'      [           NaN]

    '02-Nov-1999'      [           NaN]

    '03-Nov-1999'      [           NaN]

    '04-Nov-1999'      [           NaN]

    '05-Nov-1999'      [       35.1278]

    '08-Nov-1999'      [           NaN]

    '09-Nov-1999'      [           NaN]

    '10-Nov-1999'      [           NaN]
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    '11-Nov-1999'      [           NaN]

    '12-Nov-1999'      [       41.8128]

    '15-Nov-1999'      [           NaN]

    '16-Nov-1999'      [           NaN]

    '17-Nov-1999'      [           NaN]

    '18-Nov-1999'      [           NaN]

    '19-Nov-1999'      [       35.8199]

    '22-Nov-1999'      [           NaN]

    '23-Nov-1999'      [           NaN]

    '24-Nov-1999'      [           NaN]

    '26-Nov-1999'      [       36.9495]

    '29-Nov-1999'      [           NaN]

    '30-Nov-1999'      [           NaN]

    '01-Dec-1999'      [           NaN]

    '02-Dec-1999'      [           NaN]

    '03-Dec-1999'      [       36.2880]

    '06-Dec-1999'      [           NaN]

    '07-Dec-1999'      [           NaN]

    '08-Dec-1999'      [           NaN]

    '09-Dec-1999'      [           NaN]

    '10-Dec-1999'      [       33.8457]

    '13-Dec-1999'      [           NaN]

    '14-Dec-1999'      [           NaN]

    '15-Dec-1999'      [           NaN]

    '16-Dec-1999'      [           NaN]

    '17-Dec-1999'      [       33.3868]

    '20-Dec-1999'      [           NaN]

    '21-Dec-1999'      [           NaN]

    '22-Dec-1999'      [           NaN]

    '23-Dec-1999'      [           NaN]

    '27-Dec-1999'      [           NaN]

    '28-Dec-1999'      [           NaN]

    '29-Dec-1999'      [           NaN]

    '30-Dec-1999'      [           NaN]

    '31-Dec-1999'      [       28.5665]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | toannual | tomonthly | toquarterly | tosemi | toweekly
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Introduced before R2006a
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today
Current date

Syntax

Date = today

Date = today(outputType)

Description

Date = today returns the current date as a serial date number.

Date = today(outputType) returns the current date using an optional outputType.
The type of output is determined by an optional outputType variable input.

Examples

Return the Current Date

Use today to return the current date with the default serial date number.

Date = today

Date =

      736572

Use the optional argument outputType to return a datetime array.

Date = today('datetime')

Date = 

  datetime
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   30-Aug-2016

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

Input Arguments

outputType — Type of output
'datenum' (default) | character vector with values 'datetime' or 'datenum'

Type of output, specified as a character vector with values 'datetime' or 'datenum'.

If outputType is 'datenum', then Date is a serial date number. If outputType is
'datetime', then Date is a datetime array. By default, outputType is 'datenum'.

Data Types: char

Output Arguments

Date — Current date
serial date number or datetime array

Current date, returned as a serial date number or datetime array, depending on the
optional input argument outputType.

See Also
datenum | datestr | datetime | now

Introduced before R2006a
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todecimal
Fractional to decimal conversion

Syntax
usddec = todecimal(quote, fracpart)

Description

usddec = todecimal(quote, fracpart) returns the decimal equivalent, usddec,
of a security whose price is normally quoted as a whole number and a fraction (quote).
fracpart indicates the fractional base (denominator) with which the security is
normally quoted (default = 32).

Examples

In the Wall Street Journal, bond prices are quoted in fractional form based on a
denominator of 32. For example, if you see the quoted price is 100:05 it means 100 5/32.
To find the equivalent decimal value, enter

usddec = todecimal(100.05)

usddec = 

   100.1563

usddec = todecimal(97.04, 16)

usddec =

   97.2500

Note The convention of using . (period) as a substitute for : (colon) in the input is
adopted from Excel software.

See Also
toquoted
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Introduced before R2006a
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tomonthly
Convert to monthly

Syntax
newfts = tomonthly(oldfts)

newfts = tomonthly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description
newfts = tomonthly(oldfts) converts a financial time series of any frequency to a
monthly frequency. The default end-of-month day is the last business day of the month.
tomonthly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
00:00 for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for tomonthly triggers the use
of the defaults.

newfts = tomonthly(oldfts, 'ParameterName', ParameterValue, ...)

accepts parameter name/parameter value pairs as input, as specified in the following
table.

Parameter Name Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values within each
month. Data for missing dates are given the value 0.

Exact Returns the exact value at the end-of-month date. No
data manipulation occurs.
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Parameter Name Parameter Value Description

Nearest (Default) Returns the values located at the end-of-
month date. If there is missing data, 'Nearest' returns
the nearest data point preceding the end-of-month
date.

SimpAvg Returns an averaged monthly value that only takes
into account dates with data (non-NaN) within each
month.

v21x This mode is compatible with previous versions of
this function (Version 2.1.x and earlier). It returns
an averaged end-of-month value using a previous
tomonthly algorithm. This algorithm takes into
account all dates and data. For dates that do not
contain any data, the data is assumed to be 0.

  Note If you set CalcMethod to v21x, settings for all the following
parameter name/parameter value pairs are not supported.

BusDays 0 Generates a monthly financial time series that ranges
from the first date to the last date in oldfts (includes
NYSE nonbusiness days and holidays).

1 (Default) Generates a monthly financial time series
that ranges from the first date to the last date in
oldfts (excludes NYSE nonbusiness days and
holidays and weekends based on AltHolidays
and Weekend). If an end-of-month date falls on a
nonbusiness day or NYSE holiday, returns the last
business day of the month.

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).
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Parameter Name Parameter Value Description

DateFilter Absolute (Default) Returns all monthly dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

Relative Returns only monthly dates that exist in oldfts.
Some dates may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-month date is the last day (or
last business day) of the month.

1 - 31 Returns values on the specified end-of-month day.
Months that do not contain the specified end-of-month
day return the last day of the month instead (for
example, ED = 31 does not exist for February).

If end-of-month falls on a NYSE non-business day
or holiday, the previous business day is returned if
BusDays = 1.
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Parameter Name Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute
an odd month at the end points of the time series
(before the first whole period and after the last whole
period).

Begin and End must be -1 or any positive integer
greater than or equal to 0.

A single value input for EndPtTol is the same as
specifying that single value for Begin and End.

-1   Do not include odd month dates and data in
calculations.

0    (Default) Include all odd month dates and data in
calculations.

n   Number of days that constitute an odd month.
If the minimum number of days is not met, the odd
month dates and data are ignored.

The following diagram is a general depiction of the factors involved in the determination
of end points for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.
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Parameter Name Parameter Value Description

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

  -1 Excludes all holidays.
Weekend   Vector of length 7 containing 0's and 1's. The value

1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Monthly Values

This example shows how to transform a time series object from weekly to monthly
values.

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

18-1672



 tomonthly

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]

    '31-Dec-1999'     [      28.5665]
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Use tomonthly to obtain the monthly aggregate for the x0 times series.

x1 = tomonthly(x0)

 

x1 = 

 

    desc:  TOMONTHLY: Index

    freq:  Monthly (3)

    'dates:  (12)'    'Metric:  (12)'

    '29-Jan-1999'     [     108.4028]

    '26-Feb-1999'     [     118.2912]

    '31-Mar-1999'     [     131.2854]

    '30-Apr-1999'     [      78.5738]

    '28-May-1999'     [      72.9190]

    '30-Jun-1999'     [      49.4032]

    '30-Jul-1999'     [      53.9584]

    '31-Aug-1999'     [      56.4897]

    '30-Sep-1999'     [      46.5143]

    '29-Oct-1999'     [      36.9287]

    '30-Nov-1999'     [      36.9495]

    '31-Dec-1999'     [      28.5665]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | toannual | todaily | toquarterly | tosemi | toweekly

Introduced before R2006a
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toquarterly
Convert to quarterly

Syntax
newfts = toquarterly(oldfts)

newfts = toquarterly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object

Description

newfts = toquarterly(oldfts) converts a financial time series of any frequency
to a quarterly frequency. The default quarterly days are the last business day of March,
June, September, and December. toquarterly uses holidays.m to determine valid
trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
00:00 for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toquarterly triggers the
use of the defaults.

newfts = toquarterly(oldfts, 'ParameterName', ParameterValue, ...)

accepts parameter name/parameter value pairs as input, as specified in the following
table.

Parameter Name Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values between
each quarter. Data for missing dates are given the
value 0.
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Parameter Name Parameter Value Description

Exact Returns the exact value at the end-of-quarter date. No
data manipulation occurs.

Nearest (Default) Returns the values located at the end-
of-quarter date. If there is missing data, Nearest
returns the nearest data point preceding the end-of-
quarter date.

SimpAvg Returns an averaged quarterly value that only takes
into account dates with data (non-NaN) within each
quarter.

v21x This mode is compatible with previous versions of
this function (Version 2.1.x and earlier). It returns
an averaged end-of-quarter value using a previous
toquarterly algorithm. This algorithm takes into
account all dates and data. For dates that do not
contain any data, the data is assumed to be 0.

  Note If you set CalcMethod to v21x, settings for all the following
parameter name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from
(or between) the first date to the last date in oldfts
(includes NYSE nonbusiness days and holidays).

1 (Default) Generates a financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend). If
an end-of-quarter date falls on a nonbusiness day or
NYSE holiday, returns the last business day of the
quarter.

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).
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Parameter Name Parameter Value Description

DateFilter Absolute (Default) Returns all quarterly dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

Relative Returns only quarterly dates that exist in oldfts.
Some dates may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-quarter date is the last day (or
last business day) of the quarter.

1 - 31 Specifies a particular end-of-quarter day. Months that
do not contain the specified end-of-quarter day return
the last day of the quarter instead (for example,
ED = 31 does not exist for February).

EM 1 - 12 Last month of the first quarter. All subsequent
quarterly dates are based on this month. The default
end-of-first-quarter month is March (3).
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Parameter Name Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute
an odd quarter at the endpoints of the time series
(before the first whole period and after the last whole
period).

Begin and End must be -1 or any positive integer
greater than or equal to 0.

A single value input for EndPtTol is the same as
specifying that single value for Begin and End.

-1   Do not include odd quarter dates and data in
calculations.

0    (Default) Include all odd quarter dates and data in
calculations.

n   Number of days (any positive integer) that
constitute an odd quarter. If there are insufficient
days for a complete quarter, the odd quarter dates and
data are ignored.

The following diagram is a general depiction of the factors involved in the determination
of endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.
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Parameter Name Parameter Value Description

Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

  -1 Excludes all holidays.
Weekend   Vector of length 7 containing 0's and 1's. The value

1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Quarterly Values

This example shows how to transform a time series object from weekly to quarterly
values.

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]
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    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]
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    '31-Dec-1999'     [      28.5665]

Use toquarterly to obtain the quarterly aggregate for the x0 times series.

x1 = toquarterly(x0)

 

x1 = 

 

    desc:  TOQUARTERLY: Index

    freq:  Quarterly (4)

    'dates:  (4)'    'Metric:  (4)'

    '31-Mar-1999'    [    131.2854]

    '30-Jun-1999'    [     49.4032]

    '30-Sep-1999'    [     46.5143]

    '31-Dec-1999'    [     28.5665]

Transform Time Series Object from Weekly to Quarterly Values Including NYSE Nonbusiness
Days and Holidays

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]
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    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]

    '31-Dec-1999'     [      28.5665]
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Use toquarterly with the optional BusDays argument set to 0 to obtain the quarterly
cumulative sums for the x0 times series that includes NYSE nonbusiness days and
holidays.

x1 = toquarterly(x0,'CalcMethod','CumSum','Busdays',0)

 

x1 = 

 

    desc:  TOQUARTERLY: Index

    freq:  Quarterly (4)

    'dates:  (4)'    'Metric:  (4)'

    '31-Mar-1999'    [  1.4763e+03]

    '30-Jun-1999'    [  1.0415e+03]

    '30-Sep-1999'    [    679.9459]

    '31-Dec-1999'    [    490.9659]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | toannual | todaily | tomonthly | tosemi | toweekly

Introduced before R2006a
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toquoted
Decimal to fractional conversion

Syntax
quote = toquoted(usddec, fracpart)

Description

quote = toquoted(usddec, fracpart) returns the fractional equivalent, quote,
of the decimal figure, usddec, based on the fractional base (denominator), fracpart.
The fractional bases are the ones used for quoting equity prices in the United States
(denominator 2, 4, 8, 16, or 32). If fracpart is not entered, the denominator 32 is
assumed.

Examples

A United States equity price in decimal form is 101.625. To convert this to fractional
form in eighths of a dollar:

quote = toquoted(101.625, 8)

quote =

        101.05

The answer is interpreted as 101 5/8.

Note The convention of using . (period) as a substitute for : (colon) in the output is
adopted from Excel software.

See Also
todecimal

Introduced before R2006a
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tosemi
Convert to semiannual

Syntax
newfts = tosemi(oldfts)

newfts = tosemi(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description
newfts = tosemi(oldfts) converts a financial time series of any frequency to a
semiannual frequency. The default semiannual days are the last business day of June
and December. tosemi uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
00:00 for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for tosemi triggers the use of
the defaults.

newfts = tosemi(oldfts, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input, as specified in the following table.

Parameter Name Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values within each
semiannual period. Data for missing dates are given
the value 0.

Exact Returns the exact value at the end-of-period date. No
data manipulation occurs.
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Parameter Name Parameter Value Description

Nearest (Default) Returns the values located at the end-of-
period date. If there is missing data, Nearest returns
the nearest data point preceding the end-of-period
date.

SimpAvg Returns an averaged semiannual value that only
takes into account dates with data (non-NaN) within
each semiannual period.

v21x This mode is compatible with previous versions of
this function (Version 2.1.x and earlier). It returns an
averaged end-of-period value using a previous tosemi
algorithm. This algorithm takes into account all dates
and data. For dates that do not contain any data, the
data is assumed to be 0.

  Note If you set CalcMethod to v21x, settings for all the following
parameter name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from
(or between) the first date to the last date in oldfts
(includes NYSE nonbusiness days and holidays).

1 (Default) Generates a financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend). If
an end-of-quarter date falls on a nonbusiness day or
NYSE holiday, returns the last business day of the
quarter.

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).
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Parameter Name Parameter Value Description

DateFilter Absolute (Default) Returns all semiannual dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

Relative Returns only semiannual dates that exist in oldfts.
Some dates may be disregarded if BusDays = 1.

ED 0 (Default) The end-of-period date is the last day (or last
business day) of the semiannual period.

1 - 31 Specifies a particular end-of-period day. Months that
do not contain the specified end-of-period day return
the last day of the semiannual period instead (for
example, ED = 31 does not exist for February).

EM 1 - 12 End month of the first semiannual period. All
subsequent period dates are based on this month.
The default end-of-period months are June (6) and
December (12).
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Parameter Name Parameter Value Description

EndPtTol [Begin, End] Denotes the minimum number of days that constitute
an odd semiannual period at the endpoints of the time
series (before the first whole period and after the last
whole period).

Begin and End must be -1 or any positive integer
greater than or equal to 0.

A single value input for EndPtTol is the same as
specifying that single value for Begin and End.

-1   Do not include odd period dates and data in
calculations.

0    (Default) Include all odd period dates and data in
calculations.

n   Number of days (any positive integer) that
constitute an odd period. If there are insufficient days
for a complete semiannual period, the odd period
dates and data are ignored.

The following diagram is a general depiction of the factors involved in the determination
of endpoints for this function.

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.
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Parameter Name Parameter Value Description

  Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

  -1 Excludes all holidays.
Weekend   Vector of length 7 containing 0's and 1's. The value

1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].

Examples

Transform Time Series Object from Weekly to Semiannual Values

This example shows how to transform a time series object from weekly to semiannual
values.

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a weekly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]
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    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]
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    '31-Dec-1999'     [      28.5665]

Use tosemi to obtain the semiannual aggregate for the x0 times series.

x1 = tosemi(x0)

 

x1 = 

 

    desc:  TOSEMI: Index

    freq:  Semiannual (5)

    'dates:  (2)'    'Metric:  (2)'

    '30-Jun-1999'    [     49.4032]

    '31-Dec-1999'    [     28.5665]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | toannual | todaily | tomonthly | toquarterly | toweekly

Introduced before R2006a
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totalreturnprice

Total return price time series

Syntax

Return = totalreturnprice(Price, Action, Dividend)

Arguments

Price Price can be a table or a NUMOBS)-by-2 matrix. If Price is a table,
the dates can either be serial date numbers, date character vectors.
If Price is a number of observations (NUMOBS)-by-2 matrix of price
data, column 1 contains MATLAB serial date numbers and column
2 contains price values.

Action Action can be a table or a NUMOBS)-by-2 matrix. If Action is a
table, the dates can either be serial date numbers, date character
vectors. If Action is a NUMOBS-by-2 matrix of price data, column 1
contains MATLAB serial date numbers and column 2 contains split
ratios.

Dividend Dividend can be a table or a NUMOBS)-by-2 matrix. If Dvidend is a
table, the dates can either be serial date numbers, date character
vectors. If Dividend is a NUMOBS-by-2 matrix of price data, column
1 contains MATLAB serial date numbers and column 2 contains
dividend payouts.

The number of observations (NUMOBS) for the three input arguments differ from each
other.

Description

Return = totalreturnprice(Price, Action, Dividend) generates a total
return price time series given price data, action or split data, and dividend data.
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If all three inputs are matrices, then Return is a NUMOBS-by-2 array of price data, where
NUMOBS reflects the number of observations of price data. Column 1 contains MATLAB
serial date numbers. Column 2 contains total return price values.

However, if any inputs are tables, then Return will also be a table. The class of the first
column depends on the classes used in the input tables. If any tables used datetimes for
dates, then Returns will have datetimes in the first column. If there were no datetimes
in the inputs, but if any inputs used date character vectors, then Returns will use date
character vectors in the first column. For any other case, serial date numbers are used.

Examples

Compute Return Using datetime Input for Price and Action

Compute Return returned as a table using datetime input in tables for Price and
Action.

act = [732313, 2; 732314 ,2];

div = [732313, 0.0800; 732314, 0.0800];

prc = [732313, 12; 732314, 13];

prcTableDateTime=table(datetime(prc(:,1),'ConvertFrom','datenum'),prc(:,2));

acttableString=table(datestr(act(:,1)),act(:,2));

divTableNum = array2table(div);

Return = totalreturnprice(prcTableDateTime,acttableString,divTableNum)

Return = 

       Date        Return

    ___________    ______

    01-Jan-2005         1

    02-Jan-2005    1.0833

• “Portfolio Construction Examples” on page 3-7

More About
• “Portfolio Optimization Functions” on page 3-4
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• Getting Started with Portfolio Optimization (13 min 31 sec)

See Also
datetime | periodicreturns

Introduced before R2006a
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toweekly
Convert to weekly

Syntax
newfts = toweekly(oldfts)

newfts = toweekly(oldfts, 'ParameterName', ParameterValue, ...)

Arguments

oldfts Financial time series object.

Description
newfts = toweekly(oldfts) converts a financial time series of any frequency to a
weekly frequency. The default weekly days are Fridays or the last business day of the
week. toweekly uses holidays.m to determine valid trading days.

Note If oldfts contains time-of-day information, newfts displays the time-of-day as
00:00 for those days that did not previously exist in oldfts.

Empty ([ ]) passed as inputs for parameter pair values for toweekly triggers the use of
the defaults.

newfts = toweekly(oldfts, 'ParameterName', ParameterValue, ...)

accepts parameter name/parameter value pairs as input, as specified in the following
table.

Parameter Name Parameter Value Description

CalcMethod CumSum Returns the cumulative sum of the values within each
week. Data for missing dates are given the value 0.

Exact Returns the exact value at the end-of-week dates. No
data manipulation occurs.
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Parameter Name Parameter Value Description

Nearest (Default) Returns the values located at the end-of-
week dates. If there is missing data, Nearest returns
the nearest data point preceding the end-of-week date.

SimpAvg Returns an averaged weekly value that only takes
into account dates with data (non-NaN) within each
week.

v21x This mode is compatible with previous versions of
this function (Version 2.1.x and earlier). It returns
an averaged end-of-weekly value using a previous
toquarterly algorithm. This algorithm takes into
account all dates and data. For dates that do not
contain any data, the data is assumed to be 0.

  Note If you set CalcMethod to v21x, settings for all the following
parameter name/parameter value pairs are not supported.

BusDays 0 Generates a financial time series that ranges from
(or between) the first date to the last date in oldfts
(includes NYSE nonbusiness days and holidays).

1 (Default) Generates a financial time series that
ranges from the first date to the last date in oldfts
(excludes NYSE nonbusiness days and holidays and
weekends based on AltHolidays and Weekend). If
an end-of-quarter date falls on a nonbusiness day or
NYSE holiday, returns the last business day of the
quarter.

NYSE market closures, holidays, and weekends
are observed if AltHolidays and Weekend are not
supplied or empty ([]).
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Parameter Name Parameter Value Description

DateFilter Absolute (Default) Returns all weekly dates between the
start and end dates of oldfts. Some dates may be
disregarded if BusDays = 1.

Note: The default is to create a time series with
every date at the specified periodicity, which is with
DateFilter = Absolute. If you use DateFilter =
Relative, the endpoint effects do not apply since only
your data defines which dates appear in the output
time series object.

Relative Returns only end-of-week dates that exist in oldfts.
Some dates may be disregarded if BusDays = 1.

EndPtTol [Begin, End] Denotes the minimum number of days that constitute
an odd week at the endpoints of the time series (before
the first whole period and after the last whole period).

Begin and End must be -1 or any positive integer
greater than or equal to 0.

A single value input for EndPtTol is the same as
specifying that single value for Begin and End.

-1   Do not include odd week dates and data in
calculations.

0    (Default) Include all odd week dates and data in
calculations.

n   Number of days (any positive integer) that
constitute an odd week. If there are insufficient days
for a complete week, the odd week dates and data are
ignored.
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Parameter Name Parameter Value Description

The following diagram is a general depiction of the factors involved in the determination
of endpoints for this function.

EOW 0 - 6 Specifies the end-of-week day:

• 0   Friday (default)
• 1   Saturday
• 2   Sunday
• 3   Monday
• 4   Tuesday
• 5   Wednesday
• 6   Thursday

TimeSpec First Returns only the observation that occurs at the first
(earliest) time for a specific date.

  Last (Default) Returns only the observation that occurs at
the last (latest) time for a specific date.

AltHolidays   Vector of dates specifying an alternate set of market
closure dates.

  -1 Excludes all holidays.
Weekend   Vector of length 7 containing 0's and 1's. The value

1 indicates a weekend day. The first element of this
vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days (default) then
Weekend = [1 0 0 0 0 0 1].
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Examples

Transform Time Series Object from Quarterly to Weekly Values

This example shows how to transform a time series object from quarterly to weekly
values.

Load the data from the file predict_ret_data.mat and use the fints function to
create a time series object with a quarterly frequency.

load predict_ret_data.mat

x0 = fints(expdates, expdata, {'Metric'}, 'q', 'Index')

 

x0 = 

 

    desc:  Index

    freq:  Quarterly (4)

    'dates:  (53)'    'Metric:  (53)'

    '01-Jan-1999'     [      97.8872]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]

    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '02-Apr-1999'     [     130.7116]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]
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    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]

    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '24-Dec-1999'     [      32.7737]

    '31-Dec-1999'     [      28.5665]

Use toweekly to obtain the weekly aggregate for the x0 times series.

x1 = toweekly(x0)

 

x1 = 

 

    desc:  TOWEEKLY: Index

    freq:  Weekly (2)

    'dates:  (53)'    'Metric:  (53)'

    '31-Dec-1998'     [          NaN]

    '08-Jan-1999'     [      97.0847]

    '15-Jan-1999'     [     109.6312]
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    '22-Jan-1999'     [     105.5743]

    '29-Jan-1999'     [     108.4028]

    '05-Feb-1999'     [     134.4882]

    '12-Feb-1999'     [     117.5581]

    '19-Feb-1999'     [     106.6683]

    '26-Feb-1999'     [     118.2912]

    '05-Mar-1999'     [     105.6835]

    '12-Mar-1999'     [     128.5836]

    '19-Mar-1999'     [     115.1746]

    '26-Mar-1999'     [     131.2854]

    '01-Apr-1999'     [          NaN]

    '09-Apr-1999'     [     123.1684]

    '16-Apr-1999'     [     107.2975]

    '23-Apr-1999'     [      91.5625]

    '30-Apr-1999'     [      78.5738]

    '07-May-1999'     [      65.2904]

    '14-May-1999'     [      70.8581]

    '21-May-1999'     [      72.4807]

    '28-May-1999'     [      72.9190]

    '04-Jun-1999'     [      64.3460]

    '11-Jun-1999'     [      59.8743]

    '18-Jun-1999'     [      55.0026]

    '25-Jun-1999'     [      49.4032]

    '02-Jul-1999'     [      49.9485]

    '09-Jul-1999'     [      47.8061]

    '16-Jul-1999'     [      61.0517]

    '23-Jul-1999'     [      58.9313]

    '30-Jul-1999'     [      53.9584]

    '06-Aug-1999'     [      44.8472]

    '13-Aug-1999'     [      45.0463]

    '20-Aug-1999'     [      45.1088]

    '27-Aug-1999'     [      56.4897]

    '03-Sep-1999'     [      61.2449]

    '10-Sep-1999'     [      58.1012]

    '17-Sep-1999'     [      50.8974]

    '24-Sep-1999'     [      46.5143]

    '01-Oct-1999'     [      38.0806]

    '08-Oct-1999'     [      33.6664]

    '15-Oct-1999'     [      34.2992]

    '22-Oct-1999'     [      33.4202]

    '29-Oct-1999'     [      36.9287]

    '05-Nov-1999'     [      35.1278]

    '12-Nov-1999'     [      41.8128]

    '19-Nov-1999'     [      35.8199]
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    '26-Nov-1999'     [      36.9495]

    '03-Dec-1999'     [      36.2880]

    '10-Dec-1999'     [      33.8457]

    '17-Dec-1999'     [      33.3868]

    '23-Dec-1999'     [          NaN]

    '31-Dec-1999'     [      28.5665]

• “Data Transformation and Frequency Conversion” on page 12-12
• “Using Time Series to Predict Equity Return” on page 12-25

See Also
convertto | fints | toannual | todaily | tomonthly | toquarterly | tosemi

Introduced before R2006a
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tr2bonds

Term-structure parameters given Treasury bond parameters

Syntax

[Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)

Arguments

TreasuryMatrix Treasury bond parameters. TreasuryMatrix can
be specified as a table or a n-by-5 matrix. When
TreasuryMatrix is a table, the Maturity dates can be
specified as either serial date numbers, date character
vectors, or datetime arrays. If TreasuryMatrix is an n-by-5
matrix, then each row describes a Treasury bond. Columns
are [CouponRate Maturity Bid Asked AskYield]
where:

CouponRate Coupon rate, as a decimal fraction.
Maturity Maturity date, as a serial date number. Use datenum to

convert date character vectors to serial date numbers. If
TreasuryMatrix is a table, the Maturity dates can be
specified as either serial date numbers, date character
vectors, or datetime arrays.

Bid Bid price based on $100 face value.
Asked Asked price based on $100 face value.
AskYield Asked yield to maturity, as a decimal fraction.
Settle (Optional) Date, specified as a serial date number, date

character vector, or datetime array, of the settlement date for
the analysis.
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Description

[Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle) returns
term-structure parameters (bond information, prices, and yields) sorted by ascending
maturity date, given Treasury bond parameters. The formats of the output matrix
and vectors meet requirements for input to the zbtprice and zbtyield zero-curve
bootstrapping functions.

Bonds Coupon bond information. Bonds can be a table or
matrix depending on the TreasuryMatrix input. When
TreasuryMatrix is a table, Bonds will also be a table,
and the variable type for the Maturity dates in Bonds
(column 1) will match the variable type for Maturity in
TreasuryMatrix. When TreasuryMatrix input is a n-
by-6 matrix, then each row describes a bond. Columns
are [Maturity CouponRate Face Period Basis
EndMonthRule] where:

Maturity Maturity date of the bond, as a serial date number. Use
datestr to convert serial date numbers to date character
vectors. When TreasuryMatrix is a table, the variable type
for the Maturity dates in Bonds (column 1) will match the
variable type for Maturity in TreasuryMatrix.

CouponRate Coupon rate of the bond, as a decimal fraction.
Face Redemption or face value of the bond, always 100.
Period Coupons per year of the bond, always 2.
Basis Day-count basis of the bond, possible values include:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365

For more information, see basis.
EndMonthRule End-of-month flag, always 1, meaning that a bond's coupon

payment date is always the last day of the month.
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Prices Prices. Column vector containing the price of each bond in
bonds, respectively. The number of rows (n) matches the
number of rows in bonds.

Yields Yields. Column vector containing the yield to maturity of
each bond in bonds, respectively. The number of rows (n)
matches the number of rows in bonds. If Settle is input,
Yields is computed as a semiannual yield to maturity. If
Settle is not input, the quoted input yields are used.

Examples

Return Term-Structure Parameters Given Treasury Bond Parameters

This example shows how to return term-structure parameters (bond information, prices,
and yields) sorted by ascending maturity date, given Treasury bond market parameters
for December 22, 1997.

Matrix =[0.0650 datenum('15-apr-1999')  101.03125 101.09375 0.0564

         0.05125 datenum('17-dec-1998')  99.4375   99.5     0.0563

         0.0625 datenum('30-jul-1998')  100.3125  100.375   0.0560

         0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

[Bonds, Prices, Yields] = tr2bonds(Matrix)

Bonds =

   1.0e+05 *

    7.2984    0.0000    0.0010    0.0000         0    0.0000

    7.2997    0.0000    0.0010    0.0000         0    0.0000

    7.3011    0.0000    0.0010    0.0000         0    0.0000

    7.3022    0.0000    0.0010    0.0000         0    0.0000

Prices =

  100.1563

  100.3750

   99.5000

  101.0938
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Yields =

    0.0546

    0.0560

    0.0563

    0.0564

Return Term-Structure Parameters Given Treasury Bond Parameters Using datetime Input

This example shows how to use datetime input to return term-structure parameters
(bond information, prices, and yields) sorted by ascending maturity date, given Treasury
bond market parameters for December 22, 1997.

Matrix =[0.0650 datenum('15-apr-1999')  101.03125 101.09375 0.0564

         0.05125 datenum('17-dec-1998')  99.4375   99.5     0.0563

         0.0625 datenum('30-jul-1998')  100.3125  100.375   0.0560

         0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

t=array2table(Matrix);

t.Matrix2=datetime(t{:,2},'ConvertFrom','datenum','Locale','en_US');

[Bonds, Prices, Yields] = tr2bonds(t,datetime('1-Jan-1997','Locale','en_US'))

Bonds = 

     Maturity      CouponRate    Face    Period    Basis    EndMonthRule

    ___________    __________    ____    ______    _____    ____________

    26-Mar-1998    0.06125       100     2         0        1           

    30-Jul-1998     0.0625       100     2         0        1           

    17-Dec-1998    0.05125       100     2         0        1           

    15-Apr-1999      0.065       100     2         0        1           

Prices =

  100.1563

  100.3750

   99.5000

  101.0938
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Yields =

    0.0598

    0.0599

    0.0540

    0.0598

• “Term Structure of Interest Rates” on page 2-39

More About
• “Treasury Bills Defined” on page 2-34

See Also
datetime | tbl2bond | zbtprice | zbtyield

Introduced before R2006a
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transprob
Estimate transition probabilities from credit ratings data

Syntax

[transMat, sampleTotals, idTotals] = transprob(data)

[transMat, sampleTotals, idTotals] = transprob(data,

Name, Value)

Description

[transMat, sampleTotals, idTotals] = transprob(data) constructs a
transition matrix from historical data of credit ratings.

[transMat, sampleTotals, idTotals] = transprob(data,

Name, Value) constructs a transition matrix from historical data of credit ratings with
additional options specified by one or more Name, Value pair arguments.

Input Arguments

data

Using transprob to estimate transition probabilities given credit ratings historical data
(that is, credit migration data), the data input can be one of the following:

• An nRecords-by-3 MATLAB table containing the historical credit ratings data of the
form:

 ID          Date          Rating

__________  _____________  ______

'00010283'  '10-Nov-1984'  'CCC'

'00010283'  '12-May-1986'  'B'

'00010283'  '29-Jun-1988'  'CCC'

'00010283'  '12-Dec-1991'  'D'

'00013326'  '09-Feb-1985'  'A'

'00013326'  '24-Feb-1994'  'AA'

'00013326'  '10-Nov-2000'  'BBB'
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'00014413'  '23-Dec-1982'  'B'

where each row contains an ID (column 1), a date (column 2), and a credit rating
(column 3). Column 3 is the rating assigned to the corresponding ID on the
corresponding date. All information corresponding to the same ID must be stored in
contiguous rows. Sorting this information by date is not required, but recommended
for efficiency. When using a MATLAB table input, the names of the columns are
irrelevant, but the ID, date and rating information are assumed to be in the first,
second and third columns, respectively. Also, when using a table input, the first and
third columns can be categorical arrays, and the second can be a datetime array. The
following summarizes the supported data types for table input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)

Table • Numeric array
• Cell array of

character vectors
• Categorical

array

• Numeric array
• Cell array of

character vectors
• Datetime array

• Numeric array
• Cell array of

character vectors
• Categorical

array

• An nRecords-by-3 cell array of character vectors containing the historical credit
ratings data of the form:

'00010283'  '10-Nov-1984'  'CCC'

'00010283'  '12-May-1986'  'B'

'00010283'  '29-Jun-1988'  'CCC'

'00010283'  '12-Dec-1991'  'D'

'00013326'  '09-Feb-1985'  'A'

'00013326'  '24-Feb-1994'  'AA'

'00013326'  '10-Nov-2000'  'BBB'

'00014413'  '23-Dec-1982'  'B'

where each row contains an ID (column 1), a date (column 2), and a credit rating
(column 3). Column 3 is the rating assigned to the corresponding ID on the
corresponding date. All information corresponding to the same ID must be stored in
contiguous rows. Sorting this information by date is not required, but recommended
for efficiency. IDs, dates, and ratings are usually stored in character vector format,
but they can also be entered in numeric format. The following summarizes the
supported data types for cell array input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)

Cell • Numeric
elements

• Numeric
elements

• Numeric
elements
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Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)

• Character vector
elements

• Character vector
elements

• Character vector
elements

• A preprocessed data structure obtained using transprobprep. This data structure
contains the fields'idStart', 'numericDates', 'numericRatings', and
'ratingsLabels'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'algorithm'

Estimation algorithm, in character vector format. Valid values are duration or cohort.

Default: duration

'endDate'

End date of the estimation time window, in character vector or numeric format. The
endDate cannot be a date before the startDate.

Default: Latest date in data

'labels'

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the credit-rating scale.
It must be consistent with the ratings labels used in the third column of data. Use a cell
array of numbers for numeric ratings, and a cell array for character vectors or categorical
ratings.

Note: When the input argument data is a preprocessed data structure obtained from a
previous call to transprobprep, this optional input for 'labels is unused because the
labels in the 'ratingsLabels' field of transprobprep take priority.

Default: {'AAA','AA','A','BBB','BB','B','CCC','D'}
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'snapsPerYear'

Integer indicating the number of credit-rating snapshots per year to be considered for
the estimation. Valid values are 1, 2, 3, 4, 6, 12. This parameter is only used with the
cohort algorithm.

Default: 1 — One snapshot per year

'startDate'

Start date of the estimation time window, in character vector or numeric format.

Default: Earliest date in data

'transInterval'

Length of the transition interval, in years.

Default: 1 — One year transition probability

Output Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition matrix is
nRatings-by-nRatings.

sampleTotals

Structure with fields:

• totalsVec — A vector of size 1-by-nRatings.
• totalsMat — A matrix of size nRatings-by-nRatings.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions observed
out of rating i into ratingj (all the diagonal elements are zero). The total time spent on
rating i is stored in totalsVec(i). For example, if there are three rating categories,
Investment Grade (IG), Speculative Grade (SG), and Default (D), and the following
information:
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Total time spent    IG       SG       D

in rating:       4859.09  1503.36  1162.05

 

Transitions             IG   SG    D

out of (row)       IG    0   89    7

into (column):     SG  202    0   32

                    D    0    0    0

Then

totals.totalsVec = [4859.09  1503.36  1162.05]

totals.totalsMat = [  0   89    7

                    202    0   32

                      0    0    0]

totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed from
rating i to rating j, and totalsVec(i) is the initial count in rating i. For example, given
the following information:

Initial count       IG     SG     D

in rating:        4808   1572   1145

 

Transitions         IG     SG     D

from (row)    IG  4721     80      7

to (column):  SG   193   1347     32

               D     0      0   1145

Then

totals.totalsVec = [4808   1572   1145]

totals.totalsMat = [4721     80      7

                    193   1347     32

                      0      0   1145

totals.algorithm = 'cohort'

idTotals

Struct array of size nIDs-by-1, where nIDs is the number of distinct IDs in column
1 of data when this is a table or cell array or, equivalently, equal to the length
of the idStart field minus 1 when data is a preprocessed data structure from
transprobprep. For each ID in the sample, idTotals contains one structure with the
following fields:

• totalsVec — A sparse vector of size 1-by-nRatings.
• totalsMat — A sparse matrix of size nRatings-by-nRatings.
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• algorithm — A character vector with values 'duration' or 'cohort'.

These fields contain the same information described for the output sampleTotals, but
at an ID level. For example, for 'duration', idTotals(k).totalsVec contains the total
time that the k-th company spent on each rating.

Examples

Construct a Transition Matrix From a Table of Historical Data of Credit Ratings

Using the historical credit rating table as input data from Data_TransProb.mat display
the first ten rows and compute the transition matrix:

load Data_TransProb

data(1:10,:)

% Estimate transition probabilities with default settings

transMat = transprob(data)

ans = 

        ID            Date         Rating

    __________    _____________    ______

    '00010283'    '10-Nov-1984'    'CCC' 

    '00010283'    '12-May-1986'    'B'   

    '00010283'    '29-Jun-1988'    'CCC' 

    '00010283'    '12-Dec-1991'    'D'   

    '00013326'    '09-Feb-1985'    'A'   

    '00013326'    '24-Feb-1994'    'AA'  

    '00013326'    '10-Nov-2000'    'BBB' 

    '00014413'    '23-Dec-1982'    'B'   

    '00014413'    '20-Apr-1988'    'BB'  

    '00014413'    '16-Jan-1998'    'B'   

transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001
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    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Using the historical credit rating table input data from Data_TransProb.mat, compute
the transition matrix using the cohort algorithm:

%Estimate transition probabilities with 'cohort' algorithm

transMatCoh = transprob(data,'algorithm','cohort')

transMatCoh =

  Columns 1 through 7

   93.1345    5.9335    0.7456    0.1553    0.0311         0         0

    1.7359   92.9198    4.5446    0.6046    0.1560         0         0

    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0

    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421

    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873

         0         0    0.0761    0.7230    7.9909   86.1872    2.7397

         0         0         0    0.3094    1.8561    4.5630   80.8971

         0         0         0         0         0         0         0

  Column 8

         0

    0.0390

    0.0725
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    0.2103

    0.6409

    2.2831

   12.3743

  100.0000

Using the historical credit rating data with ratings investment grade ('IG'), speculative
grade ('SG'), and default ('D'), from Data_TransProb.mat display the first ten rows
and compute the transition matrix:

dataIGSG(1:10,:)

transMatIGSG = transprob(dataIGSG,'labels',{'IG','SG','D'})

ans = 

        ID            Date         Rating

    __________    _____________    ______

    '00011253'    '04-Apr-1983'    'IG'  

    '00012751'    '17-Feb-1985'    'SG'  

    '00012751'    '19-May-1986'    'D'   

    '00014690'    '17-Jan-1983'    'IG'  

    '00012144'    '21-Nov-1984'    'IG'  

    '00012144'    '25-Mar-1992'    'SG'  

    '00012144'    '07-May-1994'    'IG'  

    '00012144'    '23-Jan-2000'    'SG'  

    '00012144'    '20-Aug-2001'    'IG'  

    '00012937'    '07-Feb-1984'    'IG'  

transMatIGSG =

   98.6719    1.2020    0.1261

    3.5781   93.3318    3.0901

         0         0  100.0000

Using the historical credit rating data with numeric ratings for investment grade (1),
speculative grade (2), and default (3), from Data_TransProb.mat display the first ten
rows and compute the transition matrix:

dataIGSGnum(1:10,:)

transMatIGSGnum = transprob(dataIGSGnum,'labels',{1,2,3})
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ans = 

        ID            Date         Rating

    __________    _____________    ______

    '00011253'    '04-Apr-1983'    1     

    '00012751'    '17-Feb-1985'    2     

    '00012751'    '19-May-1986'    3     

    '00014690'    '17-Jan-1983'    1     

    '00012144'    '21-Nov-1984'    1     

    '00012144'    '25-Mar-1992'    2     

    '00012144'    '07-May-1994'    1     

    '00012144'    '23-Jan-2000'    2     

    '00012144'    '20-Aug-2001'    1     

    '00012937'    '07-Feb-1984'    1     

transMatIGSGnum =

   98.6719    1.2020    0.1261

    3.5781   93.3318    3.0901

         0         0  100.0000

Construct a Transition Matrix Using a Cell Array for Historical Data of Credit Ratings

Use a MATLAB® table containing the historical credit rating cell array input data
(dataCellFormat) from Data_TransProb.mat. Estimate transition probabilities with
default settings.

load Data_TransProb

transMat = transprob(dataCellFormat)

transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169
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    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Using the historical credit rating cell array input data (dataCellFormat), compute the
transition matrix using the cohort algorithm:

%Estimate transition probabilities with 'cohort' algorithm

transMatCoh = transprob(dataCellFormat,'algorithm','cohort')

transMatCoh =

  Columns 1 through 7

   93.1345    5.9335    0.7456    0.1553    0.0311         0         0

    1.7359   92.9198    4.5446    0.6046    0.1560         0         0

    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0

    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421

    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873

         0         0    0.0761    0.7230    7.9909   86.1872    2.7397

         0         0         0    0.3094    1.8561    4.5630   80.8971

         0         0         0         0         0         0         0

  Column 8

         0

    0.0390

    0.0725

    0.2103

    0.6409

    2.2831

   12.3743

  100.0000
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• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5

More About

Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence of
snapshots of credit ratings at regularly spaced points in time. If the credit rating of
a company changes twice between two snapshot dates, the intermediate rating is
overlooked and only the initial and final ratings influence the estimates.

Duration Estimation

Unlike the cohort method, the duration algorithm estimates the transition probabilities
based on the full credit ratings history, looking at the exact dates on which the credit
rating migrations occur. There is no concept of snapshots in this method, and all credit
rating migrations influence the estimates, even when a company's rating changes twice
within a short time.

Algorithms

Cohort Estimation

The algorithm first determines a sequence t0,...,tK of snapshot dates. The elapsed time,
in years, between two consecutive snapshot dates tk-1 and tk is equal to 1 / ns, where ns is
the number of snapshots per year. These K +1 dates determine K transition periods.

The algorithm computes N
i

n , the number of transition periods in which obligor n starts
at rating i. These are added up over all obligors to get Ni, the number of obligors in the
sample that start a period at rating i. The number periods in which obligor n starts at

rating i and ends at rating j, or migrates from i to j, denoted by N ij
n , is also computed.

These are also added up to get N ij , the total number of migrations from i to j in the
sample.
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The estimate of the transition probability from i to j in one period, denoted by Pij , is given
by:

P
N

N
ij

ij

i
=

These probabilities are arranged in a one-period transition matrix P0, where the i,j entry
in P0 is Pij.

If the number of snapshots per year ns is 4 (quarterly snapshots), the probabilities in P0
are 3-month (or 0.25-year) transition probabilities. You may, however, be interested in
1-year or 2-year transition probabilities. The latter time interval is called the transition
interval, Δt , and it is used to convert P0 into the final transition matrix, P, according to
the formula:

P P
ns t

=
0

V

For example, if ns = 4 and Δt = 2, P contains the 2-year transition probabilities estimated
from quarterly snapshots.

Note: For the cohort algorithm, optional output arguments idTotals and
sampleTotals from transprob contain the following information:

•
idTotals(n).totalsVec = ( )N

i

n
i"

•
idTotals(n).totalsMat = ( ),N i j

n
ij"

• idTotals(n).algoritm = 'cohort'
•

sampleTotals.totalsVec = ( )N
i

i"

•
sampleTotals.totalsMat = ( ),N i j ij"

• sampleTotals.algoritm = 'cohort'
For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.
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Duration Estimation

The algorithm computes T
i

n , the total time that obligor n spends in rating i within the

estimation time window. These quantities are added up over all obligors to get T
i , the

total time spent in rating i, collectively, by all obligors in the sample. The algorithm also

computes Tij
n , the number times that obligor n migrates from rating i to rating j, with i

not equal to j, within the estimation time window. And it also adds them up to get Tij ,
the total number of migrations, by all obligors in the sample, from the rating i to j, with i
not equal to j.

To estimate the transition probabilities, the duration algorithm first needs to compute
a generator matrix L . Each off-diagonal entry of this matrix is an estimate of the
transition rate out of rating i into rating j, and is given by:

lij
ij

i

T

T
i j= π,

The diagonal entries are computed as:

l lii

j i

ij= -

π

Â

With the generator matrix and the transition interval Δt (e.g., Δt = 2 corresponds to 2-
year transition probabilities), the transition matrix is obtained as P t= exp( )D L , where
exp denotes matrix exponentiation (expm in MATLAB).

Note: For the duration algorithm, optional output arguments idTotals and
sampleTotals from transprob contain the following information:

•
idTotals(n).totalsVec = ( )T

i

n
i"

•
idTotals(n).totalsMat = ( ),Ti j

n
ij"
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• idTotals(n).algoritm = 'duration'

•
sampleTotals.totalsVec = ( )T

i
i"

•
sampleTotals.totalsMat = ( ),Ti j ij"

• sampleTotals.algoritm = 'duration'
For efficiency, the vectors and matrices in idTotals are stored as sparse arrays.

• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

References

Hanson, S., T. Schuermann. "Confidence Intervals for Probabilities of Default." Journal
of Banking & Finance. Vol. 30(8), Elsevier, August 2006, pp. 2281–2301.

Löffler, G., P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex,
England: Wiley Finance, 2007.

Schuermann, T. "Credit Migration Matrices." in E. Melnick, B. Everitt (eds.),
Encyclopedia of Quantitative Risk Analysis and Assessment. Wiley, 2008.

See Also
table | transprobbytotals | transprobprep

Introduced in R2010b
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transprobbytotals
Estimate transition probabilities using totals structure input

Syntax

[transMat,sampleTotals] = transprobbytotals(totals)

[transMat,sampleTotals] = transprobbytotals(totals,

Name,Value)

Description

[transMat,sampleTotals] = transprobbytotals(totals) estimates transition
probabilities using a totals structure input.

[transMat,sampleTotals] = transprobbytotals(totals,

Name,Value) estimates transition probabilities using a totals structure input with
additional options specified by one or more Name,Value pair arguments.

transprobbytotals is useful for removing outlier information, obtaining bootstrapped
confidence intervals, or computing transition probability estimates for different
periodicity parameters (1-year transitions, 2-year transitions, etc.) efficiently.

Input Arguments

totals

This can be:

• totalsVec — A sparse vector of size 1-by-nRatings1.
• totalsMat — A sparse matrix of size nRatings1-by-nRatings2 with nRatings1 ≤

nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions observed
out of rating i into rating j (all the diagonal elements are 0). The total time spent on
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rating i is stored in totalsVec(i). For example, you have three rating categories,
Investment Grade (IG), Speculative Grade (SG), and Default (D), and the following
information:

Total time spent    IG       SG       D

in rating:       4859.09  1503.36  1162.05

 

Transitions             IG   SG    D

out of (row)       IG    0   89    7

into (column):     SG  202    0   32

                    D    0    0    0

Then:

totals.totalsVec = [4859.09  1503.36  1162.05]

totals.totalsMat = [  0   89    7

                    202    0   32

                      0    0    0]

totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed from
rating i to rating j, and totalsVec(i) is the initial count in rating i. For example, given
the following information:

Initial count       IG     SG     D

in rating:        4808   1572   1145

 

Transitions         IG     SG     D

from (row)    IG  4721     80      7

to (column):  SG   193   1347     32

               D     0      0   1145

Then:

totals.totalsVec = [4808   1572   1145]

totals.totalsMat = [4721     80      7

                    193   1347     32

                      0      0   1145

totals.algorithm = 'cohort'

Common totals structures are the optional output arguments from transprob:

• sampleTotals — A single structure summarizing the totals information for the
whole dataset.

• idTotals — A struct array with the totals information at the ID level.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'snapsPerYear'

Integer indicating the number of credit-rating snapshots per year to be considered for the
estimation. Values are 1, 2, 3, 4, 6, or 12. This argument is only used with the cohort
algorithm.

Default: 1 — One snapshot per year

'transInterval'

Length of the transition interval, in years.

Default: 1 — One-year transition probabilities

Output Arguments

transMat

Matrix of transition probabilities in percent. The size of the transition matrix is
nRatings1-by-nRatings2.

sampleTotals

Structure with fields:

• totalsVec — A vector of size 1-by-nRatings1.
• totalsMat — A matrix of size nRatings1-by-nRatings2 with nRatings1 ≤

nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

If totals is a struct array, sampleTotals contains the aggregated information. That
is, sampleTotals.totalsVec is the sum of totals(k).totalsVec over all k, and
similarly for totalsMat. When totals is itself a single structure, sampleTotals and
totals are the same.
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Examples

Estimate Transition Probabilities Using a totals Structure Input

Use historical credit rating input data from Data_TransProb.mat and transprob to
generate input for transprobbytotals:

load Data_TransProb

% Call TRANSPROB with three output arguments

[transMat, sampleTotals, idTotals] = transprob(data);

transMat

transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Suppose companies 4 and 27 are outliers and you want to remove them from the pre-
processed idTotals struct array and estimate the new transition probabilities.

idTotals([4 27]) = [];

[transMat1, sampleTotals1] = transprobbytotals(idTotals);
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transMat1

transMat1 =

  Columns 1 through 7

   93.1172    5.8427    0.8231    0.1763    0.0377    0.0012    0.0001

    1.6213   93.1501    4.3584    0.6614    0.1631    0.0055    0.0004

    0.1239    2.9027   92.2297    4.0628    0.5367    0.0661    0.0028

    0.0236    0.2313    5.0070   90.1825    3.7986    0.4734    0.0642

    0.0216    0.1134    0.6357    5.7959   88.9866    3.4497    0.2920

    0.0010    0.0062    0.1081    0.8697    7.3367   86.7217    2.5171

    0.0002    0.0011    0.0120    0.2591    1.4340    4.3034   81.3027

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0397

    0.0753

    0.2193

    0.7050

    2.4395

   12.6875

  100.0000

Obtain the 1-year, 2-year, 3-year, 4-year, and 5-year default probabilities, without the
outlier information (i.e., using sampleTotals1).

DefProb = zeros(7,5);

for t = 1:5

    transMatTemp = transprobbytotals(sampleTotals1,'transInterval',t);

    DefProb(:,t) = transMatTemp(1:7,8);

end

DefProb

DefProb =

    0.0017    0.0070    0.0159    0.0285    0.0450

    0.0397    0.0828    0.1299    0.1813    0.2377

    0.0753    0.1606    0.2567    0.3640    0.4831

    0.2193    0.4675    0.7430    1.0445    1.3700
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    0.7050    1.4668    2.2759    3.1232    4.0000

    2.4395    4.9282    7.4071    9.8351   12.1847

   12.6875   23.1184   31.7177   38.8282   44.7266

• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5

More About

Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence
of snapshots of credit ratings at regularly spaced points in time. If the credit rating
of a company changes twice between two snapshot dates, the intermediate rating is
overlooked and only the initial and final ratings influence the estimates. For more
information, see “Algorithms” on page 18-1718.

Duration Estimation

Unlike the cohort algorithm, the duration algorithm estimates the transition
probabilities based on the full credit ratings history, looking at the exact dates on which
the credit rating migrations occur. There is no concept of snapshots in this method,
and all credit rating migrations influence the estimates, even when a company's rating
changes twice within a short time. For more information, see “Algorithms” on page
18-1718.
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

References

Hanson, S., T. Schuermann. "Confidence Intervals for Probabilities of Default." Journal
of Banking & Finance. Vol. 30(8), Elsevier, August 2006, pp. 2281–2301.

Löffler, G., P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex,
England: Wiley Finance, 2007.

Schuermann, T. "Credit Migration Matrices." in E. Melnick, B. Everitt (eds.),
Encyclopedia of Quantitative Risk Analysis and Assessment. Wiley, 2008.
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See Also
transprob | transprobgrouptotals

Introduced in R2010b
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transprobfromthresholds
Convert from credit quality thresholds to transition probabilities

Syntax

trans = transprobfromthresholds(thresh)

Description

trans = transprobfromthresholds(thresh) transforms credit quality thresholds
into transition probabilities.

Input Arguments

thresh

M-by-N matrix of credit quality thresholds. In each row, the first element must be Inf and
the entries must satisfy the following monotonicity condition:

 thresh(i,j) >= thresh(i,j+1), for 1<=j<N

The M-by-N input thresh and the M-by-N output trans are related as follows. The
thresholds thresh(i,j) are critical values of a standard normal distribution z, such that:
trans(i,N) = P[z < thresh(i,N)],

 

trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

Any given row in the output matrix TRANS determines a probability distribution over
a discrete set of N ratings 'R1', ..., 'RN', so that for any row i TRANS(i,j) is the
probability of migrating into 'Rj'. TRANS can be a standard transition matrix, with
M ≤ N, in which case row i contains the transition probabilities for issuers with rating
'Ri'. But TRANS does not have to be a standard transition matrix. TRANS can contain
individual transition probabilities for a set of M-specific issuers, with M > N.

For example, suppose that there are only N=3 ratings, 'High', 'Low', and 'Default',
with these credit quality thresholds:
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        High    Low    Default

High    Inf   -2.0814   -3.1214

Low     Inf    2.4044   -1.7530

The matrix of transition probabilities is then:

       High   Low   Default

High  98.13   1.78   0.09

Low    0.81  95.21   3.98

This means the probability of default for 'High' is equivalent to drawing a standard
normal random number smaller than −3.1214, or 0.09%. The probability that a 'High'
ends up the period with a rating of 'Low' or lower is equivalent to drawing a standard
normal random number smaller than −2.0814, or 1.87%. From here, the probability of
ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13%

where 100% is the same as:

P[z<Inf]

Output Arguments

trans

M-by-N matrix with transition probabilities, in percent.

Examples

Transform Credit Quality Thresholds Into Transition Probabilities

Use historical credit rating input data from Data_TransProb.mat, estimate transition
probabilities with default settings.

load Data_TransProb

% Estimate transition probabilities with default settings

transMat = transprob(data)
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transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Obtain the credit quality thresholds.

thresh = transprobtothresholds(transMat)

thresh =

  Columns 1 through 7

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276

       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523

       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631

       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663

       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275

       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491

       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556

       Inf       Inf       Inf       Inf       Inf       Inf       Inf

  Column 8
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   -4.1413

   -3.3554

   -3.1736

   -2.8490

   -2.4547

   -1.9703

   -1.1399

       Inf

Recover the transition probabilities.

trans = transprobfromthresholds(thresh)

trans =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5
• “Estimate Probabilities for Different Segments” on page 8-16
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More About
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

References

Gupton, G. M., C. C. Finger, and M. Bhatia. “CreditMetrics.” Technical Document,
RiskMetrics Group, Inc., 2007.

See Also
transprob | transprobbytotals | transprobtothresholds

Introduced in R2011b
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transprobgrouptotals
Aggregate credit ratings information into fewer rating categories

Syntax

totalsGrouped = transprobgrouptotals(totals,groupingEdges)

Description

totalsGrouped = transprobgrouptotals(totals,groupingEdges) aggregates
the credit ratings information stored in the totals input into fewer ratings categories,
which are defined by the groupingEdges argument.

Input Arguments

totals

Structure, or a struct array of length nTotals, with fields:

• totalsVeC — A vector of size 1-by-nRatings1.
• totalsMat — A matrix of size nRatings1-by-nRatings2, with nRatings1 ≤

nRatings2.
• algorithm — A character vector with values 'duration' or 'cohort'.

For the 'duration' algorithm, totalsMat(i,j) contains the total transitions
observed out of rating i into rating j (all the diagonal elements are 0). The total time
spent on rating i is stored in totalsVec(i). For example, if there are three rating
categories, Investment Grade (IG), Speculative Grade (SG), and Default (D), and the
following information:

Total time spent    IG       SG       D

in rating:       4859.09  1503.36  1162.05

 

Transitions             IG   SG    D

out of (row)       IG    0   89    7

into (column):     SG  202    0   32
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                    D    0    0    0

Then:

totals.totalsVec = [4859.09  1503.36  1162.05]

totals.totalsMat = [  0   89    7

                    202    0   32

                      0    0    0]

totals.algorithm = 'duration'

For the 'cohort' algorithm, totalsMat(i,j) contains the total transitions observed
from rating i to rating j, and totalsVec(i) is the initial count in rating i. For
example, given the following information:

Initial count       IG     SG     D

in rating:        4808   1572   1145

Transitions         IG     SG     D

from (row)    IG  4721     80      7

to (column):  SG   193   1347     32

               D     0      0   1145

Then:

totals.totalsVec = [4808   1572   1145]

totals.totalsMat = [4721     80      7

                     193   1347     32

                       0      0   1145]

totals.algorithm = 'cohort'

Note: Common totals structures are the optional output arguments from transprob:

• sampleTotals — A single structure summarizing the totals information for the
whole dataset.

• idTotals — A struct array with the totals information at the ID level.
For more information, see “Algorithms” on page 18-1718.

groupingEdges

Numeric array with increasing, positive integers to indicate how to group credit ratings
into categories.

This table illustrates how to group a list of whole ratings into investment grade (IG) and
speculative grade (SG) categories. Eight ratings are in the original list. Ratings 1 to 4 are
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IG, ratings 5 to 7 are SG, and rating 8 is a category of its own. In this example, the array
of grouping edges is  [4 7 8].
Original ratings: 'AAA' 'AA'  'A'   'BBB' | 'BB'  'B'   'CCC' | 'D'

                                          |                   |    

Relative ordering: (1)   (2)   (3)   (4)  |  (5)  (6)    (7)  | (8)

                                          |                   |    

Grouped ratings:           'IG'           |      'SG'         | 'D'

                                          |                   |    

Grouping edges:                      (4)  |              (7)  | (8)

In general, if groupingEdges has K elements edge1 < edge2 < ... <edgeK, ratings 1
to edge1 (inclusive) are grouped in the first category, ratings edge1+1 to edge2 in the
second category, and so forth.

Regarding the last element, edgeK:

• If nRatings1 equals nRatings2, then edgeK must equal nRatings1. This leads to
K groups, and nRatingsGrouped1 = nRatingsGrouped2 = K.

• If nRatings1 < nRatings2, then either:

• edgeK equals nRatings1, in which case ratings edgeK+1,...,nRatings2 are
treated as categories of their own. This results in K+(nRatings2-edgeK) groups,
with nRatingsGrouped1 = K and nRatingsGrouped2 = K + (nRatings2 –
edgeK); or

• edgeK equals nRatings2, in which case there must be a jth edge element,
edgej, such that edgej equals nRatings1. This leads to K groups, and
nRatingsGrouped1 = j and nRatingsGrouped2 = K.

Output Arguments

totalsGrouped

Structure, or a struct array of length nTotals, with fields:

• totalsVec — A vector of size 1-by-nRatingsGrouped1.
• totalsMat — A matrix of size nRatingsGrouped1-by-nRatingsGrouped2.
• algorithm — A character vector, 'duration' or 'cohort'.

nRatingsGrouped1 and nRatingsGrouped2 are defined in the description of
groupingEdges. Each structure contains aggregated information by categories, based
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on the information provided in the corresponding structure in totals, according to the
grouping of ratings defined by groupingEdges and consistent with the algorithm
choice.

Following the examples in the description of the totals input, suppose IG and SG
are grouped into a single ND (Not-Defaulted) category, using the edges[2 3]. For the
'cohort' algorithm, the output is:

totalsGrouped.totalsVec = [6380   1145]

totalsGrouped.totalsMat = [6341     39

                              0   1145]

totalsGrouped.algorithm = 'cohort'

and for the 'duration' algorithm:

totalsGrouped.totalsVec = [6362.45  1162.05]

totalsGrouped.totalsMat = [0  39

                           0   0]

totalsGrouped.algorithm = 'duration'

Examples

Aggregate the Credit Ratings Information Stored in the totals Input

Use historical credit rating input data from Data_TransProb.mat. Load input data
from file Data_TransProb.mat.

load Data_TransProb

% Call TRANSPROB with two output arguments

[transMat, sampleTotals] = transprob(data);

transMat

transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169
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    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Group into investment grade (ratings 1-4) and speculative grade (ratings 5-7); note, the
default is the last rating (number 8).

edges = [4 7 8];

sampleTotalsGrp = transprobgrouptotals(sampleTotals,edges);

% Transition matrix at investment grade / speculative grade level

transMatIGSG = transprobbytotals(sampleTotalsGrp)

transMatIGSG =

   98.5336    1.3608    0.1056

    3.9155   92.9692    3.1153

         0         0  100.0000

Obtain the 1-year, 2-year, 3-year, 4-year, and 5-year default probabilities at investment
grade and speculative grade level.

DefProb = zeros(2,5);

for t = 1:5

transMatTemp = transprobbytotals(sampleTotalsGrp,'transInterval',t);

DefProb(:,t) = transMatTemp(1:2,3);

end

DefProb

DefProb =

18-1738



 transprobgrouptotals

    0.1056    0.2521    0.4359    0.6537    0.9027

    3.1153    6.0157    8.7179   11.2373   13.5881

• “Group Credit Ratings” on page 8-11
• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5
• “Estimate Probabilities for Different Segments” on page 8-16

More About

Cohort Estimation

The cohort algorithm estimates the transition probabilities based on a sequence
of snapshots of credit ratings at regularly spaced points in time. If the credit rating
of a company changes twice between two snapshot dates, the intermediate rating is
overlooked and only the initial and final ratings influence the estimates. For more
information, see “Algorithms” on page 18-1718.

Duration Estimation

Unlike the cohort algorithm, the duration algorithm estimates the transition
probabilities based on the full credit ratings history, looking at the exact dates on which
the credit rating migrations occur. There is no concept of snapshots in this method,
and all credit rating migrations influence the estimates, even when a company's rating
changes twice within a short time. For more information, see “Algorithms” on page
18-1718.
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

References

Hanson, S., T. Schuermann. "Confidence Intervals for Probabilities of Default." Journal
of Banking & Finance. Vol. 30(8), Elsevier, August 2006, pp. 2281–2301.

Löffler, G., P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex,
England: Wiley Finance, 2007.
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Schuermann, T. "Credit Migration Matrices." in E. Melnick, B. Everitt (eds.),
Encyclopedia of Quantitative Risk Analysis and Assessment. Wiley, 2008.

See Also
transprob | transprobbytotals

Introduced in R2011b
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transprobprep
Preprocess credit ratings data to estimate transition probabilities

Syntax

[prepData] = transprobprep(data)

[prepData] = transprobprep(data, Name,Value)

Description

[prepData] = transprobprep(data) preprocesses credit ratings historical data
(that is, credit migration data) for the subsequent estimation of transition probabilities.

[prepData] = transprobprep(data, Name,Value) preprocesses credit ratings
historical data (that is, credit migration data) for the subsequent estimation of transition
probabilities with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

data

Historical input data for credit ratings. the data input can be one of the following:

• A MATLAB table of size nRecords-by-3 containing the credit ratings. Each row
contains an ID (column 1), a date (column 2), and a credit rating (column 3). The
assigned credit rating corresponds to the associated ID on the associated date. All
information corresponding to the same ID must be stored in contiguous rows. Sorting
this information by date is not required, but recommended for efficiency.When using
a MATLAB table input, the names of the columns are irrelevant, but the ID, date
and rating information are assumed to be in the first, second and third columns,
respectively. Also, when using a table input, the first and third columns can be
categorical arrays, and the second can be a datetime array. Here is an example with
all of the information in table format:

 ID            Date             Rating
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__________    _____________    ______

'00010283'    '10-Nov-1984'    'CCC'

'00010283'    '12-May-1986'    'B'  

'00010283'    '29-Jun-1988'    'CCC'

'00010283'    '12-Dec-1991'    'D'  

'00013326'    '09-Feb-1985'    'A'  

'00013326'    '24-Feb-1994'    'AA' 

The following summarizes the supported data types for table input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)

Table • Numeric array
• Cell array of

character vectors
• Categorical

array

• Numeric array
• Cell array of

character vectors
• Datetime array

• Numeric array
• Cell array of

character vectors
• Categorical

array

• A cell array of size nRecords-by-3 containing the credit ratings. Each row contains
an ID (column 1), a date (column 2), and a credit rating (column 3). The assigned
credit rating corresponds to the associated ID on the associated date. All information
corresponding to the same ID must be stored in contiguous rows. Sorting this
information by date is not required but is recommended. IDs, dates, and ratings are
usually stored in character vector format, but they can also be entered in numeric
format. Here is an example with all of the information in character vector format:

 '00010283'    '10-Nov-1984'    'CCC'

 '00010283'    '12-May-1986'    'B'  

 '00010283'    '29-Jun-1988'    'CCC'

 '00010283'    '12-Dec-1991'    'D'  

 '00013326'    '09-Feb-1985'    'A'  

 '00013326'    '24-Feb-1994'    'AA' 

The following summarizes the supported data types for cell array input:

Data Input Type ID (1st Column) Date (2nd Column) Rating (3rd Column)

Cell • Numeric
elements

• Character vector
elements

• Numeric
elements

• Character vector
elements

• Numeric
elements

• Character vector
elements
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'labels'

Cell array of size nRatings-by-1, or 1-by-nRatings, containing the credit-rating scale.
It must be consistent with type of the ratings in the third column of data. Use a cell
array of numbers for numeric ratings, and a cell array for character vector or categorical
ratings.

Default: {'AAA','AA','A','BBB','BB','B','CCC','D'}

Output Arguments

prepData

Structure with the following fields:

• idStart — Array of size (nIDs+1)-by-1, where nIDs is the number of distinct IDs
in column 1 of data. This array summarizes where the credit ratings information
corresponding to each company starts and ends. The dates and ratings corresponding
to company j in data are stored from row idStart(j) to row idStart(j+1)−1 of
numericDates and numericRatings.

• numericDates — Array of size  nRecords-by-1, containing the dates in column 2 of
data, in numeric format.

• numericRatings — Array of size nRecords-by-1, containing the ratings in column 3
of data, mapped into numeric format.

• ratingsLabels — Cell array of size1-by-nRatings, containing the credit rating
scale.
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Examples

Aggregate the Credit Ratings Information Stored in the totals Input

Load input data from the file Data_TransProb.mat and display the first ten rows. In
this example, the inputs are provided in character vector format.

load Data_TransProb

% Preprocess credit ratings data.

prepData = transprobprep(data)

prepData = 

  struct with fields:

           idStart: [1506×1 double]

      numericDates: [4315×1 double]

    numericRatings: [4315×1 double]

     ratingsLabels: {'AAA'  'AA'  'A'  'BBB'  'BB'  'B'  'CCC'  'D'}

Estimate transition probabilities with the default settings.

transMat = transprob(prepData)

transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017
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    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Estimate transition probabilities with the 'cohort' algorithm.

transMatCoh = transprob(prepData,'algorithm','cohort')

transMatCoh =

  Columns 1 through 7

   93.1345    5.9335    0.7456    0.1553    0.0311         0         0

    1.7359   92.9198    4.5446    0.6046    0.1560         0         0

    0.1268    2.9716   91.9913    4.3124    0.4711    0.0544         0

    0.0210    0.3785    5.0683   89.7792    4.0379    0.4627    0.0421

    0.0221    0.1105    0.6851    6.2320   88.3757    3.6464    0.2873

         0         0    0.0761    0.7230    7.9909   86.1872    2.7397

         0         0         0    0.3094    1.8561    4.5630   80.8971

         0         0         0         0         0         0         0

  Column 8

         0

    0.0390

    0.0725

    0.2103

    0.6409

    2.2831

   12.3743

  100.0000

• “Group Credit Ratings” on page 8-11
• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5
• “Estimate Probabilities for Different Segments” on page 8-16

18-1745



18 Functions — Alphabetical List

More About
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

See Also
table | transprob | transprobbytotals

Introduced in R2011b
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transprobtothresholds
Convert from transition probabilities to credit quality thresholds

Syntax

thresh = transprobtothresholds(trans)

Description

thresh = transprobtothresholds(trans) transforms transition probabilities into
credit quality thresholds.

Input Arguments

trans

M-by-N matrix with transition probabilities, in percent. Entries cannot be negative and
cannot exceed 100, and all rows must add up to 100.

Any given row in the M-by-N input matrix trans determines a probability distribution
over a discrete set of N ratings. If the ratings are 'R1',...,'RN', then for any row i
trans(i,j) is the probability of migrating into 'Rj'. If trans is a standard transition
matrix, then M ≦ N and row i contains the transition probabilities for issuers with rating
'Ri'. But trans does not have to be a standard transition matrix. trans can contain
individual transition probabilities for a set of M-specific issuers, with M > N.

The credit quality thresholds thresh(i,j) are critical values of a standard normal
distribution z, such that:
trans(i,N) = P[z < thresh(i,N)],

trans(i,j) = P[z < thresh(i,j)] - P[z < thresh(i,j+1)], for 1<=j<N

This implies that thresh(i,1) = Inf, for all i. For example, suppose that there are only
N=3 ratings, 'High', 'Low', and 'Default', with the following transition probabilities:

      High   Low   Default
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High  98.13   1.78   0.09

Low    0.81  95.21   3.98

The matrix of credit quality thresholds is:

        High    Low    Default

High    Inf   -2.0814   -3.1214

Low     Inf    2.4044   -1.7530

This means the probability of default for 'High' is equivalent to drawing a standard
normal random number smaller than −3.1214, or 0.09%. The probability that a 'High'
ends up the period with a rating of 'Low' or lower is equivalent to drawing a standard
normal random number smaller than −2.0814, or 1.87%. From here, the probability of
ending with a 'Low' rating is:

P[z<-2.0814] - P[z<-3.1214] = 1.87% - 0.09% = 1.78%

And the probability of ending with a 'High' rating is:

100%-1.87% = 98.13% 

where 100% is the same as:

P[z<Inf]

Output Arguments

thresh

M-by-N matrix of credit quality thresholds.

Examples

Transform Transition Probabilities Into Credit Quality Thresholds

Use historical credit rating input data from Data_TransProb.mat. Load input data
from file Data_TransProb.mat.

load Data_TransProb

% Estimate transition probabilities with default settings

transMat = transprob(data)
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transMat =

  Columns 1 through 7

   93.1170    5.8428    0.8232    0.1763    0.0376    0.0012    0.0001

    1.6166   93.1518    4.3632    0.6602    0.1626    0.0055    0.0004

    0.1237    2.9003   92.2197    4.0756    0.5365    0.0661    0.0028

    0.0236    0.2312    5.0059   90.1846    3.7979    0.4733    0.0642

    0.0216    0.1134    0.6357    5.7960   88.9866    3.4497    0.2919

    0.0010    0.0062    0.1081    0.8697    7.3366   86.7215    2.5169

    0.0002    0.0011    0.0120    0.2582    1.4294    4.2898   81.2927

         0         0         0         0         0         0         0

  Column 8

    0.0017

    0.0396

    0.0753

    0.2193

    0.7050

    2.4399

   12.7167

  100.0000

Obtain the credit quality thresholds.

thresh = transprobtothresholds(transMat)

thresh =

  Columns 1 through 7

       Inf   -1.4846   -2.3115   -2.8523   -3.3480   -4.0083   -4.1276

       Inf    2.1403   -1.6228   -2.3788   -2.8655   -3.3166   -3.3523

       Inf    3.0264    1.8773   -1.6690   -2.4673   -2.9800   -3.1631

       Inf    3.4963    2.8009    1.6201   -1.6897   -2.4291   -2.7663

       Inf    3.5195    2.9999    2.4225    1.5089   -1.7010   -2.3275

       Inf    4.2696    3.8015    3.0477    2.3320    1.3838   -1.6491

       Inf    4.6241    4.2097    3.6472    2.7803    2.1199    1.5556

       Inf       Inf       Inf       Inf       Inf       Inf       Inf

  Column 8
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   -4.1413

   -3.3554

   -3.1736

   -2.8490

   -2.4547

   -1.9703

   -1.1399

       Inf

• “Credit Quality Thresholds” on page 8-52
• “Group Credit Ratings” on page 8-11
• “Estimation of Transition Probabilities” on page 8-2
• “Estimate Transition Probabilities for Different Rating Scales” on page 8-5
• “Estimate Probabilities for Different Segments” on page 8-16

More About
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

References

Gupton, G. M., C. C. Finger, and M. Bhatia. “CreditMetrics.” Technical Document,
RiskMetrics Group, Inc., 2007.

See Also
transprob | transprobbytotals | transprobfromthresholds

Introduced in R2011b
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ts2func
Convert time series arrays to functions of time and state

Syntax

F = ts2func(Array)

F = ts2func(Array, 'Name1', Value1, 'Name2', Value2, ...)

Description

The ts2func function encapsulates a time series array associated with a vector of real-
valued observation times within a MATLAB function suitable for Monte Carlo simulation
of an NVARS-by-1 state vector Xt.

Input Arguments

Array Time series array to encapsulate within a callable function of time and
state. Array may be a vector, 2-dimensional matrix, or three-dimensional
array.

Optional Input Arguments

Specify optional input arguments as variable-length lists of matching parameter name/
value pairs: 'Name1', Value1, 'Name2', Value2, ... and so on. The following rules apply
when specifying parameter-name pairs:

• Specify the parameter name as a character vector, followed by its corresponding
parameter value.

• You can specify parameter name/value pairs in any order.
• Parameter names are case insensitive.
• You can specify unambiguous partial character vector matches.

Valid parameter names are:
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Times Vector of monotonically increasing observation times associated
with the time series input array Array. If you do not specify a
value for this argument, Times is a zero-based, unit-increment
vector of the same length as that of the dimension of Array
associated with time (see TimeDimension).

TimeDimension Positive scalar integer that specifies which dimension of the
input time series array Array is associated with time. The
value of this argument cannot be greater than the number
of dimensions of Array. If you do not specify a value for this
argument, the default is 1, indicating that time is associated
with the rows of Array.

StateDimension Positive scalar integer that specifies which dimension of the
input time series array Array is associated with the NVARS
state variables. StateDimension cannot be greater than the
number of dimensions of Array. If you do not specify a value
for this argument, ts2func assigns StateDimension the first
dimension of Array that is not already associated with time (the
state vector Xt is associated with the first available dimension of
Array not already assigned to TimeDimension).

Deterministic A scalar, logical flag to indicate whether the output function
is a deterministic function of time alone. If Deterministic is
true, the output function F is a deterministic function of time,
F(t), and the only input it accepts is a scalar, real-valued time
t. If Deterministic is false, the output function F accepts two
inputs, a scalar, real-valued time t followed by an NVARS-by-1
state vectorX(t). The default is false, and F is a callable function
of time and state, F(t,X) .

Output Arguments

F Callable function F(t) of a real-valued scalar observation time t.
You can invoke F with a second input (such as an NVARS-by-1 state
vector X), which is a placeholder that ts2func ignores. For example,
while F(t) and F(t,X)  produce identical results, the latter directly
supports SDE simulation methods. If the optional input argument
Deterministic is true, F is a deterministic function of time, F(t), and
the only input it accepts is a scalar, real-valued time t. Otherwise, if
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Deterministic is false (the default), F accepts a scalar, real-valued
time t followed by an NVARS-by-1 state vector X(t).

More About

Algorithms

• When you specify Array as a trivial scalar or a vector (row or column), ts2func
assumes that it represents a univariate time series.

• F returns an array with one fewer dimension than the input time series array Array
with which F is associated. Thus, when Array is a vector, a 2-dimensional matrix,
or a three-dimensional array, F returns a scalar, vector, or 2-dimensional matrix,
respectively.

• When the scalar time t at which ts2func evaluates the function F does not coincide
with an observation time in Times, F performs a zero-order-hold interpolation.
The only exception is if t precedes the first element of Times, in which case F(t) =
F(Times(1)).

• To support Monte Carlo simulation methods, the output function F returns an NVARS-
by-1 column vector or a 2-dimensional matrix with NVARS rows.

• The output function F is always a deterministic function of time, F(t), and may always
be called with a single input regardless of the Deterministic flag. The distinction
is that when Deterministic is false, the function F may also be called with a second
input, an NVARS-by-1 state vector X(t), which is a placeholder and ignored. While
F(t) and F(t,X)  produce identical results, the former specifically indicates that the
function is a deterministic function of time, and may offer significant performance
benefits in some situations.

• “SDEs” on page 17-2
• “SDE Models” on page 17-8
• “SDE Class Hierarchy” on page 17-5
• “Performance Considerations” on page 17-79

References

Ait-Sahalia, Y. “Testing Continuous-Time Models of the Spot Interest Rate.” The Review
of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.
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Ait-Sahalia, Y. “Transition Densities for Interest Rate and Other Nonlinear Diffusions.”
The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P. Monte Carlo Methods in Financial Engineering. New York, Springer-
Verlag, 2004.

Hull, J. C. Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ:
Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol.
2, 2nd ed. New York, John Wiley & Sons, 1995.

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. New York:
Springer-Verlag, 2004.

See Also
simByEuler | simulate

Related Examples
• “Simulating Equity Prices” on page 17-34
• “Simulating Interest Rates” on page 17-61
• “Stratified Sampling” on page 17-73
• “Pricing American Basket Options by Monte Carlo Simulation” on page 17-87
• “Base SDE Models” on page 17-16
• “Drift and Diffusion Models” on page 17-19
• “Linear Drift Models” on page 17-23
• “Parametric Models” on page 17-25

Introduced in R2008a
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tsaccel

Acceleration between times

Syntax

acc = tsaccel(data, nTimes, datatype)

accts = tsaccel(tsobj, nTimes, datatype)

Arguments

data Data series.
nTimes (Optional) Number of times. Default = 12.
datatype (Optional) Indicates whether data contains the data itself or the

momentum of the data:

0 = Data contains the data itself (default).

1 = Data contains the momentum of the data.
tsobj Name of an existing financial time series object.

Description

Acceleration is the difference of two momentums separated by some number of periods.

acc = tsaccel(data, nTimes, datatype) calculates the acceleration of a data
series, essentially the difference of the current momentum with the momentum some
number of periods ago. If nTimes is specified, tsaccel calculates the acceleration of a
data series data with time distance of nTimes times.

accts = tsaccel(tsobj, nTimes, datatype) calculates the acceleration of the
data series in the financial time series object tsobj, essentially the difference of the
current momentum with the momentum some number of periods ago. Each data series in
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tsobj is treated individually. accts is a financial time series object with similar dates
and data series names as tsobj.

Note, to compute a quantity over n periods, you must specify n+1 for nTimes. If you
specify nTimes = 0, the function returns your original time series.

Examples

Calculate the Acceleration of a Data Series

This example shows how to calculate the acceleration of a data series for Disney stock
and plot the results.

load disney.mat

dis = rmfield(dis,'VOLUME'); % remove VOLUME field

dis_Accel = tsaccel(dis);

plot(dis_Accel)

title('Acceleration for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley & Sons,
New York, 1987.
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See Also
tsmom

Introduced before R2006a
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tsmom

Momentum between times

Syntax

mom = tsmom(data, nTimes)

momts = tsmom(tsobj, nTimes)

Arguments

data Data series. Column-oriented vector or matrix.
nTimes (Optional) Number of times. Default = 12.
tsobj Financial time series object.

Description

Momentum is the difference between two prices (data points) separated by a number of
times.

mom = tsmom(data, nTimes) calculates the momentum of a data series data. If
nTimes is specified, tsmom uses that value instead of the default 12.

momts = tsmom(tsobj, nTimes) calculates the momentum of all data series in the
financial time series object tsobj. Each data series in tsobj is treated individually.
momts is a financial time series object with similar dates and data series names as
tsobj. If nTimes is specified, tsmom uses that value instead of the default 12.

Note, to compute a quantity over n periods, you must specify n+1 for nTimes. If you
specify nTimes = 0, the function returns your original time series.
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Examples

Calculate the Momentum of a Data Series

This example shows how to calculate the momentum of a data series for Disney stock and
plot the results.

load disney.mat

dis = rmfield(dis,'VOLUME'); % remove VOLUME field

dis_Mom = tsmom(dis);

plot(dis_Mom)

title('Momentum for Disney')

• “Technical Analysis Examples” on page 16-4
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More About
• “Technical Indicators” on page 16-2

References

Kaufman, P. J. The New Commodity Trading Systems and Methods. John Wiley and
Sons, New York, 1987.

See Also
tsaccel

Introduced before R2006a
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tsmovavg
Moving average

tsmovavg calculates the simple, exponential, triangular, weighted, and modified moving
average of a vector or fints object of data. For information on working with financial
time series (fints objects) data, see “Working with Financial Time Series Objects” on
page 12-3.

Syntax

output = tsmovavg(tsobj,'s',lag)

output = tsmovavg(vector,'s',lag,dim)

output = tsmovavg(tsobj,'e',timeperiod)

output = tsmovavg(vector,'e',timeperiod,dim)

output = tsmovavg(tsobj,'t',numperiod)

output = tsmovavg(vector,'t',numperiod,dim)

output = tsmovavg(tsobj,'w',weights)

output = tsmovavg(vector,'w',weights,dim)

output = tsmovavg(tsobj,'m',numperiod)

output = tsmovavg(vector,'m',numperiod,dim)

Description

output = tsmovavg(tsobj,'s',lag) returns the simple moving average by for
financial time series object, tsobj. lag indicates the number of previous data points
used with the current data point when calculating the moving average.

output = tsmovavg(vector,'s',lag,dim) returns the simple moving average for a
vector. lag indicates the number of previous data points used with the current data point
when calculating the moving average.

output = tsmovavg(tsobj,'e',timeperiod) returns the exponential weighted
moving average for financial time series object, tsobj. The exponential moving average
is a weighted moving average, where timeperiod specifies the time period. Exponential
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moving averages reduce the lag by applying more weight to recent prices. For example,
a 10-period exponential moving average weights the most recent price by 18.18%.
Exponential Percentage = 2/(TIMEPER + 1) or 2/(WINDOW_SIZE + 1).

output = tsmovavg(vector,'e',timeperiod,dim) returns the exponential
weighted moving average for a vector. The exponential moving average is a weighted
moving average, where timeperiod specifies the time period. Exponential moving
averages reduce the lag by applying more weight to recent prices. For example, a
10-period exponential moving average weights the most recent price by 18.18%. (2/
(timeperiod + 1)).

output = tsmovavg(tsobj,'t',numperiod) returns the triangular moving average
for financial time series object, tsobj. The triangular moving average double-smooths
the data. tsmovavg calculates the first simple moving average with window width of
ceil(numperiod + 1)/2. Then it calculates a second simple moving average on the
first moving average with the same window size.

output = tsmovavg(vector,'t',numperiod,dim) returns the triangular moving
average for a vector. The triangular moving average double-smooths the data. tsmovavg
calculates the first simple moving average with window width of ceil(numperiod +
1)/2. Then it calculates a second simple moving average on the first moving average
with the same window size.

output = tsmovavg(tsobj,'w',weights) returns the weighted moving average
for the financial time series object, tsobj, by supplying weights for each element in the
moving window. The length of the weight vector determines the size of the window. If
larger weight factors are used for more recent prices and smaller factors for previous
prices, the trend is more responsive to recent changes.

output = tsmovavg(vector,'w',weights,dim) returns the weighted moving
average for the vector by supplying weights for each element in the moving window. The
length of the weight vector determines the size of the window. If larger weight factors
are used for more recent prices and smaller factors for previous prices, the trend is more
responsive to recent changes.

output = tsmovavg(tsobj,'m',numperiod) returns the modified moving average
for the financial time series object, tsobj. The modified moving average is similar to the
simple moving average. Consider the argument numperiod to be the lag of the simple
moving average. The first modified moving average is calculated like a simple moving
average. Subsequent values are calculated by adding the new price and subtracting the
last average from the resulting sum.
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output = tsmovavg(vector,'m',numperiod,dim) returns the modified moving
average for the vector. The modified moving average is similar to the simple moving
average. Consider the argument numperiod to be the lag of the simple moving
average. The first modified moving average is calculated like a simple moving average.
Subsequent values are calculated by adding the new price and subtracting the last
average from the resulting sum.

Examples

Compute Five Forms of Moving Averages Using a Financial Time Series Object

Load the financial time series object, dis for Disney stock and look at the weekly data for
this time series.

load disney.mat

weekly = toweekly(dis);

dates = (weekly.dates);

price = fts2mat(weekly.CLOSE);

Set the|lag| input argument for the window size for the moving average.

window_size = 12;

Calculate the simple moving average.

simple = tsmovavg(price,'s',window_size,1);

Calculate the exponential weighted moving average moving average.

exp = tsmovavg(price,'e',window_size,1);

Calculate the triangular moving average moving average.

tri = tsmovavg(price,'t',window_size,1);

Calculate the weighted moving average moving average.

semi_gaussian = [0.026 0.045 0.071 0.1 0.12 0.138];

semi_gaussian = [semi_gaussian fliplr(semi_gaussian)];

weighted = tsmovavg(price,'w',semi_gaussian,1);

Calculate the modified moving average moving average.

modif = tsmovavg(price,'m',window_size,1);
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Plot the results for the five moving average calculations for Disney stock.

plot(dates,price,...

    dates,simple,...

    dates,exp,...

    dates,tri,...

    dates,weighted,...

    dates,modif)

datetick

legend('Stock Price','Simple','Exponential','Triangular','Weighted',...

    'Modified','Location','NorthWest')

title('Disney Weekly Price & Moving Averages')

• “Using Time Series to Predict Equity Return” on page 12-25
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• “Data Transformation and Frequency Conversion” on page 12-12
• “Working with Financial Time Series Objects” on page 12-3
• “Creating a Financial Time Series Object” on page 13-12
• “Indexing a Financial Time Series Object” on page 12-18
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25
• “Technical Analysis Examples” on page 16-4

Input Arguments

tsobj — Financial time series object
object

Financial time series object specified using a time series object created using fints.

's' — Indicator for simple moving average
character vector

lag is the parameter indicating the number of previous data points to be used in
conjunction with the current data point when calculating the simple moving average.

lag — Number of previous data points
nonnegative integer

Number of previous data points specified as a nonnegative integer. Lag indicates the
window size or number of periods of the moving average.

vector — Set of observations
vector or matrix

Set of observations specified as a vector or matrix.

dim — dimension to operate along
positive integer with value 1 or 2

Dimension to operate along, specified as a positive integer with a value of 1 or 2. dim is
an optional input argument, and if it is not included as an input, the default value 2 is
assumed. The default of dim = 2 indicates a row-oriented matrix, where each row is a
variable and each column is an observation.
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If dim = 1, the input is assumed to be a column vector or column-oriented matrix, where
each column is a variable and each row an observation.

'e' — Indicator for exponential moving average
character vector

Exponential moving average is a weighted moving average, where timeperiod is the
time period of the exponential moving average. Exponential moving averages reduce
the lag by applying more weight to recent prices. For example, a 10 period exponential
moving average weights the most recent price by 18.18%.

Exponential Percentage = 2/(TIMEPER + 1) or 2/(WINDOW_SIZE + 1)

timeperiod — Length of time period
nonnegative integer

Length of time period specified as a nonnegative integer.

't' — Indicator for triangular moving average
character vector

Triangular moving average is a double-smoothing of the data. The first simple moving
average is calculated with a window width of ceil(numperiod + 1)/2. Then a second
simple moving average is calculated on the first moving average with the same window
size.

'm' — Indicator for modified moving average
character vector

The modified moving average is similar to the simple moving average. Consider the
argument numperiod to be the lag of the simple moving average. The first modified
moving average is calculated like a simple moving average. Subsequent values are
calculated by adding the new price and subtracting the last average from the resulting
sum.

numperiod — Number of periods considered
nonnegative integer

Number of periods considered specified as a nonnegative integer.

'w' — Indicator for weighted moving average
character vector
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A weighted moving average is calculated with a weight vector, weights. The length of
the weight vector determines the size of the window. If larger weight factors are used
for more recent prices and smaller factors for previous prices, the trend will be more
responsive to recent changes.

weights — Weights for each element in the moving window
vector of weights

Weights for each element in the window specified as a vector of weights.

Output Arguments

output — Moving average calculation
vector or matrix

Moving average calculation returned as a vector or matrix. The output returned from
tsmovavg is identical in format to the input.

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 184–192.

See Also
boxcox | convert2sur | convertto | diff | fillts | filter | lagts | leadts |
mean | peravg | resamplets | smoothts

Introduced before R2006a
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typprice

Typical price

Syntax

tprc = typprice(highp, lowp, closep)

tprc = typprice([highp lowp closep])

tprcts = typprice(tsobj)

tprcts = typprice(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
closep Closing price (vector).
tsobj Financial time series object.

Description

tprc = typprice(highp, lowp, closep) calculates the typical prices tprc from
the high (highp), low (lowp), and closing (closep) prices. The typical price is the
average of the high, low, and closing prices for each period.

tprc = typprice([highp lowp closep]) accepts a three-column matrix as the
input rather than two individual vectors. The columns of the matrix represent the high,
low, and closing prices, in that order.

tprcts = typprice(tsobj) calculates the typical prices from the stock data
contained in the financial time series object tsobj. The object must contain, at least, the
High, Low, and Close data series. The typical price is the average of the closing price
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plus the high and low prices. tprcts is a financial time series object of the same dates as
tsobj containing the data series TypPrice.

tprcts = typprice(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Typical Price

This example shows how to compute the typical price for Disney stock and plot the
results.

load disney.mat

dis_Typ = typprice(dis);

plot(dis_Typ)

title('Typical Price for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 291–292.
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See Also
medprice | wclose

Introduced before R2006a
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uicalendar
Graphical calendar

Syntax

uicalendar(Name,Value)

Description

uicalendar(Name,Value) supports a customizable graphical calendar that interfaces
with one or more uicontrol. uicalendar populates one or more uicontrol with user-
selected dates.

Examples

Use uicalendar with a uicontrol

Create a uicontrol:

textH1 = uicontrol('style', 'edit', 'position', [10 10 100 20]) 

textH1 = 

  UIControl with properties:

              Style: 'edit'

             String: ''

    BackgroundColor: [0.9400 0.9400 0.9400]

           Callback: ''

              Value: 0

           Position: [10 10 100 20]

              Units: 'pixels'

Call UICalendar:

uicalendar('DestinationUI', {textH1, 'string'})
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Select a date and click OK.

Alternatively, you can use datetime arrays for InitDate and Holiday.
uicalendar('InitDate',datetime('15-Mar-2015','Locale','en_US'),'Holiday',datetime('16-Mar-2015','Locale','en_US'))

Select a date and click OK. For more information on using uicalendar with an
application, see “Example of Using UICalendar with an Application” on page 15-5.

• “Handle and Convert Dates” on page 2-4
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Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: uicalendar('InitDate',datetime('15-
Mar-2015','Locale','en_US'),'Holiday',datetime('16-

Mar-2015','Locale','en_US'))

'BusDays' — Flag to indicate nonbusiness days
0 (Standard calendar without nonbusiness day indicators) (default) | numeric values of 0
or 1

Flag to indicate nonbusiness days, specified using numeric values of 0 or 1 . The values
are:

• 0 — (Default) Standard calendar without nonbusiness day indicators.

• 1 — Marks NYSE nonbusiness days in red.

Data Types: logical

'BusDaySelect' — Flag to indicate whether business and nonbusiness days
1 (Allows selections of business and nonbusiness days) (default) | numeric values of 0 or
1

Flag to indicate whether business and nonbusiness days, specified using numeric values
of 0 or 1 . The values are:

• 0 — Only allow selection of business days. Nonbusiness days are determined from the
following parameters:

• 'BusDays'

• 'Holiday'

• 'Weekend'

• 1 — (Default) Allows selections of business and nonbusiness days.
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Data Types: logical

'DateBoxColor' — Color of date squares
[date R G B]

Color of date squares, specified using [date R G B], where [R G B] is the color.

Data Types: double

'DateStrColor' — Color of numeric date number in the date square
[date R G B]

Color of numeric date number in the date square, specified using [date R G B], where
[R G B] is the color.

Data Types: double

'DestinationUI' — Destination object's handles
'string' (default UI property populated with dates) (default) | values are H or {H,
{Prop}}

Destination object's handles, specified with values H or {H, {Prop}}. The values are:

• H — Scalar or vector of the destination object's handles. The default UI property that
is populated with the dates is a character vector.

• {H, {Prop}} — Cell array of handles and the destination object's UI properties. H
must be a scalar or vector and Prop must be a single property character vector or a
cell array of property character vectors.

Data Types: char | cell

'Holiday' — Holiday dates in calendar
serial date numbers | datetime arays

Holiday dates in calendar, specified using a scalar or vector of serial date numbers or
datetime arrays. The corresponding date character vector of the holiday appears Red.
Data Types: double | datetime

'InitDate' — Initial start date when calendar is initialized
TODAY (default) | serial date number | datetime array | date character vector

Initial start date when calendar is initialized, specified with date values using a serial
date number, datetime array, or date character vector. The values are:
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• Datenum — Numeric or datetime array date value specifying the initial start date
when the calendar is initialized. The default date is TODAY.

• Datestr — Date character vector value specifying the initial start date when the
calendar is initialized. Datestr must include a Year, Month, and Day (for example,
01-Jan-2006).

Data Types: double | char | datetime

'InputDateFormat' — Format of initial start date
character vector

Format of initial start date (InitDate), specified using a character vector. Seedatestr
for date format values.
Data Types: double | datetime

'OutputDateFormat' — Format of output date
character vector

Format of output date, specified using a character vector. Seedatestr for date format
values.
Data Types: double | datetime

'OutputDateStyle' — Style for output date
0 (default) | numeric value of 0, 1, 2, or 3

Style for output date, specified using a value of 0, 1, 2, or 3. The values are:

• 0 — (Default) Returns a single date character vector or a cell array (row) of date
character vectors. For example, {'01-Jan-2001, 02-Jan-2001, ...'}.

• 1 — Returns a single date character vector or a cell (column) array of date character
vectors. For example, {'01-Jan-2001; 02-Jan-2001; ...'}.

• 2 — Returns a character vector representation of a row vector of datenums. For
example, '[732758, 732759, 732760, 732761]'.

• 3 — Returns a character vector representation of a column vector of datenums. For
example, '[732758; 732759; 732760; 732761]'.

Data Types: double
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'SelectionType' — Flag for date selection
1 (default) | numeric value of 0 or 1

Flag for date selection, specified with using a value of 0 or 1. The values are:

• 0 — Allows multiple date selections.

• 1 — (Default) Allows only a single date selection.

Data Types: logical

'Weekend' — Define weekend days
1 (default) | numeric values of 1 through 7

Define weekend days, specified using a value of 1 through 7. Weekend days are marked
in red. DayOfWeek can be a vector containing the following numeric values:

• 1 — Sunday
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday

Also this value can be a vector of length 7 containing 0's and 1's. The value 1 indicates a
weekend day. The first element of this vector corresponds to Sunday. For example, when
Saturday and Sunday are weekend days then WEEKEND = [1 0 0 0 0 0 1].

Data Types: double

'WindowStyle' — Window figure properties
Normal (default) | character vector with value of Normal or Model

Window figure properties, specified with using a character vector with a value of Normal
or Model. The values are:

• Normal — (Default) Standard figure properties.

• Modal — Modal figures remain stacked above all normal figures and the MATLAB
Command Window.
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Data Types: char

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
datetime | holidays

Introduced before R2006a
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uminus
Unary minus of financial time series object

Syntax
uminus

Description

uminus implements unary minus for a financial time series object.

See Also
uplus

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a
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uplus
Unary plus of financial time series object

Syntax
uplus

Description

uplus implements unary plus for a financial time series object.

See Also
uminus

Related Examples
• “Financial Time Series Operations” on page 12-8
• “Using Time Series to Predict Equity Return” on page 12-25

Introduced before R2006a

18-1781



18 Functions — Alphabetical List

var
Variance

Syntax
y = var(X)

y = var(X, 1)

y = var(X, W)

y = var(X, W, DIM)

Arguments

X Financial times series object.
W Weight vector used in calculating variance.
DIM Dimension of X used in calculating variance.

Description

var supports financial time series objects based on the MATLAB var function. See var
in the MATLAB documentation.

y = var(X), if X is a financial time series object and returns the variance of each series.

var normalizes y by N – 1 if N > 1, where N is the sample size. This is an unbiased
estimator of the variance of the population from which X is drawn, as long as X consists of
independent, identically distributed samples. For N = 1, y is normalized by N.

y = var(X, 1) normalizes by N and produces the second moment of the sample about
its mean. var(X, 0) is the same as var(X).

y = var(X, W) computes the variance using the weight vector W. The length of W must
equal the length of the dimension over which var operates, and its elements must be
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nonnegative. var normalizes W to sum to 1. Use a value of 0 for W to use the default
normalization by N – 1, or use a value of 1 to use N.

y = var(X, W, DIM) takes the variance along the dimension DIM of X.

Examples

The variance is the square of the standard deviation. Consider if

 f = fints((today:today+1)', [4 -2 1; 9  5 7])

then

var(f, 0, 1)

is

[12.5 24.5 18.0]

and

var(f, 0, 2)

is

[9.0; 4.0]

See Also
corrcoef | cov | mean | std

Introduced before R2006a

18-1783



18 Functions — Alphabetical List

vertcat
Concatenate financial time series objects vertically

Syntax
vertcat

Description

vertcat implements vertical concatenation of financial time series objects. vertcat
essentially adds data points to a time series object. Objects to be vertically concatenated
must not have any duplicate dates and/or times or any overlapping dates and/or times.
The description fields are concatenated as well. They are separated by ||.

Examples

Create two financial time series objects with daily frequencies:
myfts   = fints((today:today+4)', (1:5)', 'DataSeries', 'd');

yourfts = fints((today+5:today+9)', (11:15)', 'DataSeries', 'd');

Use vertcat to concatenate them vertically:

newfts1 = [myfts; yourfts]

newfts1 = 

 

    desc:   || 

    freq:  Daily (1)

    'dates:  (10)'    'DataSeries:  (10)'

    '11-Dec-2001'     [                1]

    '12-Dec-2001'     [                2]

    '13-Dec-2001'     [                3]

    '14-Dec-2001'     [                4]

    '15-Dec-2001'     [                5]

    '16-Dec-2001'     [               11]

    '17-Dec-2001'     [               12]
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    '18-Dec-2001'     [               13]

    '19-Dec-2001'     [               14]

    '20-Dec-2001'     [               15]

Create two financial time series objects with different frequencies:
myfts   = fints((today:today+4)', (1:5)', 'DataSeries', 'd');

hisfts  = fints((today+5:7:today+34)', (11:15)', 'DataSeries',... 

'w');

Concatenate these two objects vertically:

newfts2 = [myfts; hisfts]

 newfts2 = 

 

    desc:   || 

    freq:  Unknown (0)

    'dates:  (10)'    'DataSeries:  (10)'

    '11-Dec-2001'     [                1]

    '12-Dec-2001'     [                2]

    '13-Dec-2001'     [                3]

    '14-Dec-2001'     [                4]

    '15-Dec-2001'     [                5]

    '16-Dec-2001'     [               11]

    '23-Dec-2001'     [               12]

    '30-Dec-2001'     [               13]

    '06-Jan-2002'     [               14]

    '13-Jan-2002'     [               15]

If all frequency indicators are the same, the new object has the same frequency indicator.
However, if one of the concatenated objects has a different freq from the other(s), the
frequency of the resulting object is set to Unknown (0). In these examples, newfts1 has
Daily frequency, while newfts2 has Unknown (0) frequency.

See Also
horzcat

Introduced before R2006a
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volarea
Price and volume chart

Syntax
volarea(X)

Arguments

X X can be a table or a M-by-3 matrix. If X is a table, the first column
of dates can be serial date numbers, date character vectors, or
datetime arrays. If X is a M-by-3 matrix, the first column contains
date numbers, the second column is the asset price, and the third
column is the volume.

Description
volarea(X) plots asset date, price, and volume on a single axis.

Examples

Plot Asset Date, Price, and Volume on a Single Axis

This example shows how to plot asset date, price, and volume on a single axis, given
asset X as an M-by-3 matrix of date numbers, asset price, and volume.

X = [...

733299.00         41.99   15045445.00;...

733300.00         42.14   15346658.00;...

733303.00         41.93    9034397.00;...

733304.00         41.98   14486275.00;...

733305.00         41.75   16389872.00;...

733306.00         41.61   20475208.00;...

733307.00         42.29   14833200.00;...

733310.00         42.19   18945176.00;...
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733311.00         41.82   25188101.00;...

733312.00         41.93   22689878.00;...

733313.00         41.81   21084723.00;...

733314.00         41.37   27963619.00;...

733317.00         41.17   20385033.00;...

733318.00         42.02   27783775.00];

volarea(X)

Plot Asset Date, Price, and Volume on a Single Axis Using datetime Input

This example shows how to use datetime input to plot asset date, price, and volume on
a single axis, given asset X as an M-by-3 matrix of date numbers, asset price, and volume.

X = [...
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733299.00         41.99   15045445.00;...

733300.00         42.14   15346658.00;...

733303.00         41.93    9034397.00;...

733304.00         41.98   14486275.00;...

733305.00         41.75   16389872.00;...

733306.00         41.61   20475208.00;...

733307.00         42.29   14833200.00;...

733310.00         42.19   18945176.00;...

733311.00         41.82   25188101.00;...

733312.00         41.93   22689878.00;...

733313.00         41.81   21084723.00;...

733314.00         41.37   27963619.00;...

733317.00         41.17   20385033.00;...

733318.00         42.02   27783775.00];

t=array2table(X);

t.X1 = datetime(t.X1,'ConvertFrom','datenum','Locale','en_US');

volarea(t);
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• “Charting Financial Data” on page 2-12

See Also
bolling | candle | datetime | highlow | kagi | linebreak | movavg | pointfig
| priceandvol | renko

Introduced in R2008a
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volroc
Volume rate of change

Syntax
vroc = volroc(tvolume nTimes)

vrocts = volroc(tsobj, nTimes)

vrocts = volroc(tsobj, nTimes, 'ParameterName', ParameterValue, ...)

Arguments

tvolume Volume traded.
nTimes (Optional) Time difference. Default = 12.
tsobj Financial time series object.

Description

vroc = volroc(tvolume nTimes) calculates the volume rate of change, vroc, from
the volume traded data tvolume. If nTimes is specified, the volume rate of change is
calculated between the current volume and the volume nTimes ago.

vrocts = volroc(tsobj, nTimes) calculates the volume rate of change, vrocts,
from the financial time series object tsobj. The vrocts output is a financial time series
object with similar dates as tsobj and a data series named VolumeROC. If nTimes is
specified, the volume rate of change is calculated between the current volume and the
volume nTimes ago.

vrocts = volroc(tsobj, nTimes, 'ParameterName', ParameterValue, ...)

specifies the name for the required data series when it is different from the default name.
The valid parameter name is

• VolumeName: volume traded series name
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The parameter value is a character vector that represents the valid parameter name.

Note, to compute a quantity over n periods, you must specify n+1 for nTimes. If you
specify nTimes = 0, the function returns your original time series.

Examples

Compute the Volume Rate of Change

This example shows how to compute the volume rate of change for Disney stock and plot
the results.

load disney.mat

dis_VolRoc = volroc(dis);

plot(dis_VolRoc)

title('Volume Rate of Change for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 310–311.
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See Also
prcroc

Introduced before R2006a
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wclose

Weighted close

Syntax

wcls = wclose(highp, lowp, closep)

wcls = wclose([highp lowp closep])

wclsts = wclose(tsobj)

wclsts = wclose(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector).
lowp Low price (vector).
closep Closing price (vector).
tsobj Financial time series object.

Description

The weighted close price is the average of twice the closing price plus the high and low
prices.

wcls = wclose(highp, lowp, closep) calculates the weighted close prices wcls
based on the high (highp), low (lowp), and closing (closep) prices per period.

wcls = wclose([highp lowp closep]) accepts a three-column matrix consisting of
the high, low, and closing prices, in that order.

wclsts = wclose(tsobj) computes the weighted close prices for a set of stock price
data contained in the financial time series object tsobj. The object must contain the
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high, low, and closing prices needed for this function. The function assumes that the
series are named High, Low, and Close. All three are required. wclsts is a financial
time series object of the same dates as tsobj and contains the data series named
WClose.

wclsts = wclose(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Weighted Closing Prices

This example shows how to compute the weighted closing prices for Disney stock and plot
the results.

load disney.mat

dis_Wclose = wclose(dis);

plot(dis_Wclose)

title('Weighted Closing Prices for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 312–313.
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See Also
medprice | typprice

Introduced before R2006a
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weeknum
Week in year

Syntax

[N] = weeknum(D)

[N] = weeknum(D,W,E)

Description

[N] = weeknum(D) returns the week in year. The weeknum function considers the week
containing January 1 to be the first week of the year.

[N] = weeknum(D,W,E) returns the week in year using the optional input arguments
for W and E. The weeknum function considers the week containing January 1 to be the
first week of the year.

Examples

Determine the Week of the Year

Determine the week of the year using a serial date number.

N = weeknum(728647)

N =

    52

Determine the week of the year using a character vector.

N = weeknum('19-Dec-1994')

N =
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    52

Determine the week of the year using a datetime array.

N = weeknum(datetime('19-Dec-1994','Locale','en_US'))

N =

    52

The first week of the year must have at least four days in it. For example, January 8,
2004 was a Thursday. The European standard is used because the first week of the year
is the first week longer than three days.

weeknum('08-jan-2004',1,1)

ans =

     1

You can also use weeknum with datenum.

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'))

ans =

     1     1     1     2     2     2     2     2

The default start day of the week is Sunday. Every day after, and including the first
Sunday of the year (04-Jan-2004), returns 2 denoting the second week. In this case, the
first of week of the year started before January 1, 2004. You can also use weeknum with
datenum and specify a D value of 5 to indicate that the weeks start on Thursday.

weeknum(datenum('01-Jan-2004'):datenum('08-Jan-2004'),5)

ans =
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     1     1     1     1     1     1     1     2

The first week of the year that has four or more days, based on the specified start day, is
considered week one (even if this is not the first week in the calendar). Any day falling in
(or before) this week is given a week number of 1.

• “Handle and Convert Dates” on page 2-4

Input Arguments

D — Date to determine week in year
serial date number | data character vector | datetime array

Date to determine week in year, specified as a serial date number, date character vector,
or datetime array.

Serial date numbers can be a matrix. Date character vectors can be specified as a one-
dimensional cell array of character vectors. All the date character vectors must have the
same format.

Use the function datestr to convert serial date numbers to formatted date character
vectors.
Data Types: single | double | char | datetime

W — Day a week begins
1 (default) | integer with value 1 through 7 | vector of integers with values 1 through 7

Day a week begins, specified as an integer or a vector of integers from 1 through 7.

• 1 — Sunday (default)
• 2 — Monday
• 3 — Tuesday
• 4 — Wednesday
• 5 — Thursday
• 6 — Friday
• 7 — Saturday
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The weeknum function considers the week containing January 1 to be the first week of
the year.
Data Types: single | double

E — Flag indicates if week of year display is European standard
0 (default) | numeric with values 1 or 0

Flag indicates if week of year display is European standard, specified as 1 (to use the
European standard) or 0 (not to use the European standard).

The European standard considers first week of year to be first week longer than three
days, offset by the given week’s start day.
Data Types: logical

Output Arguments

N — Week number of the year, given D
numeric | column vector

Week number of the year, given D, returned as a numeric value, given D, a serial date
number, date character vector, or datetime array. If D is a one-dimensional cell array of
character vectors, then weeknum returns a column vector of M week numbers, where M is
the number of character vectors in D.

If the optional input arguments W and E are defined, the week of the year is in the
European standard.

See Also
datenum | datestr | datetime | datevec | day

Introduced before R2006a
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weights2holdings

Portfolio values and weights into holdings

Syntax

Holdings = weights2holdings(Values, Weights, Prices)

Arguments

Values Scalar or number of portfolios (NPORTS) vector containing portfolio
values.

Weights NPORTS by number of assets (NASSETS) matrix with portfolio
weights. The weights sum to the value of a Budget constraint,
which is usually 1. (See holdings2weights for information about
budget constraints.)

Prices NASSETS vector of prices.

Description

Holdings = weights2holdings(Values, Weights, Prices) converts portfolio
values and weights into portfolio holdings.

Holdings is a NPORTS-by-NASSETS matrix containing the holdings of NPORTS portfolios
that contain NASSETS assets.

Note  This function does not create round-lot positions. Holdings are floating-point
values.

See Also
holdings2weights
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Related Examples
• “Data Transformation and Frequency Conversion” on page 12-12

Introduced before R2006a
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willad

Williams Accumulation/Distribution line

Syntax

wadl = willad(highp, lowp, closep)

wadl = willad([highp lowp closep])

wadlts = willad(tsobj)

wadlts = willad(tsobj, 'ParameterName', ParameterValue, ...)

Arguments

highp High price (vector)
lowp Low price (vector)
closep Closing price (vector)
tsobj Time series object

Description

wadl = willad(highp, lowp, closep) computes the Williams Accumulation/
Distribution line for a set of stock price data. The prices needed for this function are the
high (highp), low (lowp), and closing (closep) prices. All three are required.

wadl = willad([highp lowp closep]) accepts a three-column matrix of prices as
input. The first column contains the high prices, the second contains the low prices, and
the third contains the closing prices.

wadlts = willad(tsobj) computes the Williams Accumulation/Distribution line for
a set of stock price data contained in the financial time series object tsobj. The object
must contain the high, low, and closing prices needed for this function. The function
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assumes that the series are named High, Low, and Close. All three are required.
wadlts is a financial time series object with the same dates as tsobj and a single data
series named WillAD.

wadlts = willad(tsobj, 'ParameterName', ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the name(s) for the
required data series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Williams A/D Line

This example shows how to compute the Williams A/D line for Disney stock and plot the
results.

load disney.mat

dis_Willad = willad(dis);

plot(dis_Willad)

title('Williams A/D Line for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 314–315.
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See Also
adline | adosc | willpctr

Introduced before R2006a
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willpctr

Williams %R

Syntax

wpctr = willpctr(highp, lowp, closep, nperiods)

wpctr = willpctr([highp, lowp, closep], nperiods)

wpctrts = willpctr(tsobj)

wpctrts = willpctr(tsobj, nperiods)

wpctrts = willpctr(tsobj, nperiods, 'ParameterName', ParameterValue,

... )

Arguments

highp High price (vector)
lowp Low price (vector)
closep Closing price (vector)
nperiods Number of periods (scalar). Default = 14.
tsobj Financial time series object

Description

wpctr = willpctr(highp, lowp, closep, nperiods) calculates the Williams %R
values for the given set of stock prices for a specified number of periods nperiods. The
stock prices needed are the high (highp), low (lowp), and closing (closep) prices. wpctr
is a vector that represents the Williams %R values from the stock data.

wpctr = willpctr([highp, lowp, closep], nperiods) accepts the price input
as a three-column matrix representing the high, low, and closing prices, in that order.
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wpctrts = willpctr(tsobj) calculates the Williams %R values for the financial time
series object tsobj. The object must contain at least three data series named High (high
prices), Low (low prices), and Close (closing prices). wpctrts is a financial time series
object with the same dates as tsobj and a single data series named WillPctR.

wpctrts = willpctr(tsobj, nperiods) calculates the Williams %R values for the
financial time series object tsobj for nperiods periods.

wpctrts = willpctr(tsobj, nperiods, 'ParameterName',

ParameterValue, ...) accepts parameter name/parameter value pairs as input.
These pairs specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name
• LowName: low prices series name
• CloseName: closing prices series name

Parameter values are the character vectors that represent the valid parameter names.

Examples

Compute the Williams %R Values

This example shows how to compute the Williams %R values for Disney stock and plot
the results.

load disney.mat

dis_Wpctr = willpctr(dis);

plot(dis_Wpctr)

title('Williams %R for Disney')
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• “Technical Analysis Examples” on page 16-4

More About
• “Technical Indicators” on page 16-2

References

Achelis, Steven B. Technical Analysis from A to Z. Second Edition. McGraw-Hill, 1995,
pp. 316–317.
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See Also
stochosc | willad

Introduced before R2006a
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wrkdydif

Number of working days between dates

Syntax

Days = wrkdydif(StartDate,EndDate,Holidays)

Description

Days = wrkdydif(StartDate,EndDate,Holidays) returns the number of working
days between dates StartDate and EndDate inclusive. Holidays is the number of
holidays between the given dates, an integer.

Examples

Determine the Number of Working Days Between a StartDate and EndDate

Determine Days using date character vectors for StartDate and EndDate.

Days = wrkdydif('9/1/2000', '9/11/2000', 1)

Days =

     6

Determine Days using serial date numbers for StartDate and EndDate.

Days = wrkdydif(730730, 730740, 1)

Days =

     6
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Determine Days using a datetime array for EndDate.

Days = wrkdydif('9/1/2000', datetime('11-Sep-2000','Locale','en_US'), 1)

Days =

     6

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Holidays — Holidays between StartDate and EndDate
vector of integers

Holidays between the StartDate and EndDate, specified as an N-by-1 or 1-by-N vector of
integers.
Data Types: single | double

Output Arguments

Days — Number of working days between dates StartDate and EndDate inclusive
integer
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Number of working days between dates StartDate and EndDate inclusive, returned an
N-by-1 or 1-by-N vector of integers.

More About
• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
busdate | datetime | datewrkdy | days365 | daysact | daysdif | holidays |
yearfrac

Introduced before R2006a
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x2mdate
Excel serial date number to MATLAB serial date number or datetime format

Syntax

MATLABDate = x2mdate(ExcelDateNumber,Convention)

MATLABDate = x2mdate(ExcelDateNumber,Convention,outputType)

Description

MATLABDate = x2mdate(ExcelDateNumber,Convention) converts Excel serial date
numbers to MATLAB serial date numbers or datetime format.

MATLAB date numbers start with 1 = January 1, 0000 A.D., hence there is a difference
of 693960 relative to the 1900 date system, or 695422 relative to the 1904 date system.
This function is useful with Spreadsheet Link software.

MATLABDate = x2mdate(ExcelDateNumber,Convention,outputType) converts
Excel serial date numbers to MATLAB serial date numbers or datetime format using an
optional input argument for outputType.

The type of output is determined by an optional outputType input. If outputType is
'datenum', then MATLABDate is a serial date number. If outputType is 'datetime',
then MATLABDate is a datetime array. By default, outputType is 'datenum'.

Examples

Convert Excel Serial Date Numbers to MATLAB Dates

Given Excel® date numbers in the 1904 system, convert them to MATLAB® serial date
numbers, and then to date character vectors.

ExDates = [35423  35788  36153];

MATLABDate = x2mdate(ExDates, 1)

datestr(MATLABDate)
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MATLABDate =

      730845      731210      731575

ans =

25-Dec-2000

25-Dec-2001

25-Dec-2002

Alternatively, use the optional input outputType to specify 'datetime' to return
datetime format.

ExDates = [35423  35788  36153];

MATLABDate = x2mdate(ExDates, 1,'datetime')

MATLABDate = 

  1×3 datetime array

   25-Dec-2000   25-Dec-2001   25-Dec-2002

• “Handle and Convert Dates” on page 2-4

Input Arguments

ExcelDateNumber — Excel serial date number
serial date number

Excel serial date number, specified as a scalar or vector ofExcel serial date numbers.
Data Types: double

Convention — Flag for Excel date system
0 (Excel 1900 date system is in effect) (default) | numeric with value 0 or 1

Flag for Excel date system, specified as a scalar or vector as a numeric with a
value 0 or 1. Convention must be either a scalar or else must be the same size as
ExcelDateNumber.
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When Convention = 0 (default), the Excel 1900 date system is in effect. When
Convention = 1, the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1,
1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Due to a software limitation in Excel software, the year 1900 is considered a leap year.
As a result, all DATEVALUE's reported by Excel software between Jan. 1, 1900 and Feb.
28, 1900 (inclusive) differs from the values reported by 1. For example:

• In Excel software, Jan. 1, 1900 = 1
• In MATLAB, Jan. 1, 1900 – 693960 (for 1900 date system) = 2

datenum('Jan 1, 1900') - 693960

ans =

     2

Data Types: logical

outputType — Output date format
'datenum' (default) | character vector with values 'datenum' or 'datetime'

Output date format, specified as a character vector with values 'datenum' or
'datetime'. The output MATLABDate is in serial date format if 'datenum' is specified
or datetime format if 'datetime' is specified. By default the output is in serial date
format.
Data Types: char

Output Arguments

MATLABDate — MATLAB date
serial date numbers | datetime format

MATLAB date, returned as serial date numbers or datetime format.

The type of output is determined by an optional outputType input argument. If
outputType is 'datenum', then MATLABDate is a serial date number. If outputType
is 'datetime', then MATLABDate is a datetime array. By default, outputType is
'datenum'.
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See Also
datenum | datestr | datetime | m2xdate

Introduced before R2006a

18-1818



 xirr

xirr
Internal rate of return for nonperiodic cash flow

Syntax

Return = xirr(CashFlow, CashFlowDates)

Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations,

Basis)

Description

Return = xirr(CashFlow, CashFlowDates) returns the internal rate of return for a
schedule of nonperiodic cash flows.

Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations,

Basis) returns the internal rate of return for a schedule of nonperiodic cash flows with
optional inputs.

Input Arguments

CashFlow

A vector or matrix of cash flows. If CashFlow is a matrix, each column represents a
separate stream of cash flows whose internal rate of return is calculated. The first cash
flow of each stream is the initial investment, entered as a negative number.

CashFlowDates

(Required) CashFlowDates is specified as serial date numbers, date character vectors,
or datetime arrays. The size of the input date numbers for CashFlowDates must the
same size as CashFlow, Each column of CashFlowDate represents the dates of the
corresponding column of CashFlow.

Guess

The initial estimate of the internal rate of return. Guess is a scalar applied to all
streams, or a vector the same length as the number of streams.
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Default: 0.1 (10%)

MaxIterations

The positive integer number of iterations used by Newton's method to solve the internal
rate of return. MaxIterations is a scalar applied to all streams, or a vector the same
length as the number of streams.

Default: 50

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0

Output Arguments
Return

Vector of the annualized internal rate of return of each cash flow stream. A NaN indicates
that a solution is not found.
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Examples

Find the internal rate of return for an investment of $10,000 that returns the following
nonperiodic cash flow. The original investment is the first cash flow and is a negative
number.

Cash Flow Dates

($10000) January 12, 2007
$2500 February 14, 2008
$2000 March 3, 2008
$3000 June 14, 2008
$4000 December 1, 2008

Calculate the internal rate of return for this nonperiodic cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CashFlowDates = ['01/12/2007'

                 '02/14/2008'

                 '03/03/2008'

                 '06/14/2008'

                 '12/01/2008'];

Return = xirr(CashFlow, CashFlowDates)

This returns:

Return =

         0.1006 (or 10.0644% per annum)

Alternatively, you can use datetime input to calculate the internal rate of return for
this nonperiodic cash flow:

CashFlow = [-10000, 2500, 2000, 3000, 4000];

CashFlowDates = ['01/12/2007'

                 '02/14/2008'

                 '03/03/2008'

                 '06/14/2008'

                 '12/01/2008'];

CashFlowDates = datetime(CashFlowDates,'Locale','en_US')';

Return = xirr(CashFlow, CashFlowDates)

This returns:
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Return =

         0.1006 (or 10.0644% per annum)

References

Brealey and Myers. Principles of Corporate Finance. McGraw-Hill Higher Education,
Chapter 5, 2003.

Sharpe, William F., and Gordon J. Alexander. Investments. Englewood Cliffs, NJ:
Prentice-Hall. 4th ed., 1990.

See Also
datetime | fvvar | irr | mirr | pvvar

Introduced before R2006a
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year

Year of date

Syntax

Year = year(Date)

Year = year(Date,F)

Description

Year = year(Date) returns the year of date given a serial date number or a date
character vector.

Year = year(Date,F) returns the year of date given a serial date number or a date
character vector, Date, using format defined by the optional input F. Date can be a
character array where each row corresponds to one date character vector, or a one-
dimensional cell array of character vectors. All the character vectors in Date must
have the same format F. F must designate a supported date format symbol. For more
information on supported date formats, see datestr.

Examples

Determine the Year of the Date for Various Dates

Find the year for Date using a serial date number.

Year = year(731798.776)

Year =

        2003

Find the year for Date using a date character vector format.
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Year = year('05-Aug-2003')

Year =

        2003

Use the optional F argument to designate a country-specific date format for a given Date.

Year = year('1999/05/09','yyyy/dd/mm')

Year =

        1999

• “Handle and Convert Dates” on page 2-4

Input Arguments

Date — Date to determine year
serial date number | date character vector | cell array of date character vectors

Date to determine year, specified as a serial date number or date character vector.

Date can be an array of date character vectors, where each row corresponds to one date
character vector, or a one-dimensional cell array of character vectors. All the character
vectors in Date must have the same format F. F must designate a supported date format
symbol. For more information on supported date formats, see datestr

Data Types: single | double | char | cell

F — Date format symbol
character vector designating date format

Date format symbol, specified as a character vector to designate the date format symbol
for input argument Date. For more information on supported date character vector
formats, see datestr. Note, formats with 'Q' are not accepted.

Data Types: char
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Output Arguments

Year — Numeric representation of the year
nonnegative integer

Numeric representation of the year, returned as a nonnegative integer.

See Also
datevec | day | month | yeardays

Introduced before R2006a
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yeardays
Number of days in year

Syntax

Days = yeardays(Year)

Days = yeardays(Year,Basis)

Description

Days = yeardays(Year) returns the number of days in the given Year.

Days = yeardays(Year,Basis) returns the number of days in the given Year, based
on the day-count Basis.

Examples

Determine the Number of Days in a Given Year

Find the number of days in a given Year.

Days = yeardays(2000)

Days =

   366

Find the number of days in a given Year using the optional argument Basis.

Days = yeardays(2000, 1)

Days =
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   360

• “Handle and Convert Dates” on page 2-4

Input Arguments

Year — Year to determine days
4 digit integer
Data Types: single | double

Basis — Day-count basis
0 (actual/actual) (default) | vector of integers with values 0,1,2,3,4,5,6,7,8,9,10,11,12,13

Day-count basis, specified as a vector of integers with values
0,1,2,3,4,5,6,7,8,9,10,11,12,13.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double
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Output Arguments

Days — Number of days in given Year
nonnegative integer

Number of days in given Year, returned as a nonnegative integer.

See Also
days360 | days365 | daysact | year | yearfrac

Introduced before R2006a
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yearfrac

Fraction of year between dates

Syntax

YearFraction = yearfrac(StartDate,EndDate,Basis)

Description

YearFraction = yearfrac(StartDate,EndDate,Basis) returns a fraction, in
years, based on the number of days between dates StartDate and EndDate using the
given day-count Basis.

The number of days in a year (365 or 366) is equal to the number of days in the calendar
year after the StartDate. If EndDate is earlier than StartDate, YearFraction is
negative.

All specified arguments must be number of instruments (NUMINST-by-1) or (1-
by-NUMINST) conforming vectors or scalar arguments.

Examples

Compute yearfrac When the Calendar Year After the StartDate is Not a Leap Year

Given a Basis of 0 and a Basis of 1, compute yearfrac.

Define the StartDate and EndDate using a Basis of 0.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 0)

YearFraction =

    0.5041
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Define the StartDate and EndDate using a Basis of 1.

YearFraction = yearfrac('14 mar 01', '14 sep 01', 1)

YearFraction =

    0.5000

Compute yearfrac When the Calendar Year After the StartDate is a Leap Year

Given a Basis of 0, compute yearfrac when the calendar after StartDate is in a leap
year.

Define the StartDate and EndDate using a Basis of 0.

yearFraction = yearfrac(' 14 mar 03', '14 sep 03', 0)

yearFraction =

    0.5027

There are 184 days between March 14 and September 14, and the calendar year after the
StartDate is a leap year, so yearfrac returns 184/366 = 0.5027.

Compute the Fraction of a Year Using an actual/actual Basis

To get the fraction of a year between '31-Jul-2015' and '30-Sep-2015' using the actual/
actual basis:

yearfrac('31-Jul-2015', '30-Sep-2015', 0)*2

ans =

    0.3333

For the actual/actual basis, the fraction of a year is calculated as:

(Actual Days between Start Date and End Date)/(Actual Days between

Start Date and exactly one year after Start Date)
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There are 61 days between 31-Jul-2015 and 30-Sep-2015. Since the next year is a leap
year, there are 366 days between 31-Jul-2015 and 31-Jul-2016. So, there is 61/366 which
is exactly 1/6. So given this, exactly 2/6 is the expected result for the fraction of the six-
month period.

Compute yearfrac When Specifying datetime Arrays

Given a Basis of 9, compute yearfrac when the StartDate and EndDate are specified
using datetime arrays.

yearfrac(datetime('1-Jan-2000','Locale','en_US'), '1/1/2001', 9)

ans =

    1.0167

• “Handle and Convert Dates” on page 2-4

Input Arguments

StartDate — Start date
serial date number | date character vector | datetime object

Start date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

EndDate — End date
serial date number | date character vector | datetime object

End date, specified as an N-by-1 or 1-by-N vector using serial date numbers, date
character vectors, or datetime arrays.
Data Types: double | char | datetime

Basis — Day-count basis for each set of dates
0 (actual/actual) (default) | vector of numerics with values 0 through 13

Day-count basis for each set of dates, specified as an N-by-1 or 1-by-N vector of integers
with values of 0 through 13.
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• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
Data Types: single | double

Output Arguments

YearFraction — Real numbers identifying interval, in years, between StartDate and
EndDate

vector

Real numbers identifying the interval, in years, between StartDate and EndDate,
returned an N-by-1 or 1-by-N vector.

More About

Difference Between yearfrac and date2time

The difference between yearfrac and date2time is that date2time counts full
periods as a whole integer, even if the number of actual days in the periods are different.
yearfrac does not count full periods.
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For example,

yearfrac('1/1/2000', '1/1/2001', 9)

ans =

    1.0167

yearfrac for Basis 9 (ACT/360 ICMA) calculates 366/360 = 1.0167. So, even if the
dates have the same month and date, with a difference of 1 in the year, the returned
value may not be exactly 1. On the other hand, date2time calculates one full year
period:

date2time('1/1/2000', '1/1/2001', 1, 9)

ans =

     1

• “Trading Calendars User Interface” on page 15-2
• “UICalendar User Interface” on page 15-4

See Also
date2time | datetime | days360 | days365 | daysact | daysdif | months |
wrkdydif | year | year | yeardays | yearfrac

Introduced before R2006a
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ylddisc
Yield of discounted security

Syntax
Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Arguments

Settle Settlement date, specified as a serial date number, date character
vector, or datetime array. Settle must be earlier than Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

Face Redemption (par, face) value.
Price Discounted price of the security.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis.

Description

Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds the yield of a
discounted security.

Examples

Find the Yield of a Discounted Security

This example shows how to find the yield of the following discounted security.

Settle = '10/14/2000';

Maturity = '03/17/2001';

Face = 100;

Price = 96.28;

Basis = 2;

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Yield =

    0.0903

Find the Yield of a Discounted Security Using datetime Inputs

This example shows how to use datetime inputs to find the yield of the following
discounted security.

Settle = '10/14/2000';

Maturity = '03/17/2001';

Face = 100;

Price = 96.28;

Basis = 2;

Settle = datetime(Settle,'Locale','en_US');

Maturity = datetime(Maturity,'Locale','en_US');
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Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Yield =

    0.0903

• “Yield Functions” on page 2-30

More About
• “Yield Conventions” on page 2-29

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 1.

See Also
acrudisc | bndprice | bndyield | datetime | prdisc | yldmat | yldtbill

Introduced before R2006a
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yldmat
Yield with interest at maturity

Syntax
Yield = yldmat(Settle, Maturity, Issue, Face, Price,

CouponRate, Basis)

Arguments

Settle Settlement date, specified as erial date numbers, date character
vectors, or datetime arrays. Settle must be earlier than
Maturity.

Maturity Maturity date, specified as serial date numbers, date character
vectors, or datetime arrays.

Issue Issue date, specified as serial date numbers, date character vectors,
or datetime arrays.

Face Redemption (par, face) value.
Price Price of the security.
CouponRate Coupon rate. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Description

Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate,

Basis) returns the yield of a security paying interest at maturity.

Examples

Find the Yield of a Security Paying Interest at Maturity

This example shows how to find the yield of a security paying interest at maturity for the
following.

Settle = '02/07/2000';

Maturity = '04/13/2000';

Issue = '10/11/1999';

Face = 100;

Price = 99.98;

CouponRate = 0.0608;

Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...

CouponRate, Basis)

Yield =

    0.0607

Find the Yield of a Security Paying Interest at Maturity Using datetime Inputs

This example shows how to use datetime inputs find the yield of a security paying
interest at maturity for the following:

18-1838



 yldmat

Settle = '7-Feb-2000';

Maturity = '13-Apr-2000';

Issue = '11-Oct-1999';

Face = 100;

Price = 99.98;

CouponRate = 0.0608;

Basis = 1;

Settle = datetime(Settle,'Locale','en_US');

Maturity = datetime(Maturity,'Locale','en_US');

Issue = datetime(Issue,'Locale','en_US');

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...

CouponRate, Basis)

Yield =

    0.0607

• “Yield Functions” on page 2-30

More About
• “Yield Conventions” on page 2-29

References

Mayle. Standard Securities Calculation Methods. Volumes I-II, 3rd edition. Formula 3.

See Also
acrudisc | bndprice | bndyield | datetime | prmat | ylddisc | yldtbill

Introduced before R2006a
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yldtbill
Yield of Treasury bill

Syntax
Yield = yldtbill(Settle, Maturity, Face, Price)

Arguments

Settle Settlement date, specified as a serial date number, date character
vector, or datetime array. Settle must be earlier than Maturity.

Maturity Maturity date, specified as a serial date number, date character
vector, or datetime array.

Face Redemption (par, face) value.
Price Price of the Treasury bill.

Description

Yield = yldtbill(Settle, Maturity, Face, Price) returns the yield for a
Treasury bill.

Examples

Find the Yield for a Treasury Bill

This example shows how to return the yield for a Treasury bill, given the settlement
date of a Treasury bill is February 10, 2000, the maturity date is August 6, 2000, the par
value is $1000, and the price is $981.36.

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

Yield =
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    0.0384

Find the Yield for a Treasury Bill Using datetime Inputs

This example shows how to use datetime inputs to return the yield for a Treasury bill,
given the settlement date of a Treasury bill is February 10, 2000, the maturity date is
August 6, 2000, the par value is $1000, and the price is $981.36.

Yield = yldtbill(datetime('10-Feb-2000','Locale','en_US'), datetime('6-Aug-2000','Locale','en_US'), 1000, 981.36)

Yield =

    0.0384

• “Computing Treasury Bill Price and Yield” on page 2-35
• “Yield Functions” on page 2-30

More About
• “Treasury Bills Defined” on page 2-34
• “Yield Conventions” on page 2-29

References

Bodie, Kane, and Marcus. Investments. pp. 41–43.

See Also
beytbill | bndyield | datetime | prtbill | yldmat

Introduced before R2006a
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zbtprice

Zero curve bootstrapping from coupon bond data given price

Syntax

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,

OutputCompounding)

Arguments

Bonds Coupon bond information used to generate the zero curve.
Bonds can be specified as a table or a n-by-2 to n-by-6
matrix. If Bonds is a table, the Maturity dates can be
serial date numbers, date character vectors, or datetime
arrays. If Bonds is an n-by-2 to n-by-6 matrix where each
row describes a bond, the first two columns are required; the
remainder are optional but must be added in order. All rows
in Bonds must have the same number of columns.

Columns are
[Maturity CouponRate Face Period Basis 

EndMonthRule] where
Maturity Maturity date of the bond, as a serial

date number. Use datenum to convert
date character vectors to serial date
numbers. If Bonds is a table, the
Maturity dates can be serial date
numbers, date character vectors, or
datetime arrays.

CouponRate Coupon rate of the bond, as a decimal
fraction.

Face (Optional) Redemption or face value of
the bond. Default = 100.
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Period (Optional) Coupons per year of the
bond, as an integer. Allowed values are
0, 1, 2 (default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
EndMonthRule (Optional) End-of-month flag. This flag

applies only when Maturity is an end-
of-month date for a month having 30
or fewer days. 0 = ignore flag, meaning
that a bond's coupon payment date is
always the same day of the month. 1 =
set flag (default), meaning that a bond's
coupon payment date is always the last
day of the month.

Prices Column vector containing the clean price (price without
accrued interest) of each bond in Bonds, respectively. The
number of rows (n) must match the number of rows in
Bonds.

18-1843



18 Functions — Alphabetical List

Settle Settlement date, specified as a serial date number, date
character vector, or datetime array. This represents time
zero for deriving the zero curve, and it is normally the
common settlement date for all the bonds.

OutputCompounding (Optional) Scalar value representing the period by which
the output zero rates are compounded. The default
OutputCompounding value is semiannual compounding
(that is 2). Allowed values are:
0 Simple interest (no compounding)
1 Annual compounding
2 Semiannual compounding (default)
3 Compounding three times per year
4 Quarterly compounding
6 Bimonthly compounding
12 Monthly compounding
-1 Continuous compounding

Description

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,

OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio
of coupon bonds and their prices. A zero curve consists of the yields to maturity for a
portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio.
The bootstrap method that this function uses does not require alignment among the cash-
flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and
yield interpolation to derive all zero rates; specifically, the interest rates for cash flows
are determined using linear interpolation. For best results, use a portfolio of at least 30
bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied
zero rates for each point along the investment horizon
represented by CurveDates; m is the number of bonds
of unique maturity dates. In aggregate, the rates in
ZeroRates constitute a zero curve.

18-1844



 zbtprice

If more than one bond has the same maturity date,
zbtprice returns the mean zero rate for that maturity.
Any rates before the first maturity are assumed to be
equal to the rate at the first maturity, that is, the curve is
assumed to be flat before the first maturity.

CurveDates An m-by-1 vector of unique maturity dates that correspond
to the zero rates in ZeroRates; m is the number of bonds
of different maturity dates. These dates begin with the
earliest maturity date and end with the latest maturity date
Maturity in the Bonds matrix. If either inputs for Bonds
or Settle have datetime values, then CurveDates will
be datetimes. Otherwise CurveDates will be serial date
numbers.

Examples

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Prices

Given data and prices for 12 coupon bonds, two with the same maturity date, and given
the common settlement date.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;

         datenum('7/1/2000')   0.06     100  2  0  0;

         datenum('7/1/2000')   0.09375  100  6  1  0;

         datenum('6/30/2001')  0.05125  100  1  3  1;

         datenum('4/15/2002')  0.07125  100  4  1  0;

         datenum('1/15/2000')  0.065    100  2  0  0;

         datenum('9/1/1999')   0.08     100  3  3  0;

         datenum('4/30/2001')  0.05875  100  2  0  0;

         datenum('11/15/1999') 0.07125  100  2  0  0;

         datenum('6/30/2000')  0.07     100  2  3  1;

         datenum('7/1/2001')   0.0525   100  2  3  0;

         datenum('4/30/2002')  0.07     100  2  0  0];

Prices = [99.375;

          99.875;

         105.75 ;

          96.875;

         103.625;

         101.125;
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         103.125;

          99.375;

         101.0  ;

         101.25 ;

          96.375;

         102.75 ];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function zbtprice which returns the zero curve at the maturity dates. Note
the mean zero rate for the two bonds with the same maturity date.

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,...

OutputCompounding)

ZeroRates =

    0.0616

    0.0609

    0.0658

    0.0590

    0.0647

    0.0655

    0.0606

    0.0601

    0.0642

    0.0621

    0.0627

CurveDates =

      729907

      730364

      730439

      730500

      730667

      730668

      730971

      731032
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      731033

      731321

      731336

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Prices Using datetime
Inputs

Given data and prices for 12 coupon bonds, two with the same maturity date, and given
the common settlement date, use datetime inputs to compute a zero curve.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;

         datenum('7/1/2000')   0.06     100  2  0  0;

         datenum('7/1/2000')   0.09375  100  6  1  0;

         datenum('6/30/2001')  0.05125  100  1  3  1;

         datenum('4/15/2002')  0.07125  100  4  1  0;

         datenum('1/15/2000')  0.065    100  2  0  0;

         datenum('9/1/1999')   0.08     100  3  3  0;

         datenum('4/30/2001')  0.05875  100  2  0  0;

         datenum('11/15/1999') 0.07125  100  2  0  0;

         datenum('6/30/2000')  0.07     100  2  3  1;

         datenum('7/1/2001')   0.0525   100  2  3  0;

         datenum('4/30/2002')  0.07     100  2  0  0];

Prices = [99.375;

          99.875;

         105.75 ;

          96.875;

         103.625;

         101.125;

         103.125;

          99.375;

         101.0  ;

         101.25 ;

          96.375;

         102.75 ];

Settle = datenum('12/18/1997');

OutputCompounding = 2;

t=array2table(Bonds);

t.Bonds1=datetime(t.Bonds1,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ZeroRates, CurveDates] = zbtprice(t, Prices, Settle,...
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OutputCompounding)

ZeroRates =

    0.0616

    0.0609

    0.0658

    0.0590

    0.0647

    0.0655

    0.0606

    0.0601

    0.0642

    0.0621

    0.0627

CurveDates = 

  11×1 datetime array

   01-Jun-1998

   01-Sep-1999

   15-Nov-1999

   15-Jan-2000

   30-Jun-2000

   01-Jul-2000

   30-Apr-2001

   30-Jun-2001

   01-Jul-2001

   15-Apr-2002

   30-Apr-2002

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21
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References

Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J. and T.
Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York, Irwin
Professional Publishing, 1995.

McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest Rates.” in
Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” in Swap and Derivative Financing.
Appendix to Ch. 8, pp. 219–225. New York, Irwin Professional Publishing, 1994.

See Also
datetime | zbtyield

Introduced before R2006a
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zbtyield

Zero curve bootstrapping from coupon bond data given yield

Syntax

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,

OutputCompounding)

Arguments

Bonds Coupon bond information used to generate the zero
curve. Bonds can be specified as a table or a n-by-2 to
n-by-6 matrix. If Bonds is a table, If Bonds is a table,
the Maturity dates can be serial date numbers, date
character vectors, or datetime arrays. If Bonds is an n-
by-2 to n-by-6 matrix where each row describes a bond,
the first two columns are required; the remainder are
optional but must be added in order. All rows in Bonds
must have the same number of columns. All rows in Bonds
must have the same number of columns. Columns are
[Maturity CouponRate Face Period Basis 

EndMonthRule] where
Maturity Maturity date of the bond, as a serial

date number. Use datenum to convert
date character vectors to serial date
numbers. If Bonds is a table, the
Maturity dates can be serial date
numbers, date character vectors, or
datetime arrays.

CouponRate Coupon rate of the bond, as a decimal
fraction.

Face (Optional) Redemption or face value of
the bond. Default = 100.
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Period (Optional) Coupons per year of the
bond, as an integer. Allowed values are
0, 1, 2 (default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.
EndMonthRule (Optional) End-of-month flag. This flag

applies only when Maturity is an end-
of-month date for a month having 30
or fewer days. 0 = ignore flag, meaning
that a bond's coupon payment date is
always the same day of the month. 1 =
set flag (default), meaning that a bond's
coupon payment date is always the last
day of the month.

Yields Column vector containing the yield to maturity of each bond
in Bonds, respectively. The number of rows (n) must match
the number of rows in Bonds. Yield to maturity must be
compounded semiannually.
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Settle Settlement date, specified as a serial date number, date
character vector, or datetime array. This represents time
zero for deriving the zero curve, and it is normally the
common settlement date for all the bonds.

OutputCompounding (Optional) Scalar value representing the period by which
the output zero rates are compounded. The default
OutputCompounding value is semiannual compounding
(that is 2). Allowed values are:
0 Simple interest (no compounding)
1 Annual compounding
2 Semiannual compounding (default)
3 Compounding three times per year
4 Quarterly compounding
6 Bimonthly compounding
12 Monthly compounding
-1 Continuous compounding

Description

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,

OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio
of coupon bonds and their yields. A zero curve consists of the yields to maturity for a
portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio.
The bootstrap method that this function uses does not require alignment among the cash-
flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and
yield interpolation to derive all zero rates; specifically, the interest rates for cash flows
are determined using linear interpolation. For best results, use a portfolio of at least 30
bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied
zero rates for each point along the investment horizon
represented by CurveDates; m is the number of bonds
of different maturity dates. In aggregate, the rates in
ZeroRates constitute a zero curve.
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If more than one bond has the same maturity date,
zbtyield returns the mean zero rate for that maturity.
Any rates before the first maturity are assumed to be
equal to the rate at the first maturity, that is, the curve is
assumed to be flat before the first maturity.

CurveDates An m-by-1 vector of unique maturity dates that correspond
to the zero rates in ZeroRates; m is the number of bonds
of different maturity dates. These dates begin with the
earliest maturity date and end with the latest maturity date
Maturity in the Bonds matrix. Use datestr to convert
serial date numbers to date character vectors. If either
inputs for Bonds or Settle have datetime values, then
CurveDates will be datetimes. Otherwise CurveDates will
be serial date numbers.

Examples

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Yields

Given data and yields to maturity for 12 coupon bonds, two with the same maturity date;
and given the common settlement date.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;

         datenum('7/1/2000')   0.06     100  2  0  0;

         datenum('7/1/2000')   0.09375  100  6  1  0;

         datenum('6/30/2001')  0.05125  100  1  3  1;

         datenum('4/15/2002')  0.07125  100  4  1  0;

         datenum('1/15/2000')  0.065    100  2  0  0;

         datenum('9/1/1999')   0.08     100  3  3  0;

         datenum('4/30/2001')  0.05875  100  2  0  0;

         datenum('11/15/1999') 0.07125  100  2  0  0;

         datenum('6/30/2000')  0.07     100  2  3  1;

         datenum('7/1/2001')   0.0525   100  2  3  0;

         datenum('4/30/2002')  0.07     100  2  0  0];

Yields = [0.0616

          0.0605

          0.0687

          0.0612

          0.0615
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          0.0591

          0.0603

          0.0608

          0.0655

          0.0646

          0.0641

          0.0627];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function zbtyield which returns the zero curve at the maturity dates. Note
the mean zero rate for the two bonds with the same maturity date.

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,...

OutputCompounding)

ZeroRates =

    0.0616

    0.0603

    0.0657

    0.0590

    0.0649

    0.0650

    0.0606

    0.0611

    0.0643

    0.0614

    0.0627

CurveDates =

      729907

      730364

      730439

      730500

      730667

      730668

      730971
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      731032

      731033

      731321

      731336

Compute a Zero Curve Given a Portfolio of Coupon Bonds and Their Yields Using datetime
Inputs

Given data and yields to maturity for 12 coupon bonds, two with the same maturity date;
and given the common settlement date, compute the zero curve using datetime inputs.

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;

         datenum('7/1/2000')   0.06     100  2  0  0;

         datenum('7/1/2000')   0.09375  100  6  1  0;

         datenum('6/30/2001')  0.05125  100  1  3  1;

         datenum('4/15/2002')  0.07125  100  4  1  0;

         datenum('1/15/2000')  0.065    100  2  0  0;

         datenum('9/1/1999')   0.08     100  3  3  0;

         datenum('4/30/2001')  0.05875  100  2  0  0;

         datenum('11/15/1999') 0.07125  100  2  0  0;

         datenum('6/30/2000')  0.07     100  2  3  1;

         datenum('7/1/2001')   0.0525   100  2  3  0;

         datenum('4/30/2002')  0.07     100  2  0  0];

Yields = [0.0616

          0.0605

          0.0687

          0.0612

          0.0615

          0.0591

          0.0603

          0.0608

          0.0655

          0.0646

          0.0641

          0.0627];

Settle = datenum('12/18/1997');

OutputCompounding = 2;

t = array2table(Bonds);

t.Bonds1 = datetime(t.Bonds1,'ConvertFrom','datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ZeroRates, CurveDates] = zbtyield(t, Yields, Settle,...
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OutputCompounding)

ZeroRates =

    0.0616

    0.0603

    0.0657

    0.0590

    0.0649

    0.0650

    0.0606

    0.0611

    0.0643

    0.0614

    0.0627

CurveDates = 

  11×1 datetime array

   01-Jun-1998

   01-Sep-1999

   15-Nov-1999

   15-Jan-2000

   30-Jun-2000

   01-Jul-2000

   30-Apr-2001

   30-Jun-2001

   01-Jul-2001

   15-Apr-2002

   30-Apr-2002

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21
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See Also
datetime | zbtprice

Introduced before R2006a
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zero2disc
Discount curve given zero curve

Syntax
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,

Compounding, Basis)

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,

Name, Value)

Arguments

ZeroRates Number of bonds (NUMBONDS)-by-1 vector of annualized zero rates,
as decimal fractions. In aggregate, the rates constitute an implied
zero curve for the investment horizon represented by CurveDates.

CurveDates NUMBONDS-by-1 vector of maturity dates, specified as a serial date
number, date character vector, or datetime array, that correspond
to the zero rates.

Settle Date, specified as a serial date number, date character vector, or
datetime array, that is the common settlement date for the zero
rates; that is, the settlement date for the bonds from which the zero
curve was bootstrapped.

Ordered Input or Name–Value Pair Arguments

Enter the following inputs using an ordered syntax or as name-value pair arguments.
You cannot mix ordered syntax with name-value pairs.

Compounding

Scalar value representing the rate at which the input ZeroRates were compounded
when annualized. Allowed values are:

• 0 — Simple interest (no compounding)
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• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Default: 2 (default)

Basis

Day-count basis used for annualizing the input zero rates. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis.

Default: 0
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Description

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,

Compounding, Basis) returns a discount curve given a zero curve and its maturity
dates. If either inputs for CurveDates or Settle is a datetime array, CurveDates
is returned as a datetime array. Otherwise, CurveDates is returned as a serial date
number. DiscRates is the same for any of these input data types.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,

Name, Value) returns a discount curve given a zero curve and its maturity dates
using optional name-value pair arguments. Specify optional comma-separated pairs of
Name,Value arguments. Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

DiscRates A NUMBONDS-by-1 vector of discount factors, as decimal fractions.
In aggregate, the factors constitute a discount curve for the
investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates that correspond to
the discount rates. This vector is the same as the input vector
CurveDates, but is sorted by ascending maturity. If either inputs
for CurveDates or Settle is a datetime array, CurveDates is
returned as a datetime array. Otherwise, CurveDates is returned
as a serial date number.

Examples

Compute a Discount Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates and a settlement date.

ZeroRates = [0.0464

             0.0509

             0.0524

             0.0525

             0.0531

             0.0525

             0.0530
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             0.0531

             0.0549

             0.0536];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

The zero curve is compounded daily on an actual/365 basis.

Compounding = 365;

Basis = 3;

Execute the function zero2disc which returns the discount curve DiscRates at the
maturity dates CurveDates.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...

Settle, Compounding, Basis)

DiscRates =

    0.9996

    0.9947

    0.9896

    0.9866

    0.9826

    0.9787

    0.9745

    0.9665

    0.9552

    0.9466

CurveDates =

18-1861



18 Functions — Alphabetical List

      730796

      730831

      730866

      730887

      730914

      730943

      730971

      731027

      731098

      731167

For readability, ZeroRates and DiscRates are shown here only to the basis point.
However, MATLAB® software computed them at full precision. If you enter ZeroRates
as shown, DiscRates may differ due to rounding.

Compute a Discount Curve Given a Zero Curve and Maturity Dates Using datetime Inputs

Given a zero curve over a set of maturity dates and a settlement date, compute a
discount curve using datetime inputs.

ZeroRates = [0.0464

             0.0509

             0.0524

             0.0525

             0.0531

             0.0525

             0.0530

             0.0531

             0.0549

             0.0536];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
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Compounding = 365;

Basis = 3;

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...

Settle, Compounding, Basis)

DiscRates =

    0.9996

    0.9947

    0.9896

    0.9866

    0.9826

    0.9787

    0.9745

    0.9665

    0.9552

    0.9466

CurveDates = 

  10×1 datetime array

   06-Nov-2000

   11-Dec-2000

   15-Jan-2001

   05-Feb-2001

   04-Mar-2001

   02-Apr-2001

   30-Apr-2001

   25-Jun-2001

   04-Sep-2001

   12-Nov-2001

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21
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See Also
datetime | disc2zero

Introduced before R2006a
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zero2fwd

Forward curve given zero curve

Syntax

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,

Settle)

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,

Settle, Name, Value)

Compatibility

In R2015b, the specification of optional input arguments has changed. While the
previous ordered inputs syntax is still supported, it may no longer be supported in a
future release. Use the new optional name-value pair inputs: InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.

Input Arguments

ZeroRates Number of bonds (NUMBONDS)-by-1 vector of annualized zero rates,
as decimal fractions. In aggregate, the rates constitute an implied
zero curve for the investment horizon represented by CurveDates.
The first element pertains to forward rates from the settlement
date to the first curve date.

CurveDates NUMBONDS-by-1 vector of maturity dates, specified as a serial date
number, date character vector, or datetime array, that correspond
to the zero rates.

Settle Date, specified as a serial date number, date character vector, or
datetime array, that is the common settlement date for the zero
rates.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [ForwardRates,CurveDates] =
zero2fwd(ZeroRates,CurveDates,Settle,'InputCompounding',3,'InputBasis',5,'OutputCompounding',4,'OutputBasis',5)

'InputCompounding' — Compounding frequency of input zero rates
if InputCompounding is not specified, it is assigned the value specified for
OutputCompounding. If neither InputCompounding nor OutputCompounding are
specified, the default is 2 (semiannual) for both. (default) | scalar

Compounding frequency of the input zero rates, specified as a scalar with allowed values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Data Types: single | double

'InputBasis' — Day count basis of input zero rates
if InputBasis is not specified, it is assigned the value specified for OutputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of input zero rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
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• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

'OutputCompounding' — Compounding frequency of output forward rates
if OutputCompounding is not specified, it is assigned the value specified for
InputCompounding. If neither InputCompounding nor OutputCompounding are
specified, the default is 2 (semiannual) for both. (default) | scalar

Compounding frequency of the output forward rates, specified as a scalar with allowed
values:

• 0 — Simple interest (no compounding)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding
• -1 — Continuous compounding

Data Types: single | double
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'OutputBasis' — Day count basis of output forward rates
if OutputBasis is not specified, it is assigned the value specified for InputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of output forward rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

Description

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle)

returns an implied forward rate curve given a zero curve and its maturity dates. If
either input for CurveDates or Settle is a datetime array, CurveDates is returned
as a datetime array. Otherwise, CurveDates is returned as a serial date number.
ForwardRates is the same for any of these input data types.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle,

Name, Value) returns an implied forward rate curve given a zero curve and its
maturity dates using optional name-value arguments for InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.
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ForwardRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the
rates in ForwardRates constitute a forward curve over the dates
in CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers)
that correspond to the forward rates. This vector is the same as the
input vector CurveDates, but is sorted by ascending maturity.

Examples

Compute an Implied Forward Rate Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates, a settlement date, and a compounding
rate, compute the forward rate curve.

ZeroRates = [0.0458

             0.0502

             0.0518

             0.0519

             0.0524

             0.0519

             0.0523

             0.0525

             0.0541

             0.0529];

CurveDates = [datenum('06-Nov-2000')

             datenum('11-Dec-2000')

             datenum('15-Jan-2001')

             datenum('05-Feb-2001')

             datenum('04-Mar-2001')

             datenum('02-Apr-2001')

             datenum('30-Apr-2001')

             datenum('25-Jun-2001')

             datenum('04-Sep-2001')

             datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;
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Execute the function zero2fwd to return the forward rate curve ForwardRates at the
maturity dates CurveDates.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...

Settle, 'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ForwardRates =

    0.0458

    0.0506

    0.0535

    0.0522

    0.0541

    0.0498

    0.0544

    0.0531

    0.0594

    0.0476

CurveDates =

      730796

      730831

      730866

      730887

      730914

      730943

      730971

      731027

      731098

      731167

Compute an Implied Forward Rate Curve Given a Zero Curve and Maturity Dates Using
datetime Inputs

Given a zero curve over a set of maturity dates, a settlement date, and a compounding
rate, use datetime compute the forward rate curve.

ZeroRates = [0.0458

             0.0502

             0.0518

             0.0519
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             0.0524

             0.0519

             0.0523

             0.0525

             0.0541

             0.0529];

CurveDates = [datenum('06-Nov-2000')

             datenum('11-Dec-2000')

             datenum('15-Jan-2001')

             datenum('05-Feb-2001')

             datenum('04-Mar-2001')

             datenum('02-Apr-2001')

             datenum('30-Apr-2001')

             datenum('25-Jun-2001')

             datenum('04-Sep-2001')

             datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 1;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...

Settle,'InputCompounding',1,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ForwardRates =

    0.0458

    0.0506

    0.0535

    0.0522

    0.0541

    0.0498

    0.0544

    0.0531

    0.0594

    0.0476

CurveDates = 
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  10×1 datetime array

   06-Nov-2000

   11-Dec-2000

   15-Jan-2001

   05-Feb-2001

   04-Mar-2001

   02-Apr-2001

   30-Apr-2001

   25-Jun-2001

   04-Sep-2001

   12-Nov-2001

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21

See Also
datetime | fwd2zero | getForwardRates

Introduced before R2006a
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zero2pyld
Par yield curve given zero curve

Syntax
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle)

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle,

Name, Value)

Compatibility

In R2015b, the specification of optional input arguments has changed. While the
previous ordered inputs syntax is still supported, it may no longer be supported in a
future release. Use the new optional name-value pair inputs: InputCompounding,
InputBasis, OutputCompounding, and OutputBasis.

Input Arguments

ZeroRates A number of bonds (NUMBONDS)-by-1 vector of annualized
zero rates, as decimal fractions. In aggregate, the rates
constitute an implied zero curve for the investment horizon
represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates, specified as serial
date numbers, date character vectors, or datetime arrays,
that correspond to the zero rates.

Settle Date, specified as a serial date number, date character
vector, or datetime array, that is the common settlement date
for the zero rates.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
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quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [ParRates,CurveDates] = zero2pyld(ZeroRates,CurveDates,
Settle,'OutputCompounding',3,'OutputBasis',5,'InputCompounding',4,'InputBasis',5)

'OutputCompounding' — Compounding frequency of output par rates
if InputCompounding is 1, 2, 3, 4, 6, or 12 and OutputCompounding is not specified,
the value of InputCompounding is used. If InputCompounding is 0 (simple), -1
(continuous), or 365 (daily), a valid OutputCompounding value must also be specified.
If neither InputCompounding nor OutputCompounding are specified, the default is 2
(semiannual) for both. (default) | scalar

Compounding frequency of the output par rates, specified as a scalar with allowed
values:

• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Data Types: single | double

'OutputBasis' — Day count basis of output par rates
if OutputBasis is not specified, it is assigned the value specified for InputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar

Day count basis of output zero rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)

18-1874



 zero2pyld

• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

'InputCompounding' — Compounding frequency of input zero rates
if InputCompounding is 0 (simple), -1 (continuous), or 365 (daily), the par rate
OutputCompounding must also be specified a valid value. If InputCompounding
is not specified, it is assigned the value specified for OutputCompounding. If
neither InputCompounding nor OutputCompounding are specified, the default is 2
(semiannual) for both. (default) | scalar

Compounding frequency of the input forward rates, specified as a scalar with allowed
values:

• 0 — Simple interest (no compounding, zero rates only)
• 1 — Annual compounding
• 2 — Semiannual compounding (default)
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• 365 — Daily compounding (zero rates only)
• -1 — Continuous compounding (zero rates only)

Data Types: single | double

'InputBasis' — Day count basis of input zero rates
if InputBasis is not specified, it is assigned the value specified for OutputBasis. If
neither InputBasis nor OutputBasis are specified, the default is 0 (actual/actual) for
both. (default) | scalar
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Day count basis of input zero rates, specified as a scalar with possible values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

Data Types: single | double

Description

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle)

returns a par yield curve given a zero curve and its maturity dates. If either input for
CurveDates or Settle is a datetime array, CurveDates is returned as a datetime
array. Otherwise, CurveDates is returned as a serial date number. ParRates is the
same for any of these input data types.

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle,

Name, Value) returns a par yield curve given a zero curve and its maturity dates
using optional name-value pair arguments for InputCompounding, InputBasis,
OutputCompounding, and OutputBasis.

ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal
fractions. (Par yields = coupon rates.) In aggregate, the yield
rates in ParRates constitute a par yield curve for the investment
horizon represented by CurveDates.
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CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers)
that correspond to the par yield rates. This vector is the same as
the input vector CurveDates, but is sorted by ascending maturity.

Examples

Compute Par Yield Curve Given a Zero Curve and Maturity Dates

Given a zero curve over a set of maturity dates, a settlement date, and annual
compounding for the input zero curve and monthly compounding for the output par rates,
compute a par yield curve.

ZeroRates = [0.0457

             0.0487

             0.0506

             0.0507

             0.0505

             0.0504

             0.0506

             0.0516

             0.0539

             0.0530];

CurveDates = [datenum('06-Nov-2000')

              datenum('11-Dec-2000')

              datenum('15-Jan-2001')

              datenum('05-Feb-2001')

              datenum('04-Mar-2001')

              datenum('02-Apr-2001')

              datenum('30-Apr-2001')

              datenum('25-Jun-2001')

              datenum('04-Sep-2001')

              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 12;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...

Settle, 'InputCompounding',1,'InputBasis',1,'OutputCompounding',12,'OutputBasis',1)
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ParRates =

    0.0448

    0.0477

    0.0495

    0.0496

    0.0494

    0.0493

    0.0495

    0.0504

    0.0526

    0.0517

CurveDates =

      730796

      730831

      730866

      730887

      730914

      730943

      730971

      731027

      731098

      731167

Compute Par Yield Curve Given a Zero Curve and Maturity Dates Using datetime Inputs

Given a zero curve over a set of maturity dates, a settlement date, and annual
compounding for the input zero curve and monthly compounding for the output par rates,
use datetime inputs to compute a par yield curve.

ZeroRates = [0.0457

0.0487

0.0506

0.0507

0.0505

0.0504

0.0506

0.0516

0.0539

0.0530];
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CurveDates = [datenum('06-Nov-2000')

datenum('11-Dec-2000')

datenum('15-Jan-2001')

datenum('05-Feb-2001')

datenum('04-Mar-2001')

datenum('02-Apr-2001')

datenum('30-Apr-2001')

datenum('25-Jun-2001')

datenum('04-Sep-2001')

datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

InputCompounding = 12;

InputBasis = 2;

OutputCompounding = 1;

OutputBasis = 2;

CurveDates = datetime(CurveDates, 'ConvertFrom', 'datenum','Locale','en_US');

Settle = datetime(Settle,'ConvertFrom','datenum','Locale','en_US');

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...

Settle, 'InputCompounding',12,'InputBasis',2,'OutputCompounding',1,'OutputBasis',2)

ParRates =

   -0.0436

    0.0611

    0.0579

    0.0567

    0.0550

    0.0543

    0.0541

    0.0546

    0.0565

    0.0561

CurveDates = 

  10×1 datetime array

   06-Nov-2000

   11-Dec-2000

   15-Jan-2001

   05-Feb-2001

   04-Mar-2001
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   02-Apr-2001

   30-Apr-2001

   25-Jun-2001

   04-Sep-2001

   12-Nov-2001

Demonstrate a Roundtrip From zero2pyld to pyld2zero

Given the following zero curve and its maturity dates, return the ParRates.

Settle = datenum('01-Feb-2013');

CurveDates = [datenum('01-Feb-2014')

    datenum('01-Feb-2015')

    datenum('01-Feb-2016')

    datenum('01-Feb-2018')

    datenum('01-Feb-2020')

    datenum('01-Feb-2023')

    datenum('01-Feb-2033')

    datenum('01-Feb-2043')];

OriginalZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;

OutputCompounding = 1;

OutputBasis = 0;

InputCompounding = 1;

InputBasis = 0;

ParRates = zero2pyld(OriginalZeroRates, CurveDates, Settle, ...

'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...

'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

ParRates =

    0.0011

    0.0030

    0.0064

    0.0142

    0.0202

    0.0251

    0.0310

    0.0331
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For the ParRates, use the pyld2zero function to return the ZeroRatesOut and
determine the roundtrip error.

ZeroRatesOut = pyld2zero(ParRates, CurveDates, Settle, ...

'OutputCompounding', OutputCompounding, 'OutputBasis', OutputBasis, ...

'InputCompounding', InputCompounding, 'InputBasis', InputBasis)

max(abs(OriginalZeroRates - ZeroRatesOut)) % Roundtrip error

ZeroRatesOut =

    0.0011

    0.0030

    0.0064

    0.0144

    0.0207

    0.0261

    0.0329

    0.0355

ans =

   1.4919e-16

• “Term Structure of Interest Rates” on page 2-39

More About
• “Fixed-Income Terminology” on page 2-21

See Also
datetime | pyld2zero

Introduced before R2006a
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score
Compute credit scores for given data

Syntax

Scores = score(sc)

Scores = score(sc, data)

[Scores,Points] = score(sc)

[Scores,Points] = score(sc,data)

Description

Scores = score(sc) computes the credit scores for the creditscorecard object’s
training data. This data can be a “training” or a “live” dataset. If the data input
argument is not explicitly provided, the score function determines scores for the
existing creditscorecard object’s data.

formatpoints supports multiple alternatives to modify the scaling of the scores and can
also be used to control the rounding of points and scores, and whether the base points are
reported separately or spread across predictors. Missing data translates into NaN values
for the corresponding points, and therefore for the total score. Use formatpoints to
modify the score behavior for rows with missing data.

Scores = score(sc, data) computes the credit scores for the given input data. This
data can be a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can
also be used to control the rounding of points and scores, and whether the base points are
reported separately or spread across predictors. Missing data translates into NaN values
for the corresponding points, and therefore for the total score. Use formatpoints to
modify the score behavior for rows with missing data.

[Scores,Points] = score(sc) computes the credit scores and points for the
given data. If the data input argument is not explicitly provided, the score function
determines scores for the existing creditscorecard object’s data.
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formatpoints supports multiple alternatives to modify the scaling of the scores and can
also be used to control the rounding of points and scores, and whether the base points are
reported separately or spread across predictors. Missing data translates into NaN values
for the corresponding points, and therefore for the total score. Use formatpoints to
modify the score behavior for rows with missing data.

[Scores,Points] = score(sc,data) computes the credit scores and points for the
given input data. This data can be a “training” or a “live” dataset.

formatpoints supports multiple alternatives to modify the scaling of the scores and can
also be used to control the rounding of points and scores, and whether the base points are
reported separately or spread across predictors. Missing data translates into NaN values
for the corresponding points, and therefore for the total score. Use formatpoints to
modify the score behavior for rows with missing data.

Examples

Obtain Scores for Training Data

This example shows how to use score to obtain scores for the training data.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
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7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Score training data using the score function without an optional input for data. By
default, it returns unscaled scores. For brevity, only the first ten scores are displayed.

Scores = score(sc);

disp(Scores(1:10))

    1.0968

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Scale scores and display both points and scores for each individual in the training data
(for brevity, only the first ten rows are displayed). For other scaling methods, and other
options for formatting points and scores, use the formatpoints function.
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sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

[Scores,Points] = score(sc);

disp(Scores(1:10))

disp(Points(1:10,:))

  602.0394

  648.1988

  560.5569

  662.4189

  646.8109

  702.1398

  453.4572

  579.9475

  594.9064

  567.9533

    CustAge    ResStatus    EmpStatus    CustIncome    TmWBank    OtherCC    AMBalance

    _______    _________    _________    __________    _______    _______    _________

    95.256     62.421       56.765       121.18        116.05     86.224      64.15   

    126.46     82.276       105.81       121.18        62.107     86.224      64.15   

    93.256     62.421       105.81       76.585        116.05     42.287      64.15   

    95.256     82.276       105.81       121.18        60.719     86.224     110.96   

    126.46     82.276       105.81       121.18        60.719     86.224      64.15   

    126.46     82.276       105.81       121.18        116.05     86.224      64.15   

    48.727     82.276       56.765       53.208        62.107     86.224      64.15   

    95.256     113.58       105.81       121.18        62.107     42.287     39.729   

    95.256     62.421       56.765       121.18        62.107     86.224     110.96   

    95.256     82.276       56.765       121.18        62.107     86.224      64.15   

Score a New Dataset

This example shows how to use score to obtain scores for a new dataset (for example, a
validation or a test dataset) using the optional 'data' input in the score function.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.
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sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

For the purpose of illustration, suppose that a few rows from the original data are our
"new" data. Use the optional data input argument in the score function to obtain the
scores for the newdata.

newdata = data(10:20,:);

Scores = score(sc,newdata)

Scores =
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    0.8252

    0.6553

    1.2443

    0.9478

    0.5690

    1.6192

    0.4899

    0.3824

    0.2945

    1.4401

    0.8242

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

data — (Optional) Dataset to be scored
table

(Optional) Dataset to be scored, specified as a MATLAB table where each row
corresponds to individual observations. The data must contain columns for each of the
predictors in the creditscorecard object.

Output Arguments
Scores — Scores for each observation
vector

Scores for each observation, returned as a vector.

Points — Points per predictor for each observation
table
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Points per predictor for each observation, returned as a table.

More About

Algorithms

The score of an individual  i is given by the formula
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of
Evidence (WOE) value for the i-th individual corresponding to the j-th model variable.
Shift and Slope are scaling constants further discussed below. The scaling constant can
be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the
data(i,j) is binned using existing binning maps, and converted into a corresponding
Weight of Evidence value WOEj(i). Using the model coefficients, the unscaled score is
computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is
the j-th column in the data input, although, in general, the order of variables in a given
dataset does not have to match the order of variables in the model, and the dataset could
have additional variables that are not used in the model.

The formatting options can be controlled using formatpoints.
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | plotbins |
predictorinfo | probdefault | setmodel | table | validatemodel

Introduced in R2014b
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formatpoints
Format scorecard points and scaling

Syntax
sc = formatpoints(sc,Name,Value)

Description
sc = formatpoints(sc,Name,Value) modifies the scorecard points and scaling
using optional name-value pair arguments. For example, use optional name-value pair
arguments to change the scaling of the scores or the rounding of the points.

Examples
Scale Points Using Worst and Best Scores

This example shows how to use formatpoints to scale by providing the Worst and
Best score values. By using formatpoints to scale, you can put points and scores in a
desired range that is more meaningful for practical purposes. Technically, this involves a
linear transformation from the unscaled to the scaled points.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
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2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the
minimum and maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445
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    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100

MaxScore =

    3.0726

Scale by providing the 'Worst' and 'Best' score values. The range provided below is
a common score range. Display the points information again to verify that they are now
scaled and also display the scaled minimum and maximum scores.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
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PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'            46.396

    'CustAge'       '[33,37)'              48.727

    'CustAge'       '[37,40)'              58.772

    'CustAge'       '[40,46)'              72.167

    'CustAge'       '[46,48)'              93.256

    'CustAge'       '[48,58)'              95.256

    'CustAge'       '[58,Inf]'             126.46

    'ResStatus'     'Tenant'               62.421

    'ResStatus'     'Home Owner'           82.276

    'ResStatus'     'Other'                113.58

    'EmpStatus'     'Unknown'              56.765

    'EmpStatus'     'Employed'             105.81

    'CustIncome'    '[-Inf,29000)'         8.9706

    'CustIncome'    '[29000,33000)'        53.208

    'CustIncome'    '[33000,35000)'         72.91

    'CustIncome'    '[35000,40000)'        76.585

    'CustIncome'    '[40000,42000)'        77.943

    'CustIncome'    '[42000,47000)'        97.056

    'CustIncome'    '[47000,Inf]'          121.18

    'TmWBank'       '[-Inf,12)'            43.431

    'TmWBank'       '[12,23)'              60.719

    'TmWBank'       '[23,45)'              62.107

    'TmWBank'       '[45,71)'              116.05

    'TmWBank'       '[71,Inf]'             185.79

    'OtherCC'       'No'                   42.287

    'OtherCC'       'Yes'                  86.224

    'AMBalance'     '[-Inf,558.88)'        110.96

    'AMBalance'     '[558.88,1254.28)'      64.15

    'AMBalance'     '[1254.28,1597.44)'    58.231

    'AMBalance'     '[1597.44,Inf]'        39.729

MinScore =

   300

MaxScore =
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  850.0000

As expected, the values of MinScore and MaxScore correspond to the desired worst and
best scores.

Scale Points Using Shift and Slope

This example shows how to use formatpoints to scale by providing the Shift and
Slope values. By using formatpoints to scale, you can put points and scores in a
desired range that is more meaningful for practical purposes. Technically, this involves
a linear transformation from the unscaled to the scaled points by the formatpoints
function.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  
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                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the
minimum and maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473
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    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100

MaxScore =

    3.0726

Scale by providing the 'Shift' and 'Slope' values. In this example, there is an
arbitrary choice of shift and slope. Display the points information again to verify that
they are now scaled and also display the scaled minimum and maximum scores.

sc = formatpoints(sc,'ShiftAndSlope',[300 6]);

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'            41.904

    'CustAge'       '[33,37)'              42.015

    'CustAge'       '[37,40)'              42.495

    'CustAge'       '[40,46)'              43.136

    'CustAge'       '[46,48)'              44.144

    'CustAge'       '[48,58)'              44.239

    'CustAge'       '[58,Inf]'             45.731

    'ResStatus'     'Tenant'                42.67
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    'ResStatus'     'Home Owner'           43.619

    'ResStatus'     'Other'                45.116

    'EmpStatus'     'Unknown'              42.399

    'EmpStatus'     'Employed'             44.744

    'CustIncome'    '[-Inf,29000)'         40.114

    'CustIncome'    '[29000,33000)'        42.229

    'CustIncome'    '[33000,35000)'        43.171

    'CustIncome'    '[35000,40000)'        43.347

    'CustIncome'    '[40000,42000)'        43.412

    'CustIncome'    '[42000,47000)'        44.326

    'CustIncome'    '[47000,Inf]'          45.479

    'TmWBank'       '[-Inf,12)'            41.762

    'TmWBank'       '[12,23)'              42.588

    'TmWBank'       '[23,45)'              42.655

    'TmWBank'       '[45,71)'              45.234

    'TmWBank'       '[71,Inf]'             48.568

    'OtherCC'       'No'                   41.707

    'OtherCC'       'Yes'                  43.808

    'AMBalance'     '[-Inf,558.88)'         44.99

    'AMBalance'     '[558.88,1254.28)'     42.752

    'AMBalance'     '[1254.28,1597.44)'    42.469

    'AMBalance'     '[1597.44,Inf]'        41.585

MinScore =

  292.1401

MaxScore =

  318.4355

Scale Points Using Points, Odds Levels, and PDO

This example shows how to use formatpoints to scale by providing the points, odds
levels, and PDO (points to double the odds). By using formatpoints to scale, you can
put points and scores in a desired range that is more meaningful for practical purposes.
Technically, this involves a linear transformation from the unscaled to the scaled points
by the formatpoints function.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
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creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the
minimum and maximum possible unscaled scores.
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[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100
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MaxScore =

    3.0726

Scale by providing the points, odds levels, and PDO (points to double the odds). Suppose
that you want a score of 500 points to have odds of 2 (twice as likely to be good than to be
bad) and that the odds double every 50 points (so that 550 points would have odds of 4).

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'            52.821

    'CustAge'       '[33,37)'              54.161

    'CustAge'       '[37,40)'              59.934

    'CustAge'       '[40,46)'              67.633

    'CustAge'       '[46,48)'              79.755

    'CustAge'       '[48,58)'              80.905

    'CustAge'       '[58,Inf]'             98.838

    'ResStatus'     'Tenant'               62.031

    'ResStatus'     'Home Owner'           73.444

    'ResStatus'     'Other'                91.438

    'EmpStatus'     'Unknown'              58.781

    'EmpStatus'     'Employed'             86.971

    'CustIncome'    '[-Inf,29000)'         31.309

    'CustIncome'    '[29000,33000)'        56.736

    'CustIncome'    '[33000,35000)'         68.06

    'CustIncome'    '[35000,40000)'        70.173

    'CustIncome'    '[40000,42000)'        70.953

    'CustIncome'    '[42000,47000)'         81.94

    'CustIncome'    '[47000,Inf]'          95.803

    'TmWBank'       '[-Inf,12)'            51.116

    'TmWBank'       '[12,23)'              61.053

    'TmWBank'       '[23,45)'              61.851

    'TmWBank'       '[45,71)'              92.856

    'TmWBank'       '[71,Inf]'             132.95

    'OtherCC'       'No'                   50.459

    'OtherCC'       'Yes'                  75.713

    'AMBalance'     '[-Inf,558.88)'         89.93
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    'AMBalance'     '[558.88,1254.28)'     63.025

    'AMBalance'     '[1254.28,1597.44)'    59.623

    'AMBalance'     '[1597.44,Inf]'        48.989

MinScore =

  355.5051

MaxScore =

  671.6403

Report Base Points Separately

This example shows how to use formatpoints to separate the base points from the rest
of the points assigned to each predictor variable. The formatpoints name-value pair
argument 'BasePoints' serves this purpose.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
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    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the
minimum and maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716
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    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100

MaxScore =

    3.0726

By setting the name-value pair argument BasePoints to true, the points information
table reports the base points separately in the first row. The minimum and maximum
possible scores are not affected by this option.

sc = formatpoints(sc,'BasePoints',true);

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin              Points  

    ____________    ___________________    __________

    'BasePoints'    'BasePoints'              0.70239

    'CustAge'       '[-Inf,33)'              -0.25928

    'CustAge'       '[33,37)'                -0.24071
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    'CustAge'       '[37,40)'                -0.16066

    'CustAge'       '[40,46)'               -0.053933

    'CustAge'       '[46,48)'                 0.11411

    'CustAge'       '[48,58)'                 0.13005

    'CustAge'       '[58,Inf]'                0.37866

    'ResStatus'     'Tenant'                 -0.13159

    'ResStatus'     'Home Owner'             0.026616

    'ResStatus'     'Other'                   0.27607

    'EmpStatus'     'Unknown'                -0.17666

    'EmpStatus'     'Employed'                0.21415

    'CustIncome'    '[-Inf,29000)'            -0.5575

    'CustIncome'    '[29000,33000)'            -0.205

    'CustIncome'    '[33000,35000)'         -0.048013

    'CustIncome'    '[35000,40000)'         -0.018731

    'CustIncome'    '[40000,42000)'        -0.0079083

    'CustIncome'    '[42000,47000)'           0.14439

    'CustIncome'    '[47000,Inf]'             0.33659

    'TmWBank'       '[-Inf,12)'              -0.28291

    'TmWBank'       '[12,23)'                -0.14515

    'TmWBank'       '[23,45)'                -0.13409

    'TmWBank'       '[45,71)'                 0.29572

    'TmWBank'       '[71,Inf]'                0.85148

    'OtherCC'       'No'                     -0.29202

    'OtherCC'       'Yes'                    0.058079

    'AMBalance'     '[-Inf,558.88)'           0.25517

    'AMBalance'     '[558.88,1254.28)'       -0.11781

    'AMBalance'     '[1254.28,1597.44)'      -0.16498

    'AMBalance'     '[1597.44,Inf]'           -0.3124

MinScore =

   -1.3100

MaxScore =

    3.0726

Round Points

This example shows how to use formatpoints to round points. Rounding is usually
applied after scaling, otherwise, if the points for a particular predictor are all in a small
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range, rounding could cause the rounded points for different bins to be the same. Also,
rounding all the points may slightly change the minimum and maximum total points.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792
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1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model and display the
minimum and maximum possible unscaled scores.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636
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    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100

MaxScore =

    3.0726

Scale points, and display the points information. By default, no rounding is applied.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

PointsInfo = displaypoints(sc)

PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'            46.396

    'CustAge'       '[33,37)'              48.727

    'CustAge'       '[37,40)'              58.772

    'CustAge'       '[40,46)'              72.167

    'CustAge'       '[46,48)'              93.256

    'CustAge'       '[48,58)'              95.256

    'CustAge'       '[58,Inf]'             126.46

    'ResStatus'     'Tenant'               62.421

    'ResStatus'     'Home Owner'           82.276

    'ResStatus'     'Other'                113.58

    'EmpStatus'     'Unknown'              56.765

    'EmpStatus'     'Employed'             105.81

    'CustIncome'    '[-Inf,29000)'         8.9706

    'CustIncome'    '[29000,33000)'        53.208

    'CustIncome'    '[33000,35000)'         72.91

    'CustIncome'    '[35000,40000)'        76.585

    'CustIncome'    '[40000,42000)'        77.943

    'CustIncome'    '[42000,47000)'        97.056

    'CustIncome'    '[47000,Inf]'          121.18

    'TmWBank'       '[-Inf,12)'            43.431

    'TmWBank'       '[12,23)'              60.719
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    'TmWBank'       '[23,45)'              62.107

    'TmWBank'       '[45,71)'              116.05

    'TmWBank'       '[71,Inf]'             185.79

    'OtherCC'       'No'                   42.287

    'OtherCC'       'Yes'                  86.224

    'AMBalance'     '[-Inf,558.88)'        110.96

    'AMBalance'     '[558.88,1254.28)'      64.15

    'AMBalance'     '[1254.28,1597.44)'    58.231

    'AMBalance'     '[1597.44,Inf]'        39.729

Use the name-value pair argument Round to apply rounding for all points and then
display the points information again.

sc = formatpoints(sc,'Round','AllPoints');

PointsInfo = displaypoints(sc)

PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'             46   

    'CustAge'       '[33,37)'               49   

    'CustAge'       '[37,40)'               59   

    'CustAge'       '[40,46)'               72   

    'CustAge'       '[46,48)'               93   

    'CustAge'       '[48,58)'               95   

    'CustAge'       '[58,Inf]'             126   

    'ResStatus'     'Tenant'                62   

    'ResStatus'     'Home Owner'            82   

    'ResStatus'     'Other'                114   

    'EmpStatus'     'Unknown'               57   

    'EmpStatus'     'Employed'             106   

    'CustIncome'    '[-Inf,29000)'           9   

    'CustIncome'    '[29000,33000)'         53   

    'CustIncome'    '[33000,35000)'         73   

    'CustIncome'    '[35000,40000)'         77   

    'CustIncome'    '[40000,42000)'         78   

    'CustIncome'    '[42000,47000)'         97   

    'CustIncome'    '[47000,Inf]'          121   

    'TmWBank'       '[-Inf,12)'             43   

    'TmWBank'       '[12,23)'               61   

    'TmWBank'       '[23,45)'               62   
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    'TmWBank'       '[45,71)'              116   

    'TmWBank'       '[71,Inf]'             186   

    'OtherCC'       'No'                    42   

    'OtherCC'       'Yes'                   86   

    'AMBalance'     '[-Inf,558.88)'        111   

    'AMBalance'     '[558.88,1254.28)'      64   

    'AMBalance'     '[1254.28,1597.44)'     58   

    'AMBalance'     '[1597.44,Inf]'         40   

Scores for Missing or Out-of-Range Data

This example shows how to use formatpoints to score missing or out-of-range data.
When data is scored, some observations can be either missing (NaN, or undefined) or out
of range. You need to decide whether or not points are assigned to these cases. Use the
name-value pair argument Missing to do so.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

Generalized Linear regression model:

    logit(status) ~ 1 + CustAge + EmpStatus + CustIncome + TmWBank + AMBalance

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70263     0.063759     11.02    3.0544e-28
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    CustAge        0.57265       0.2482    2.3072      0.021043

    EmpStatus      0.88356      0.29193    3.0266      0.002473

    CustIncome     0.70399      0.21781    3.2321      0.001229

    TmWBank            1.1      0.23185    4.7443    2.0924e-06

    AMBalance       1.0313      0.32007    3.2221     0.0012724

1200 observations, 1194 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 81.4, p-value = 4.18e-16

Suppose that missing observations are added to the data that you want to score. Notice
that by default, the points and score assigned to the missing value is NaN.

newdata = data(1:10,:);

newdata.CustAge(1) = NaN;

[Scores,Points] = score(sc,newdata)

Scores =

       NaN

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

         NaN    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

Use the name-value pair argument Missing to replace NaN with zero.

sc = formatpoints(sc,'Missing','ZeroWOE');

[Scores,Points] = score(sc,newdata)

Scores =

    0.9667

    1.4646

    0.7662
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    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

     0.10034    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

Use the name-value pair argument Missing to replace the missing value with the
minimum points for the predictor that has the missing values, 'CustAge'.

sc = formatpoints(sc,'Missing','MinPoints');

[Scores,Points] = score(sc,newdata)

Scores =

    0.7074

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

    -0.15894    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472
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Use the name-value pair argument Missing to replace the missing value with the
maximum points for the predictor that has the missing values, 'CustAge'.

sc = formatpoints(sc,'Missing','MaxPoints');

[Scores,Points] = score(sc,newdata)

Scores =

    1.3454

    1.4646

    0.7662

    1.5779

    1.4535

    1.8944

   -0.0872

    0.9207

    1.0399

    0.8252

Points = 

    CustAge     ResStatus    EmpStatus    CustIncome     TmWBank     OtherCC     AMBalance

    ________    _________    _________    __________    _________    ________    _________

       0.479    -0.031252    -0.076317     0.43693        0.39607     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693      -0.033752     0.15842    -0.017472

     0.21445    -0.031252      0.31449    0.081611        0.39607    -0.19168    -0.017472

     0.23039      0.12696      0.31449     0.43693      -0.044811     0.15842      0.35551

       0.479      0.12696      0.31449     0.43693      -0.044811     0.15842    -0.017472

       0.479      0.12696      0.31449     0.43693        0.39607     0.15842    -0.017472

    -0.14036      0.12696    -0.076317    -0.10466      -0.033752     0.15842    -0.017472

     0.23039      0.37641      0.31449     0.43693      -0.033752    -0.19168     -0.21206

     0.23039    -0.031252    -0.076317     0.43693      -0.033752     0.15842      0.35551

     0.23039      0.12696    -0.076317     0.43693      -0.033752     0.15842    -0.017472

Verify that the minimum and maximum points assigned to the missing data correspond
to the minimum and maximum points for'CustAge'. The points for 'CustAge' are
reported in the first five rows of the points information table.

PointsInfo = displaypoints(sc);

PointsInfo(1:7,:)

min(PointsInfo.Points(1:7))

max(PointsInfo.Points(1:7))

ans = 

    Predictors        Bin         Points  

    __________    ___________    _________

    'CustAge'     '[-Inf,33)'     -0.15894

    'CustAge'     '[33,37)'       -0.14036

    'CustAge'     '[37,40)'      -0.060323

    'CustAge'     '[40,46)'       0.046408
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    'CustAge'     '[46,48)'        0.21445

    'CustAge'     '[48,58)'        0.23039

    'CustAge'     '[58,Inf]'         0.479

ans =

   -0.1589

ans =

    0.4790

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: sc =
formatpoints(sc,'BasePoints',true,'Round','AllPoints','WorstAndBestScores',

[100, 700])

Note: ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling
methods and you can use only one of these name-value pair arguments at one time. The
other three name-value pair arguments (BasePoints, Missing, and Round) are not
scaling methods and can be used together or with any one of the three scaling methods.
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'BasePoints' — Indicator for separating base points
false (default) | logical scalar

Indicator for separating base points, specified as a logical scalar. If true, the scorecard
explicitly separates base points. If false, the base points are spread across all variables
in the creditscorecard object.

Data Types: char

'Missing' — Indicator for points assigned to missing or out-of-range information when
scoring
NoScore (default) | character vector with values NoScore, ZeroWOE, MinPoints, and
MaxPoints

Indicator for points assigned to missing or out-of-range information when scoring,
specified as a character vector with a value for NoScore, ZeroPoints, MinPoints, or
MaxPoints, where:

• NoScore — Missing and out-of-range data do not get points assigned and points are
set to NaN. Also, the total score is set to NaN.

• ZeroWOE — Missing or out-of-range data get assigned a zero Weight-of-Evidence
(WOE) value.

• MinPoints — Missing or out-of-range data get the minimum possible points for that
predictor. This penalizes the score if higher scores are better.

• MaxPoints — Missing or out-of-range data get the maximum possible points for that
predictor. This penalizes the score if lower scores are better.

Data Types: char

'Round' — Indicator whether to round points or scores
'None' (default) | character vector with values'AllPoints', 'FinalScore'

Indicator whether to round points or scores, specified as a character vector with values
'AllPoints', 'FinalScore' or 'None', where:

• None — No rounding is applied.
• AllPoints — Apply rounding to each predictor's points before adding up the total

score.
• FinalScore — Round the final score only (rounding is applied after all points are

added up).
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Data Types: char

'ShiftAndSlope' — Indicator for shift and slope scaling parameters
[0,1] (default) | numeric array with two elements [Shift,Slope]

Indicator for shift and slope scaling parameters for the credit scorecard, specified
using numeric array with two elements [Shift, Slope]. Slope cannot be zero. The
ShiftAndSlope values are used scale the scoring model.

Note: ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling
methods and you can use only one of these name-value pair arguments at one time. The
other three name-value pair arguments (BasePoints, Missing, and Round) are not
scaling methods and can be used together or with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope
to[0,1].

Data Types: double

'PointsOddsAndPDO' — Indicator for target points for given odds and double odds level
numeric array with three elements [Points,Odds,PDO]

Indicator for target points (Points) for a given odds level (Odds) and the desired number
of points to double the odds (PDO), specified using numeric array with three elements
[Points,Odds,PDO]. Odds must be a positive number. The PointsOddsAndPDO values
are used to find scaling parameters for the scoring model.

Note: The points to double the odds (PDO) may be positive or negative, depending on
whether higher scores mean lower risk, or vice versa.

ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods
and you can use only one of these name-value pair arguments at one time. The other
three name-value pair arguments (BasePoints, Missing, and Round) are not scaling
methods and can be used together or with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope
to[0,1].

Data Types: double
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'WorstAndBestScores' — Indicator for worst (highest risk) and best (lowest risk) scores in
scorecard
numeric array with two elements [WorstScore,BestScore]

Indicator for worst (highest risk) and best (lowest risk) scores in the scorecard, specified
as a numeric array with two elements [WorstScore,BestScore]. WorstScore and
BestScore must be different values. These WorstAndBestScores values are used to
find scaling parameters for the scoring model.

Note: WorstScore means the riskiest score, and its value could be lower or higher than
the ‘best’ score. In other words, the ‘minimum’ score may be the ‘worst‘ score or the 'best'
score, depending on the desired scoring scale.

ShiftAndSlope, PointsOddsAndPDO, and WorstAndBestScores are scaling methods
and you can use only one of these name-value pair arguments at one time. The other
three name-value pair arguments (BasePoints, Missing, and Round) are not scaling
methods and can be used together or with any one of the three scaling methods.

To remove a previous scaling and revert to unscaled scores, set ShiftAndSlope
to[0,1].

Data Types: double

Output Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model returned as an updated creditscorecard object. For more
information on using the creditscorecard object, see creditscorecard.

More About

Algorithms

The score of an individual  i is given by the formula
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Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the jth variable in the model, and WOEj(i) is the Weight
of Evidence (WOE) value for the ith individual corresponding to the jth model variable.
Shift and Slope are scaling constants further discussed below. The scaling constant can
be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the
data(i,j) is binned using existing binning maps, and converted into a corresponding
Weight of Evidence value WOEj(i). Using the model coefficients, the unscaled score is
computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is
the j-th column in the data input, although, in general, the order of variables in a given
dataset does not have to match the order of variables in the model, and the dataset could
have additional variables that are not used in the model.

The formatting options can be controlled using formatpoints. When the base points are
reported separately (see the formatpoints parameter BasePoints), the base points
are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately, in which case

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i)),

where p is the number of predictors in the scorecard model.

By default, no rounding is applied to the points by the score function (Round is None).
If Round is set to AllPoints using formatpoints, then the points for individual i for
variable j are given by

 points if rounding is 'AllPoints': round( Points_ji )

and, if base points are reported separately, the are also rounded. This yields integer-
valued points per predictor, hence also integer-valued scores. If Round is set to
FinalScore using formatpoints, then the points per predictor are not rounded, and
only the final score is rounded
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 score if rounding is 'FinalScore': round(Score(i)).

Regarding the scaling parameters, the Shift parameter, and the Slope parameter can
be set directly with the ShiftAndSlope parameter of formatpoints. Alternatively,
you can use the formatpoints parameter for WorstAndBestScores. In this case, the
parameters Shift and Slope are found internally by solving the system

Shift + Slope*smin = WorstScore,

Shift + Slope*smax = BestScore,

where WorstScore and BestScore are the first and second elements in the
formatpoints parameter for WorstAndBestScores and smin and smax are the
minimum and maximum possible unscaled scores:

smin = b0 + min(b1*WOE1) + ... +min(bp*WOEp),

smax = b0 + max(b1*WOE1) + ... +max(bp*WOEp).

A third alternative to scale scores is the PointsOddsAndPDO parameter in
formatpoints. In this case, assume that the unscaled score s gives the log-odds for a
row, and the Shift and Slope parameters are found by solving the following system

Points = Shift + Slope*log(Odds)

Points + PDO = Shift + Slope*log(2*Odds)

where Points, Odds, and PDO ("points to double the odds") are the first, second, and
third elements in the PointsOddsAndPDO parameter.

Whenever a given dataset has a missing or out-of-range value data (i,j), the points for
predictor j, for individual i, are set to NaN by default, which results in a missing score for
that row (a NaN score). Using the Missing parameter for formatpoints, you can modify
this behavior and set the corresponding Weight-of-Evidence (WOE) value to zero, or set
the points to the minimum points, or the maximum points for that predictor.
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel

Introduced in R2014b

18-1919



18 Functions — Alphabetical List

displaypoints
Return points per predictor per bin

Syntax

PointsInfo = displaypoints(sc)

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

Description

PointsInfo = displaypoints(sc) returns a table of points for all bins of all
predictor variables used in the creditscorecard object after a linear logistic regression
model is fit using fitmodel to the Weight of Evidence data. The PointsInfo table
displays information on the predictor name, bin labels, and the corresponding points per
bin.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc) returns a table of
points for all bins of all predictor variables used in the creditscorecard object after
a linear logistic regression model is fit (fitmodel) to the Weight of Evidence data.
The PointsInfo table displays information on the predictor name, bin labels, and the
corresponding points per bin and displaypoints. In addition, the optional MinScore
and MaxScore values are returned.

Examples

Display Unscaled Points

This example shows how to use displaypoints after a model is fitted to compute the
unscaled points per bin, for a given predictor in the creditscorecard model.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData
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sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the fitting model.

PointsInfo = displaypoints(sc)

PointsInfo = 
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     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

Display Scaled Points

This example shows how to use formatpoints after a model is fitted to format scaled
points, and then use displaypoints to display the scaled points per bin, for a given
predictor in the creditscorecard model.

Points become scaled when a range is defined. Specifically, a linear transformation from
the unscaled to the scaled points is necessary. This transformation is defined either by
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supplying a shift and slope or by specifying the worst and best scores possible. (For more
information, see formatpoints.)

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792
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1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the formatpoints function to scale providing the 'Worst' and 'Best' score
values. The range provided below is a common score range.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

Display the points information again to verify that the points are now scaled and also
display the scaled minimum and maximum scores.

sc = formatpoints(sc,'WorstAndBestScores',[300 850]);

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin            Points

    ____________    ___________________    ______

    'CustAge'       '[-Inf,33)'            46.396

    'CustAge'       '[33,37)'              48.727

    'CustAge'       '[37,40)'              58.772

    'CustAge'       '[40,46)'              72.167

    'CustAge'       '[46,48)'              93.256

    'CustAge'       '[48,58)'              95.256

    'CustAge'       '[58,Inf]'             126.46

    'ResStatus'     'Tenant'               62.421

    'ResStatus'     'Home Owner'           82.276

    'ResStatus'     'Other'                113.58

    'EmpStatus'     'Unknown'              56.765

    'EmpStatus'     'Employed'             105.81

    'CustIncome'    '[-Inf,29000)'         8.9706

    'CustIncome'    '[29000,33000)'        53.208

    'CustIncome'    '[33000,35000)'         72.91

    'CustIncome'    '[35000,40000)'        76.585

    'CustIncome'    '[40000,42000)'        77.943

    'CustIncome'    '[42000,47000)'        97.056

    'CustIncome'    '[47000,Inf]'          121.18

    'TmWBank'       '[-Inf,12)'            43.431

    'TmWBank'       '[12,23)'              60.719

    'TmWBank'       '[23,45)'              62.107

    'TmWBank'       '[45,71)'              116.05
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    'TmWBank'       '[71,Inf]'             185.79

    'OtherCC'       'No'                   42.287

    'OtherCC'       'Yes'                  86.224

    'AMBalance'     '[-Inf,558.88)'        110.96

    'AMBalance'     '[558.88,1254.28)'      64.15

    'AMBalance'     '[1254.28,1597.44)'    58.231

    'AMBalance'     '[1597.44,Inf]'        39.729

MinScore =

   300

MaxScore =

  850.0000

Notice that, as expected, the values of MinScore and MaxScore correspond to the worst
and best possible scores.

Separate the Base Points From the Total Points

This example shows how to use displaypoints after a model is fitted to separate the
base points from the rest of the points assigned to each predictor variable. The name-
value pair argument 'BasePoints' in the formatpoints function is a boolean that
serves this purpose. By default, the base points are spread across all variables in the
scorecard.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.
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sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the formatpoints function to separate the base points by providing the
'BasePoints' name-value pair argument.

sc = formatpoints(sc,'BasePoints',true);

Display the base points, separated out from the other points, for predictors retained in
the fitting model.

PointsInfo = displaypoints(sc)

PointsInfo = 

18-1926



 displaypoints

     Predictors             Bin              Points  

    ____________    ___________________    __________

    'BasePoints'    'BasePoints'              0.70239

    'CustAge'       '[-Inf,33)'              -0.25928

    'CustAge'       '[33,37)'                -0.24071

    'CustAge'       '[37,40)'                -0.16066

    'CustAge'       '[40,46)'               -0.053933

    'CustAge'       '[46,48)'                 0.11411

    'CustAge'       '[48,58)'                 0.13005

    'CustAge'       '[58,Inf]'                0.37866

    'ResStatus'     'Tenant'                 -0.13159

    'ResStatus'     'Home Owner'             0.026616

    'ResStatus'     'Other'                   0.27607

    'EmpStatus'     'Unknown'                -0.17666

    'EmpStatus'     'Employed'                0.21415

    'CustIncome'    '[-Inf,29000)'            -0.5575

    'CustIncome'    '[29000,33000)'            -0.205

    'CustIncome'    '[33000,35000)'         -0.048013

    'CustIncome'    '[35000,40000)'         -0.018731

    'CustIncome'    '[40000,42000)'        -0.0079083

    'CustIncome'    '[42000,47000)'           0.14439

    'CustIncome'    '[47000,Inf]'             0.33659

    'TmWBank'       '[-Inf,12)'              -0.28291

    'TmWBank'       '[12,23)'                -0.14515

    'TmWBank'       '[23,45)'                -0.13409

    'TmWBank'       '[45,71)'                 0.29572

    'TmWBank'       '[71,Inf]'                0.85148

    'OtherCC'       'No'                     -0.29202

    'OtherCC'       'Yes'                    0.058079

    'AMBalance'     '[-Inf,558.88)'           0.25517

    'AMBalance'     '[558.88,1254.28)'       -0.11781

    'AMBalance'     '[1254.28,1597.44)'      -0.16498

    'AMBalance'     '[1597.44,Inf]'           -0.3124

Display Points After Modifying Bin Labels

This example shows how to use displaypoints after a model is fitted and the
modifybins function is used to provide user-defined bin labels for a numeric predictor.

Create a creditscorecard object using the CreditCardData.mat file to load
the data (using a dataset from Refaat 2011). Use the 'IDVar' argument in the
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creditscorecard function to indicate that 'CustID' contains ID information and
should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning to bin for all predictors.

sc = autobinning(sc);

Fit a linear regression model using default parameters.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the displaypoints function to display point information.
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[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.15894

    'CustAge'       '[33,37)'               -0.14036

    'CustAge'       '[37,40)'              -0.060323

    'CustAge'       '[40,46)'               0.046408

    'CustAge'       '[46,48)'                0.21445

    'CustAge'       '[48,58)'                0.23039

    'CustAge'       '[58,Inf]'                 0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182

    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100
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MaxScore =

    3.0726

Use the modifybins function to specify user-defined bin labels for 'CustAge' so that
the bin ranges are described in natural language.

labels = {'Up to 32','33 to 36','37 to 39','40 to 45','46 to 47','48 to 57','At least 58'};

sc = modifybins(sc,'CustAge','BinLabels',labels);

Rerun displaypoints to verify the updated bin labels.

[PointsInfo,MinScore,MaxScore] = displaypoints(sc)

PointsInfo = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       'Up to 32'              -0.15894

    'CustAge'       '33 to 36'              -0.14036

    'CustAge'       '37 to 39'             -0.060323

    'CustAge'       '40 to 45'              0.046408

    'CustAge'       '46 to 47'               0.21445

    'CustAge'       '48 to 57'               0.23039

    'CustAge'       'At least 58'              0.479

    'ResStatus'     'Tenant'               -0.031252

    'ResStatus'     'Home Owner'             0.12696

    'ResStatus'     'Other'                  0.37641

    'EmpStatus'     'Unknown'              -0.076317

    'EmpStatus'     'Employed'               0.31449

    'CustIncome'    '[-Inf,29000)'          -0.45716

    'CustIncome'    '[29000,33000)'         -0.10466

    'CustIncome'    '[33000,35000)'         0.052329

    'CustIncome'    '[35000,40000)'         0.081611

    'CustIncome'    '[40000,42000)'         0.092433

    'CustIncome'    '[42000,47000)'          0.24473

    'CustIncome'    '[47000,Inf]'            0.43693

    'TmWBank'       '[-Inf,12)'             -0.18257

    'TmWBank'       '[12,23)'              -0.044811

    'TmWBank'       '[23,45)'              -0.033752

    'TmWBank'       '[45,71)'                0.39607

    'TmWBank'       '[71,Inf]'               0.95182
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    'OtherCC'       'No'                    -0.19168

    'OtherCC'       'Yes'                    0.15842

    'AMBalance'     '[-Inf,558.88)'          0.35551

    'AMBalance'     '[558.88,1254.28)'     -0.017472

    'AMBalance'     '[1254.28,1597.44)'    -0.064636

    'AMBalance'     '[1597.44,Inf]'         -0.21206

MinScore =

   -1.3100

MaxScore =

    3.0726

Compute the Predictor Weights

This example shows how to use a credit scorecard to compute the weights of the
predictors. The weights of the predictors are determined from the range of points of
each predictor, divided by the total range of points for the scorecard. The points for the
scorecard not only take into consideration the betas, but also implicitly the binning of the
predictor values and the corresponding weights of evidence.

Create a scorecard.

load CreditCardData.mat

sc = creditscorecard(data,'IDVar','CustID');

sc = autobinning(sc);

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial
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Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Compute scorecard points and the MinPts and MaxPts scores.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);

[PointsTable,MinPts,MaxPts] = displaypoints(sc);

PtsRange = MaxPts-MinPts;

disp(PointsTable(1:10,:))

disp('...')

fprintf('Min points: %g, Max points: %g\n',MinPts,MaxPts);

    Predictors         Bin         Points

    ___________    ____________    ______

    'CustAge'      '[-Inf,33)'     52.821

    'CustAge'      '[33,37)'       54.161

    'CustAge'      '[37,40)'       59.934

    'CustAge'      '[40,46)'       67.633

    'CustAge'      '[46,48)'       79.755

    'CustAge'      '[48,58)'       80.905

    'CustAge'      '[58,Inf]'      98.838

    'ResStatus'    'Tenant'        62.031

    'ResStatus'    'Home Owner'    73.444

    'ResStatus'    'Other'         91.438

...

Min points: 355.505, Max points: 671.64

Compute the predictor weights.
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Predictor = unique(PointsTable.Predictors,'stable');

NumPred = length(Predictor);

Weight = zeros(NumPred,1);

for ii=1:NumPred

   Ind = cellfun(@(x)strcmpi(Predictor{ii},x),PointsTable.Predictors);

   MaxPtsPred = max(PointsTable.Points(Ind));

   MinPtsPred = min(PointsTable.Points(Ind));

   Weight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;

end

PredictorWeights = table(Predictor,Weight);

PredictorWeights(end+1,:) = PredictorWeights(end,:);

PredictorWeights.Predictor{end} = 'Total';

PredictorWeights.Weight(end) = sum(Weight);

disp(PredictorWeights)

     Predictor      Weight

    ____________    ______

    'CustAge'       14.556

    'ResStatus'      9.302

    'EmpStatus'     8.9174

    'CustIncome'    20.401

    'TmWBank'       25.884

    'OtherCC'       7.9885

    'AMBalance'     12.951

    'Total'            100

The weights are defined as the range of points for the predictor divided by the range of
points for the scorecard.

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.
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Output Arguments

PointsInfo — One row per bin, per predictor, with the corresponding points
table

One row per bin, per predictor, with the corresponding points, returned as a table. For
example:

Predictors Bin Points

Predictor_1 Bin_11 Points_11
  ... ...
Predictor_2 Bin_21 Points_21
  ... ...
Predictor_j Bin_ji Points_ji
  ... ...

When base points are reported separately (see formatpoints), the first row of the
returned PointsInfo table contains the base points.

MinScore — Minimum possible total score
scalar

Minimum possible total score, returned as a scalar.

Note: Minimum score is the lowest possible total score in the mathematical sense,
independently of whether a low score means high risk or low risk.

MaxScore — Maximum possible total score
scalar

Maximum possible total score, returned as a scalar.

Note: Maximum score is the highest possible total score in the mathematical sense,
independently of whether a high score means high risk or low risk.
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More About

Algorithms

The points for predictor j and bin i are, by default, given by

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i))

where bj is the model coefficient of predictor j, p is the number of predictors in the model,
and WOEj(i) is the Weight of Evidence (WOE) value for the i-th bin corresponding to the
j-th model predictor. Shift and Slope are scaling constants.

When the base points are reported separately (see the formatpoints name-value pair
argument BasePoints), the base points are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately.

The minimum and maximum scores are:
MinScore = Shift + Slope*b0 + min(Slope*b1*WOE1) + ... +min(Slope*bp*WOEp)),

MaxScore = Shift + Slope*b0 + max(Slope*b1*WOE1) + ... +max(Slope*bp*WOEp)).

Use formatpoints to control the way points are scaled, rounded, and whether the
base points are reported separately. See formatpoints for more information on format
parameters and for details and formulas on these formatting options.
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard
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Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.
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See Also
autobinning | bindata | bininfo | creditscorecard | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel

Introduced in R2014b
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fitmodel
Fit logistic regression model to Weight of Evidence (WOE) data

Syntax

sc = fitmodel(sc)

[sc,mdl] = fitmodel(sc)

[sc,mdl] = fitmodel( ___ ,Name,Value)

Description

sc = fitmodel(sc) fits a logistic regression model to the Weight of Evidence (WOE)
data and stores the model predictor names and corresponding coefficients in the
creditscorecard object.

fitmodel internally transforms all the predictor variables into WOE values, using
the bins found with the automatic or manual binning process. The response variable is
mapped so that "Good" is 1, and "Bad" is 0. This implies that higher (unscaled) scores
correspond to better (less risky) individuals (smaller probability of default).

Alternatively, you can use setmodel to provide names of the predictors that you want in
the logistic regression model, along with their corresponding coefficients.

[sc,mdl] = fitmodel(sc) fits a logistic regression model to the Weight of Evidence
(WOE) data and stores the model predictor names and corresponding coefficients in the
creditscorecard object. fitmodel returns an updated creditscorecard object and
a GeneralizedLinearModel object containing the fitted model.

fitmodel internally transforms all the predictor variables into WOE values, using
the bins found with the automatic or manual binning process. The response variable is
mapped so that "Good" is 1, and "Bad" is 0. This implies that higher (unscaled) scores
correspond to better (less risky) individuals (smaller probability of default).

Alternatively, you can use setmodel to provide names of the predictors that you want in
the logistic regression model, along with their corresponding coefficients.
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[sc,mdl] = fitmodel( ___ ,Name,Value) fits a logistic regression model to the
Weight of Evidence (WOE) data using optional name-value pair arguments and stores
the model predictor names and corresponding coefficients in the creditscorecard
object. Using name-value pair arguments, you can select which Generalized Linear
Model to fit the data. fitmodel returns an updated creditscorecard object and a
GeneralizedLinearModel object containing the fitted model.

fitmodel internally transforms all the predictor variables into WOE values, using
the bins found with the automatic or manual binning process. The response variable is
mapped so that "Good" is 1, and "Bad" is 0. This implies that higher (unscaled) scores
correspond to better (less risky) individuals (smaller probability of default).

Alternatively, you can use setmodel to provide names of the predictors that you want in
the logistic regression model, along with their corresponding coefficients.

Examples

Fit a Stepwise Logistic Model

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc)
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sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data.
fitmodel internally transforms all the predictor variables into WOE values, using the
bins found with the automatic binning process. fitmodel then fits a logistic regression
model using a stepwise method (by default).

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696
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    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Fit a Logistic Model with All Predictors

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc,'Algorithm','EqualFrequency')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}
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                     Data: [1200×11 table]

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data.
fitmodel internally transforms all the predictor variables into WOE values, using the
bins found with the automatic binning process. Set the VariableSelection name-
value pair argument to FullModel to specify that all predictors must be included in the
fitted logistic regression model.

sc = fitmodel(sc,'VariableSelection','FullModel');

Generalized linear regression model:

    status ~ [Linear formula with 10 terms in 9 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE        tStat      pValue  

                   ________    ________    _______    _________

    (Intercept)    0.70262     0.063862     11.002    3.734e-28

    CustAge        0.57683      0.27064     2.1313     0.033062

    TmAtAddress     1.0653      0.55233     1.9287     0.053762

    ResStatus       1.4189      0.65162     2.1775     0.029441

    EmpStatus      0.89916      0.29217     3.0776     0.002087

    CustIncome     0.77506      0.21942     3.5323    0.0004119

    TmWBank         1.0826      0.26583     4.0727    4.648e-05

    OtherCC         1.1354      0.52827     2.1493     0.031612

    AMBalance      0.99315      0.32642     3.0425    0.0023459

    UtilRate       0.16723      0.55745    0.29999      0.76419

1200 observations, 1190 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 85.6, p-value = 1.25e-14

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments
sc — Credit scorecard model
creditscorecard object
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Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: [sc,mdl] = fitmodel(sc,'VariableSelection','FullModel')

'PredictorVars' — Predictor variables for fitting creditscorecard object
all predictors in the creditscorecard object (default) | cell array of character vectors

Predictor variables for fitting the creditscorecard object, specified when using a
cell array of character vectors. When provided, the creditscorecard object property
PredictorsVars is updated. When not provided, the predictors used to create the
creditscorecard object (by using the creditscorecard function) are used.

'VariableSelection' — Variable selection method to fit logistic regression model
'Stepwise' (default) | character vector with values 'Stepwise', 'FullModel'

The variable selection method to fit the logistic regression model, specified as a character
vector with values 'Stepwise' or 'FullModel':

• Stepwise — Uses a stepwise selection method which calls the Statistics and Machine
Learning Toolbox function stepwiseglm. Only variables in PredictorVars can
potentially become part of the model and uses the StartingModel name-value pair
argument to select the starting model.

• FullModel — Fits a model with all predictor variables in the PredictorVars name-
value pair argument and calls fitglm.

Note: Only variables in the PredictorVars property of the creditscorecard object
can potentially become part of the logistic regression model and only linear terms are
included in this model with no interactions or any other higher-order terms.

The response variable is mapped so that “Good” is 1 and “Bad” is 0.

Data Types: char
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'StartingModel' — Initial model for Stepwise variable selection
'Constant' (default) | character vector with values 'Constant', 'Linear'

Initial model for the Stepwise variable selection method, specified using a character
vector with values 'Constant' or 'Linear'. This option determines the initial
model (constant or linear) that the Statistics and Machine Learning Toolbox function
stepwiseglm starts with.

• Constant — Starts the stepwise method with an empty (constant only) model.
• Linear — Starts the stepwise method from a full (all predictors in) model.

Note: StartingModel is used only for the Stepwise option of VariableSelection
and has no effect for the FullModel option of VariableSelection.

Data Types: char

'Display' — Indicator to display model information at command line
'On' (default) | character vector with values 'On', 'Off'

Indicator to display model information at command line, specified using a character
vector with value 'On' or 'Off'.

Data Types: char

Output Arguments
sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object.
The creditscorecard object contains information about the model predictors
and coefficients used to fit the WOE data. For more information on using the
creditscorecard object, see creditscorecard.

mdl — Fitted logistic model
GeneralizedLinearModel object

Fitted logistic model, retuned as an object of type GeneralizedLinearModel containing
the fitted model. For more information on a GeneralizedLinearModel object, see
GeneralizedLinearModel.
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More About

Algorithms

For the logistic regression model used in the creditscorecard object, the probability of
being “Bad” is given by

ProbBad = exp(-s) / (1 + exp(-s)).
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard
• “What Are Generalized Linear Models?”

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints | fitglm
| formatpoints | GeneralizedLinearModel | modifybins | modifypredictor |
plotbins | predictorinfo | probdefault | score | setmodel | stepwiseglm |
validatemodel

Introduced in R2014b
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setmodel
Set model predictors and coefficients

Syntax

sc = setmodel(sc,ModelPredictors,ModelCoefficients)

Description

sc = setmodel(sc,ModelPredictors,ModelCoefficients) sets the predictors
and coefficients of a linear logistic regression model fitted outside the creditscorecard
object and returns an updated creditscorecard object. The predictors and coefficients
are used for the computation of scorecard points. Use setmodel in lieu of fitmodel,
which fits a linear logistic regression model, because setmodel offers increased
flexibility. For example, when a model fitted with fitmodel needs to be modified, you
can use setmodel. For more information, see “Workflows for Using setmodel ” on page
18-1955.

Note: When using setmodel, the following assumptions apply:

• The model coefficients correspond to a linear logistic regression model (where only
linear terms are included in the model and there are no interactions or any other
higher-order terms).

• The model was previously fitted using Weight of Evidence (WOE) data with the
response mapped so that ‘Good’ is 1 and ‘Bad’ is 0.

Examples

Modify a GLM Model Fitted with fitmodel

This example shows how to use setmodel to make modifications to a logistic regression
model initially fitted using the fitmodel function, and then set the new logistic
regression model predictors and coefficients back into the creditscorecard object.
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Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc);

The standard workflow is to use the fitmodel function to fit a logistic regression model
using a stepwise method. However, fitmodel only supports limited options regarding
the stepwise procedure. You can use the optional mdl output argument from fitmodel
to get a copy of the fitted GeneralizedLinearModel object, to later modify.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial
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Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Suppose you want to include, or "force," the predictor 'UtilRate' in the logistic
regression model, even though the stepwise method did not include it in the
fitted model. You can add 'UtilRate' to the logistic regression model using the
GeneralizedLinearModel object mdl directly.

mdl = mdl.addTerms('UtilRate')

mdl = 

Generalized linear regression model:

    status ~ [Linear formula with 9 terms in 8 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE        tStat        pValue  

                   ________    ________    ________    __________

    (Intercept)     0.70239    0.064001      10.975    5.0538e-28

    CustAge         0.60843     0.24936        2.44      0.014687

    ResStatus        1.3773      0.6529      2.1096      0.034896

    EmpStatus       0.88556     0.29303      3.0221     0.0025103

    CustIncome      0.70146      0.2186      3.2089     0.0013324

    TmWBank          1.1071     0.23307      4.7503    2.0316e-06

    OtherCC          1.0882     0.52918      2.0563       0.03975

    AMBalance        1.0413     0.36557      2.8483      0.004395
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    UtilRate       0.013157     0.60864    0.021618       0.98275

1200 observations, 1191 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 5.26e-16

Use setmodel to update the model predictors and model coefficients in the
creditscorecard object. The ModelPredictors input argument does not explicitly
include a string for the intercept. However, the ModelCoefficients input argument
does have the intercept information as its first element.

ModelPredictors = mdl.PredictorNames

ModelCoefficients = mdl.Coefficients.Estimate

sc = setmodel(sc,ModelPredictors,ModelCoefficients);

ModelPredictors =

  8×1 cell array

    'CustAge'

    'ResStatus'

    'EmpStatus'

    'CustIncome'

    'TmWBank'

    'OtherCC'

    'AMBalance'

    'UtilRate'

ModelCoefficients =

    0.7024

    0.6084

    1.3773

    0.8856

    0.7015

    1.1071

    1.0882

    1.0413

    0.0132
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Verify that 'UtilRate' is part of the scorecard predictors by displaying the scorecard
points.

pi = displaypoints(sc)

pi = 

     Predictors             Bin             Points  

    ____________    ___________________    _________

    'CustAge'       '[-Inf,33)'             -0.17152

    'CustAge'       '[33,37)'               -0.15295

    'CustAge'       '[37,40)'              -0.072892

    'CustAge'       '[40,46)'               0.033856

    'CustAge'       '[46,48)'                0.20193

    'CustAge'       '[48,58)'                0.21787

    'CustAge'       '[58,Inf]'               0.46652

    'ResStatus'     'Tenant'               -0.043826

    'ResStatus'     'Home Owner'             0.11442

    'ResStatus'     'Other'                  0.36394

    'EmpStatus'     'Unknown'              -0.088843

    'EmpStatus'     'Employed'               0.30193

    'CustIncome'    '[-Inf,29000)'          -0.46956

    'CustIncome'    '[29000,33000)'         -0.11715

    'CustIncome'    '[33000,35000)'         0.039798

    'CustIncome'    '[35000,40000)'         0.069073

    'CustIncome'    '[40000,42000)'         0.079893

    'CustIncome'    '[42000,47000)'          0.23215

    'CustIncome'    '[47000,Inf]'             0.4243

    'TmWBank'       '[-Inf,12)'             -0.19504

    'TmWBank'       '[12,23)'              -0.057316

    'TmWBank'       '[23,45)'               -0.04626

    'TmWBank'       '[45,71)'                0.38345

    'TmWBank'       '[71,Inf]'               0.93906

    'OtherCC'       'No'                    -0.20418

    'OtherCC'       'Yes'                    0.14587

    'AMBalance'     '[-Inf,558.88)'          0.34205

    'AMBalance'     '[558.88,1254.28)'     -0.029593

    'AMBalance'     '[1254.28,1597.44)'    -0.076589

    'AMBalance'     '[1597.44,Inf]'         -0.22349

    'UtilRate'      '[-Inf,0.04)'           0.089012

    'UtilRate'      '[0.04,0.36)'           0.088438

    'UtilRate'      '[0.36,Inf]'            0.084786
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Fit a Logistic Regression Model Outside of the creditscorecard Object

This example shows how to use setmodel to fit a logistic regression model directly,
without using the fitmodel function, and then set the new model predictors and
coefficients back into the creditscorecard object. This approach gives more flexibility
regarding options to control the stepwise procedure. This example fits a logistic
regression model with a nondefault value for the 'PEnter' parameter, the criterion to
admit a new predictor in the logistic regression model during the stepwise procedure.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). Use the 'IDVar' argument to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc);

The logistic regression model needs to be fit with Weight of Evidence (WOE) data. The
WOE transformation is a special case of binning, since the data first needs to be binned,
and then the binned information is mapped to the corresponding WOE values. This
transformation is done using the bindata function. bindata has an argument that
prepares the data for the model fitting step. By setting the bindata name-value pair
argument for 'OutputType' to WOEModelInput':

• All predictors are converted to WOE values.
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• The output contains only predictors and response (no 'IDVar' or any unused
variables).

• Predictors with infinite or undefined (NaN) WOE values are discarded.
• The response values are mapped so that "Good" is 1 and "Bad" is 0 (this implies that

higher unscaled scores correspond to better, less risky customers).

bd = bindata(sc,'OutputType','WOEModelInput');

For example, the first ten rows in the original data for the variables 'CustAge',
'ResStatus', 'CustIncome', and 'status' (response variable) look like this:

data(1:10,{'CustAge' 'ResStatus' 'CustIncome' 'status'})

ans = 

    CustAge    ResStatus     CustIncome    status

    _______    __________    __________    ______

    53         Tenant        50000         0     

    61         Home Owner    52000         0     

    47         Tenant        37000         0     

    50         Home Owner    53000         0     

    68         Home Owner    53000         0     

    65         Home Owner    48000         0     

    34         Home Owner    32000         1     

    50         Other         51000         0     

    50         Tenant        52000         1     

    49         Home Owner    53000         1     

Here is how the same ten rows look after calling bindata with the name-value pair
argument 'OutputType' set to 'WOEModelInput':

bd(1:10,{'CustAge' 'ResStatus' 'CustIncome' 'status'})

ans = 

    CustAge     ResStatus    CustIncome    status

    ________    _________    __________    ______

     0.21378    -0.095564      0.47972     1     

     0.62245     0.019329      0.47972     1     

     0.18758    -0.095564    -0.026696     1     
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     0.21378     0.019329      0.47972     1     

     0.62245     0.019329      0.47972     1     

     0.62245     0.019329      0.47972     1     

    -0.39568     0.019329     -0.29217     0     

     0.21378      0.20049      0.47972     1     

     0.21378    -0.095564      0.47972     0     

     0.21378     0.019329      0.47972     0     

Fit a logistic linear regression model using a stepwise method with the Statistics and
Machine Learning Toolbox™ function stepwiseglm, but use a nondefault value for
the 'PEnter' and 'PRemove' optional arguments. The predictors 'ResStatus' and
'OtherCC' would normally be included in the logistic linear regression model using
default options for the stepwise procedure.

mdl = stepwiseglm(bd,'constant','Distribution','binomial',...

'Upper','linear','PEnter',0.025,'PRemove',0.05)

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

mdl = 

Generalized linear regression model:

    logit(status) ~ 1 + CustAge + EmpStatus + CustIncome + TmWBank + AMBalance

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70263     0.063759     11.02    3.0544e-28

    CustAge        0.57265       0.2482    2.3072      0.021043

    EmpStatus      0.88356      0.29193    3.0266      0.002473

    CustIncome     0.70399      0.21781    3.2321      0.001229

    TmWBank            1.1      0.23185    4.7443    2.0924e-06

    AMBalance       1.0313      0.32007    3.2221     0.0012724

1200 observations, 1194 error degrees of freedom
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Dispersion: 1

Chi^2-statistic vs. constant model: 81.4, p-value = 4.18e-16

Use setmodel to update the model predictors and model coefficients in the
creditscorecard object. The ModelPredictors input argument does not explicitly
include a string for the intercept. However, the ModelCoefficients input argument
does have the intercept information as its first element.

ModelPredictors = mdl.PredictorNames

ModelCoefficients = mdl.Coefficients.Estimate

sc = setmodel(sc,ModelPredictors,ModelCoefficients);

ModelPredictors =

  5×1 cell array

    'CustAge'

    'EmpStatus'

    'CustIncome'

    'TmWBank'

    'AMBalance'

ModelCoefficients =

    0.7026

    0.5726

    0.8836

    0.7040

    1.1000

    1.0313

Verify that the desired model predictors are part of the scorecard predictors by displaying
the scorecard points.

pi = displaypoints(sc)

pi = 

     Predictors             Bin              Points  

    ____________    ___________________    __________
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    'CustAge'       '[-Inf,33)'              -0.10354

    'CustAge'       '[33,37)'               -0.086059

    'CustAge'       '[37,40)'               -0.010713

    'CustAge'       '[40,46)'                0.089757

    'CustAge'       '[46,48)'                 0.24794

    'CustAge'       '[48,58)'                 0.26294

    'CustAge'       '[58,Inf]'                0.49697

    'EmpStatus'     'Unknown'               -0.035716

    'EmpStatus'     'Employed'                0.35417

    'CustIncome'    '[-Inf,29000)'           -0.41884

    'CustIncome'    '[29000,33000)'         -0.065161

    'CustIncome'    '[33000,35000)'          0.092353

    'CustIncome'    '[35000,40000)'           0.12173

    'CustIncome'    '[40000,42000)'           0.13259

    'CustIncome'    '[42000,47000)'            0.2854

    'CustIncome'    '[47000,Inf]'             0.47824

    'TmWBank'       '[-Inf,12)'              -0.14048

    'TmWBank'       '[12,23)'              -0.0036486

    'TmWBank'       '[23,45)'                0.007336

    'TmWBank'       '[45,71)'                 0.43426

    'TmWBank'       '[71,Inf]'                0.98628

    'AMBalance'     '[-Inf,558.88)'           0.39235

    'AMBalance'     '[558.88,1254.28)'       0.024256

    'AMBalance'     '[1254.28,1597.44)'     -0.022291

    'AMBalance'     '[1597.44,Inf]'          -0.16779

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

ModelPredictors — Predictor names included in fitted model
cell array of character vectors with predictor values
{'PredictorName1','PredictorName2',...}
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Predictor names included in the fitted model, specified as a cell array of character vectors
as {'PredictorName1','PredictorName2',...}. The predictor names must match
predictor variable names in the creditscorecard object.

Note: Do not include a character vector for the constant term in ModelPredictors,
setmodel internally handles the '(Intercept)' term based on the number of model
coefficients (see ModelCoefficients).

Data Types: cell

ModelCoefficients — Model coefficients corresponding to model predictors
numeric array with values [coeff1,coeff2,..]

Model coefficients corresponding to the model predictors, specified as a numeric array
of model coefficients, [coeff1,coeff2,..]. If N is the number of predictor names
provided in ModelPredictors, the size of ModelCoefficients can be N or N+1.
If ModelCoefficients has N+1 elements, then the first coefficient is used as the
'(Intercept)' of the fitted model. Otherwise, the '(Intercept)' is set to 0.

Data Types: double

Output Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. The
creditscorecard object contains information about the model predictors and
coefficients of the fitted model. For more information on using the creditscorecard
object, see creditscorecard.

More About

Workflows for Using setmodel

When using setmodel, there are two possible workflows to set the final model predictors
and model coefficients into a creditscorecard object.
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The first workflow is:

• Use fitmodel to get the optional output argument mdl. This is a
GeneralizedLinearModel object and you can add and remove terms, or modify
the parameters of the stepwise procedure. Only linear terms can be in the model (no
interactions or any other higher-order terms).

• Once the GeneralizedLinearModel object is satisfactory, set the final model
predictors and model coefficients into the creditscorecard object using the
setmodel input arguments for ModelPredictors and ModelCoefficients.

An alternate workflow is:

• Obtain the Weight of Evidence (WOE) data using bindata. Use the
'WOEModelInput' option for the 'OutputType' name-value pair argument in
bindata to ensure that:

• The predictors data is transformed to WOE.
• Only predictors whose bins have finite WOE values are included.
• The response variable is placed in the last column.
• The response variable is mapped (“Good” is 1 and “Bad” is 0).

• Use the data from the previous step to fit a linear logistic regression model (only
linear terms in the model, no interactions, or any other higher-order terms). See, for
example, stepwiseglm.

• Once the GeneralizedLinearModel object is satisfactory, set the final model
predictors and model coefficients into the creditscorecard object using the
setmodel input arguments for ModelPredictors and ModelCoefficients.

• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.
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See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitglm | fitmodel | formatpoints | GeneralizedLinearModel | modifybins
| modifypredictor | plotbins | predictorinfo | probdefault | score |
stepwiseglm | validatemodel

Introduced in R2014b
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bindata

Binned predictor variables

Syntax

bdata = bindata(sc)

bdata = bindata(sc,data)

bdata = bindata(sc,Name,Value)

Description

bdata = bindata(sc) binned predictor variables returned as a table. This is a table
of the same size (see exception in the following Note) as the data input, but only the
predictors specified in the creditscorecard object's PredictorVars property are
binned and the remaining ones are unchanged.

bdata = bindata(sc,data) returns a table of binned predictor variables. bindata
returns a table of the same size as the creditscorecard data, but only the predictors
specified in the creditscorecard object's PredictorVars property are binned and the
remaining ones are unchanged.

bdata = bindata(sc,Name,Value) binned predictor variables returned as a
table using optional name-value pair arguments. This is a table of the same size (see
exception in the following Note) as the data input, but only the predictors specified in
the creditscorecard object's PredictorVars property are binned and the remaining
ones are unchanged.

Examples

Bin creditscorecard Data as Bin Numbers, Categories, or WOE Values

This example shows how to use the bindata function to simply bin or discretize data.

Suppose bin ranges of
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• '0 to 30'
• '31 to 50'
• '51 and up'

are determined for the age variable (via manual or automatic binning). If a data point
with age 41 is given, binning this data point means placing it in the bin for 41 years
old, which is the second bin, or the '31 to 50' bin. Binning is then the mapping from the
original data, into discrete groups or bins. In this example, you can say that a 41-year old
is mapped into bin number 2, or that it is binned into the '31 to 50' category. If you know
the Weight of Evidence (WOE) value for each of the three bins, you could also replace the
data point 41 with the WOE value corresponding to the second bin. bindata supports
the three binning formats just mentioned:

• Bin number (where the 'OutputType' name-value pair argument is set to
'BinNumber'); this is the default option, and in this case, 41 is mapped to bin 2.

• Categorical (where the 'OutputType' name-value pair argument is set to
'Categorical'); in this case, 41 is mapped to the '31 to 50' bin.

• WOE value (where the 'OutputType' name-value pair argument is set to 'WOE'); in
this case, 41 is mapped to the WOE value of bin number 2.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). Use the 'IDVar' argument to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]
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Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans = 

        Bin        Good    Bad     Odds        WOE       InfoValue

    ___________    ____    ___    ______    _________    _________

    '[-Inf,33)'     70      53    1.3208     -0.42622     0.019746

    '[33,37)'       64      47    1.3617     -0.39568     0.015308

    '[37,40)'       73      47    1.5532     -0.26411    0.0072573

    '[40,46)'      174      94    1.8511    -0.088658     0.001781

    '[46,48)'       61      25      2.44      0.18758    0.0024372

    '[48,58)'      263     105    2.5048      0.21378     0.013476

    '[58,Inf]'      98      26    3.7692      0.62245       0.0352

    'Totals'       803     397    2.0227          NaN     0.095205

These are the first 10 age values in the original data, used to create the
creditscorecard object.

data(1:10,'CustAge')

ans = 

    CustAge

    _______

    53     

    61     

    47     

    50     

    68     

    65     

    34     

    50     

    50     

    49     
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Bin scorecard data into bin numbers (default behavior).

bdata = bindata(sc);

According to the bin information, the first age should be mapped into the fourth bin,
the second age into the fifth bin, etc. These are the first 10 binned ages, in bin-number
format.

bdata(1:10,'CustAge')

ans = 

    CustAge

    _______

    6      

    7      

    5      

    6      

    7      

    7      

    2      

    6      

    6      

    6      

Bin the scorecard data and show their bin labels. To do this, set the bindata name-value
pair argument for 'OutputType' to 'Categorical'.

bdata = bindata(sc,'OutputType','Categorical');

These are the first 10 binned ages, in categorical format.

bdata(1:10,'CustAge')

ans = 

    CustAge 

    ________
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    [48,58) 

    [58,Inf]

    [46,48) 

    [48,58) 

    [58,Inf]

    [58,Inf]

    [33,37) 

    [48,58) 

    [48,58) 

    [48,58) 

Convert the scorecard data to WOE values. To do this, set the bindata name-value pair
argument for 'OutputType' to 'WOE'.

bdata = bindata(sc,'OutputType','WOE');

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE
values that are internally displayed using the bininfo function.

bdata(1:10,'CustAge')

ans = 

    CustAge 

    ________

     0.21378

     0.62245

     0.18758

     0.21378

     0.62245

     0.62245

    -0.39568

     0.21378

     0.21378

     0.21378

Bin Additional "Test" Data

This example shows how to use the bindata function's optional input for the data to
bin. If not provided, bindata bins the creditscorecard training data. However, if a
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different dataset needs to be binned, for example, some "test" data, this can be passed
into bindata as an optional input.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). Use the 'IDVar' argument to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans = 

        Bin        Good    Bad     Odds        WOE       InfoValue

    ___________    ____    ___    ______    _________    _________

    '[-Inf,33)'     70      53    1.3208     -0.42622     0.019746

    '[33,37)'       64      47    1.3617     -0.39568     0.015308

    '[37,40)'       73      47    1.5532     -0.26411    0.0072573

    '[40,46)'      174      94    1.8511    -0.088658     0.001781

    '[46,48)'       61      25      2.44      0.18758    0.0024372
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    '[48,58)'      263     105    2.5048      0.21378     0.013476

    '[58,Inf]'      98      26    3.7692      0.62245       0.0352

    'Totals'       803     397    2.0227          NaN     0.095205

For the purpose of illustration, take a few rows from the original data as "test" data and
display the first 10 age values in the test data.

tdata = data(101:110,:);

tdata(1:10,'CustAge')

ans = 

    CustAge

    _______

    34     

    59     

    64     

    61     

    28     

    65     

    55     

    37     

    49     

    51     

Convert the test data to WOE values. To do this, set the bindata name-value pair
argument for 'OutputType' to 'WOE', passing the test data (tdata) as an optional
input.

bdata = bindata(sc,tdata,'OutputType','WOE')

bdata = 

    CustID    CustAge     TmAtAddress    ResStatus    EmpStatus    CustIncome    TmWBank     OtherCC     AMBalance    UtilRate    status

    ______    ________    ___________    _________    _________    __________    ________    ________    _________    ________    ______

    101       -0.39568    -0.087767      -0.095564      0.2418     -0.011271      0.76889    0.053364    -0.11274     0.048576    0     

    102        0.62245      0.14288       0.019329    -0.19947       0.20579     -0.13107    -0.26832    -0.11274     0.048576    1     

    103        0.62245      0.02263       0.019329      0.2418       0.47972     -0.12109    0.053364     0.24418     0.092164    0     

    104        0.62245      0.02263      -0.095564      0.2418       0.47972     -0.12109    0.053364     0.24418     0.048576    0     
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    105       -0.42622      0.02263       0.019329      0.2418      -0.06843      0.76889    0.053364    -0.11274     0.092164    0     

    106        0.62245      0.02263       0.019329    -0.19947       0.20579     -0.13107    0.053364    -0.11274     -0.22899    0     

    107        0.21378    -0.087767      -0.095564      0.2418       0.47972      0.26704    0.053364    -0.11274     0.048576    0     

    108       -0.26411    -0.087767       0.019329    -0.19947      -0.29217     -0.13107    0.053364    -0.11274     0.048576    0     

    109        0.21378    -0.087767      -0.095564      0.2418     -0.026696     -0.13107    0.053364     0.24418     0.048576    0     

    110        0.21378    -0.087767       0.019329      0.2418       0.20579     -0.13107    0.053364    -0.29895     -0.22899    0     

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE
values displayed internally by bininfo.

bdata(1:10,'CustAge')

ans = 

    CustAge 

    ________

    -0.39568

     0.62245

     0.62245

     0.62245

    -0.42622

     0.62245

     0.21378

    -0.26411

     0.21378

     0.21378

Apply a Weight of Evidence (WOE) Transformation to Data

bindata supports the following types of WOE transformation:

• When the 'OutputType' name-value argument is set to 'WOE', bindata simply
applies the WOE transformation to all predictors and keeps the rest of the variables
in the original data in place and unchanged.

• When the 'OutputType' name-value pair argument is set to 'WOEModelInput',
bindata returns a table that can be used directly as an input for fitting a logistic
regression model for the scorecard. In this case, bindata:

• Applies WOE transformation to all predictors.

18-1965



18 Functions — Alphabetical List

• Returns predictor variables, but no IDVar or unused variables are included in the
output.

• Includes the mapped response variable as the last column.
• The fitmodel function calls bindata internally using the 'WOEModelInput' option

to fit the logistic regression model for the creditscorecard model.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). Use the 'IDVar' argument to indicate that
'CustID' contains ID information and should not be included as a predictor variable.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning.

sc = autobinning(sc);

Show the bin information for 'CustAge'.

bininfo(sc,'CustAge')

ans = 

        Bin        Good    Bad     Odds        WOE       InfoValue

    ___________    ____    ___    ______    _________    _________

    '[-Inf,33)'     70      53    1.3208     -0.42622     0.019746
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    '[33,37)'       64      47    1.3617     -0.39568     0.015308

    '[37,40)'       73      47    1.5532     -0.26411    0.0072573

    '[40,46)'      174      94    1.8511    -0.088658     0.001781

    '[46,48)'       61      25      2.44      0.18758    0.0024372

    '[48,58)'      263     105    2.5048      0.21378     0.013476

    '[58,Inf]'      98      26    3.7692      0.62245       0.0352

    'Totals'       803     397    2.0227          NaN     0.095205

These are the first 10 age values in the original data, used to create the
creditscorecard object.

data(1:10,'CustAge')

ans = 

    CustAge

    _______

    53     

    61     

    47     

    50     

    68     

    65     

    34     

    50     

    50     

    49     

Convert the test data to WOE values. To do this, set the bindata name-value pair
argument for 'OutputType' to 'WOE'.

bdata = bindata(sc,'OutputType','WOE');

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE
values displayed internally by bininfo.

bdata(1:10,'CustAge')

ans = 
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    CustAge 

    ________

     0.21378

     0.62245

     0.18758

     0.21378

     0.62245

     0.62245

    -0.39568

     0.21378

     0.21378

     0.21378

These are the first 10 binned ages, in WOE format. The ages are mapped to the WOE
values displayed internally by bininfo.

bdata(1:10,'CustAge')

ans = 

    CustAge 

    ________

     0.21378

     0.62245

     0.18758

     0.21378

     0.62245

     0.62245

    -0.39568

     0.21378

     0.21378

     0.21378

The size of the original data and the size of bdata output are the same because bindata
leaves unused variables (such as 'IDVar') unchanged and in place.

whos data bdata

  Name          Size             Bytes  Class    Attributes
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  bdata      1200x11            109057  table              

  data       1200x11             84729  table              

The response values are the same in the original data and in the binned data because, by
default, bindata does not modify response values.

disp([data.status(1:10) bdata.status(1:10)])

     0     0

     0     0

     0     0

     0     0

     0     0

     0     0

     1     1

     0     0

     1     1

     1     1

When fitting a logistic regression model with WOE data, set the 'OutputType' name-
value pair argument to 'WOEModelInput'.

bdata = bindata(sc,'OutputType','WOEModelInput');

The binned predictor data is the same as when the 'OutputType' name-value pair
argument is set to 'WOE'.

bdata(1:10,'CustAge')

ans = 

    CustAge 

    ________

     0.21378

     0.62245

     0.18758

     0.21378

     0.62245

     0.62245

    -0.39568

     0.21378
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     0.21378

     0.21378

However, the size of the original data and the size of bdata output are different. This is
because bindata removes unused variables (such as 'IDVar').

whos data bdata

  Name          Size            Bytes  Class    Attributes

  bdata      1200x10            99221  table              

  data       1200x11            84729  table              

The response values are also modified in this case and are mapped so that "Good" is 1
and "Bad" is 0.

disp([data.status(1:10) bdata.status(1:10)])

     0     1

     0     1

     0     1

     0     1

     0     1

     0     1

     1     0

     0     1

     1     0

     1     0

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.
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data — Data to bin given the rules set in creditscorecard object
table

Data to bin given the rules set in the creditscorecard object, specified using a table.
By default, data is set to the creditscorecard object's raw data.

Before creating a creditscorecard object, perform a data preparation task to have an
appropriately structured data as input to a creditscorecard object.

Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: bdata =
bindata(sc,'OutputType','WOE','ResponseFormat','Mapped')

'OutputType' — Output format
'BinNumber' (default) | character vector with values 'BinNumber', 'Categorical',
'WOE'

Output format, specified as a character vector with the following values:

• BinNumber — Returns the bin numbers corresponding to each observation.
• Categorical — Returns the bin label corresponding to each observation.
• WOE — Returns the Weight of Evidence (WOE) corresponding to each observation.
• WOEModelInput — Use this option when fitting a model. This option:

• Returns the Weight of Evidence (WOE) corresponding to each observation.
• Returns predictor variables, but no IDVar or unused variables are included in the

output.
• Discards any predictors whose bins have Inf or NaN WOE values.
• Includes the mapped response variable as the last column.

Note: When the bindata name-value pair argument 'OutputType' is set to
'WOEModelInput', the bdata output only contains the columns corresponding to
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predictors whose bins do not have Inf or NaN Weight of Evidence (WOE) values, and
bdata includes the mapped response as the last column.

Missing data (if any) are included in the bdata output as missing data as well,
and do not influence the rules to discard predictors when 'OutputType' is set to
'WOEModelInput'.

Data Types: char

'ResponseFormat' — Response values format
'RawData' (default) | character vector with values 'RawData', 'Mapped'

Response values format, specified using a character vector with the following values:

• RawData — The response variable is copied unchanged into the bdata output.
• Mapped — The response values are modified (if necessary) so that "Good" is mapped

to 1, and "Bad" is mapped to 0.

Data Types: char

Output Arguments

bdata — Binned predictor variables
table

Binned predictor variables, returned as a table. This is a table of the same size (see
exception in the following Note) as the data input, but only the predictors specified in
the creditscorecard object's PredictorVars property are binned and the remaining
ones are unchanged.

Note: When the bindata name-value pair argument 'OutputType' is set to
'WOEModelInput', the bdata output only contains the columns corresponding to
predictors whose bins do not have Inf or NaN Weight of Evidence (WOE) values, and
bdata includes the mapped response as the last column.

Missing data (if any) are included in the bdata output as missing data as well,
and do not influence the rules to discard predictors when 'OutputType' is set to
'WOEModelInput'.

18-1972



 bindata

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
autobinning | bininfo | creditscorecard | displaypoints | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel

Introduced in R2014b
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plotbins
Plot histogram counts for predictor variables

Syntax

plotbins(sc,PredictorName)

hFigure = plotbins(sc,PredictorName)

hFigure = plotbins( ___ ,Name,Value)

Description

plotbins(sc,PredictorName) plots histogram counts for given predictor variables.
When a predictor’s bins are modified using modifybins or autobinning, rerun
plotbins to update the figure to reflect the change.

hFigure = plotbins(sc,PredictorName) returns a handle to the figure. plotbins
plots histogram counts for given predictor variables. When a predictor’s bins are modified
using modifybins or autobinning, rerun plotbins to update the figure to reflect the
change.

hFigure = plotbins( ___ ,Name,Value) returns a handle to the figure. plotbins
plots histogram counts for given predictor variables using optional name-value pair
arguments. When a predictor’s bins are modified using modifybins or autobinning,
rerun plotbins to update the figure to reflect the change.

Examples

Plot a Histogram for Bin Information

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Perform automatic binning for the PredictorName input argument for CustIncome
using the defaults for the algorithm Monotone.
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sc = autobinning(sc, 'CustIncome')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

Use bininfo to display the autobinned data.

[bi, cp] = bininfo(sc, 'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,33000)'     74      49     1.5102     -0.29217     0.0091366

    '[33000,35000)'     68      36     1.8889     -0.06843    0.00041042

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12285

cp =

       29000

       33000

       35000

       40000

       42000

       47000
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Manually remove the second cut point (the boundary between the second and third bins)
to merge bins two and three. Use the modifybins function to update the scorecard and
then display updated bin information.

cp(2) = [];

sc = modifybins(sc,'CustIncome','CutPoints',cp);

bi = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,35000)'    142      85     1.6706     -0.19124     0.0071274

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12043

Plot the histogram count for updated bin information for the PredictorName called
CustIncome.

plotbins(sc,'CustIncome');
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Plot a Histogram for Bin Information Using Name-Value Pair Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Perform automatic binning for the PredictorName input argument for CustIncome
using the defaults for the algorithm Monotone.

sc = autobinning(sc, 'CustIncome')

sc = 
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  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

Use bininfo to display the autobinned data.

[bi, cp] = bininfo(sc, 'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,33000)'     74      49     1.5102     -0.29217     0.0091366

    '[33000,35000)'     68      36     1.8889     -0.06843    0.00041042

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12285

cp =

       29000

       33000

       35000

       40000

       42000

       47000

Plot the bin information for CustIncome without the Weight of Evidence (WOE) line and
without a legend by setting the 'WOE' and 'Legend' name-value arguments to 'Off'.
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Also, set the 'BinText' name-value pair argument to 'PercentRows' to show as text
over the plot bars for the proportion of "Good" and "Bad" within each bin, that is, the
probability of "Good" and "Bad" within each bin.

plotbins(sc,'CustIncome','WOE','Off','Legend','Off','BinText','PercentRows');

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments
sc — Credit scorecard model
creditscorecard object
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Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

PredictorName — Name of one or more predictors to plot
character vector with predicator name | cell array of character vectors with predictor
names

Name of one or more predictors to plot, specified using a character vector or cell array of
character vectors containing one or more names of the predictors.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: plotbins(sc,PredictorName,'BinText','Count','WOE','On')

'BinText' — Information to display on top of plotted bin counts
'None' (default) | character vector with values 'None', 'Count', 'PercentRows',
'PercentCols', 'PercentTotal'

Information to display on top of plotted bin counts, specified using a character vector
with values:

• None — No text is displayed on top of the bins.
• Count — For each bin, displays the count for “Good” and “Bad.”
• PercentRows — For each bin, displays the count for “Good” and “Bad” as a

percentage of the number of observations in the bin.
• PercentCols — For each bin, displays the count for “Good” and “Bad” as a

percentage of the total “Good” and total “Bad” in the entire sample.
• PercentTotal — For each bin, displays the count for “Good” and “Bad” as a

percentage of the total number of observations in the entire sample.

Data Types: char

'WOE' — Indicator for Weight of Evidence (WOE)
'On' (default) | character vector with values 'On', 'Off'
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Indicator for Weight of Evidence (WOE) line, specified using a character vector with
values On or Off. When set to On, the WOE line is plotted on top of the histogram.

Data Types: char

'Legend' — Indicator for legend on plot
'On' (default) | character vector with values 'On', 'Off'

Indicator for legend on the plot, specified using a character vector with values On or Off.

Data Types: char

Output Arguments

hFigure — Figure handle for histogram plot for predictor variables
figure object

Figure handle for histogram plot for predictor variables, returned as figure object or
array of figure objects if more than one PredictorName is specified as an input.

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifybins | modifypredictor | predictorinfo |
probdefault | score | setmodel | validatemodel
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Introduced in R2014b
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modifybins
Modify predictor’s bins

Syntax
sc = modifybins(sc,PredictorName,Name,Value)

Description
sc = modifybins(sc,PredictorName,Name,Value) manually modifies predictor
bins for numeric predictors or categorical predictors using optional name-value pair
arguments. For numeric predictors, minimum value, maximum value, and cut points can
be specified. For categorical predictors, category groupings can be specified. Bin labels
can be specified for both types of predictors.

Examples
Modify Predictor Bins for Numeric Data

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

The predictor CustIncome is numeric. By default, each value of a predictor is placed in a
separate bin.

bi = bininfo(sc,'CustIncome')

bi = 

      Bin       Good    Bad     Odds         WOE       InfoValue 

    ________    ____    ___    _______    _________    __________

    '18000'       2       3    0.66667      -1.1099     0.0056227

    '19000'       1       2        0.5      -1.3976     0.0053002

    '20000'       4       2          2    -0.011271    6.3641e-07
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    '21000'       6       3          2    -0.011271    9.5462e-07

    '22000'       4       2          2    -0.011271    6.3641e-07

    '23000'       4       4          1     -0.70442     0.0035885

    '24000'       5       5          1     -0.70442     0.0044856

    '25000'       4       9    0.44444      -1.5153      0.026805

    '26000'       4      11    0.36364       -1.716      0.038999

    '27000'       6       6          1     -0.70442     0.0053827

    '28000'      13      11     1.1818     -0.53736     0.0061896

    '29000'      11      10        1.1     -0.60911     0.0069988

    '30000'      18      16      1.125     -0.58664      0.010493

    '31000'      24       8          3      0.39419     0.0038382

    '32000'      21      15        1.4     -0.36795     0.0042797

    '33000'      35      19     1.8421    -0.093509    0.00039951

    '34000'      33      17     1.9412    -0.041124     7.095e-05

    '35000'      39      20       1.95    -0.036589    6.6225e-05

    '36000'      30      12        2.5      0.21187     0.0015113

    '37000'      57      22     2.5909      0.24759     0.0038545

    '38000'      28      22     1.2727     -0.46326     0.0095182

    '39000'      39      22     1.7727      -0.1319    0.00090321

    '40000'      42      17     2.4706      0.20004     0.0018969

    '41000'      26      17     1.5294     -0.27954     0.0029191

    '42000'      39      16     2.4375      0.18655      0.001542

    '43000'      39      14     2.7857      0.32009     0.0042582

    '44000'      27      12       2.25      0.10651    0.00036184

    '45000'      35      12     2.9167      0.36602       0.00489

    '46000'      24      12          2    -0.011271    3.8185e-06

    '47000'      22       6     3.6667      0.59486     0.0073073

    '48000'      35       9     3.8889      0.65371      0.013673

    '49000'      15       8      1.875     -0.07581    0.00011153

    '50000'      26       3     8.6667       1.4551      0.036118

    '51000'      14       7          2    -0.011271    2.2274e-06

    '52000'      17       5        3.4      0.51936     0.0044541

    '53000'      15       6        2.5      0.21187    0.00075566

    '54000'      10       3     3.3333      0.49955     0.0024461

    '55000'       6       0        Inf          Inf           Inf

    '56000'       9       2        4.5      0.79966      0.004934

    '57000'       2       2          1     -0.70442     0.0017942

    '58000'       1       2        0.5      -1.3976     0.0053002

    '59000'       3       2        1.5     -0.29895    0.00038918

    '60000'       4       0        Inf          Inf           Inf

    '61000'       3       0        Inf          Inf           Inf

    '62000'       1       1          1     -0.70442    0.00089712

    'Totals'    803     397     2.0227          NaN           Inf
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Use modifybins to set a minimum value of 0, and cut points every 10000, from 20000 to
60000. Display updated bin information, including cut points.

sc = modifybins(sc,'CustIncome','MinValue',0,'CutPoints',20000:10000:60000);

[bi,cp] = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue

    _______________    ____    ___    _______    _________    _________

    '[0,20000)'          3       5        0.6      -1.2152     0.010765

    '[20000,30000)'     61      63    0.96825     -0.73668     0.060942

    '[30000,40000)'    324     173     1.8728    -0.076967    0.0024846

    '[40000,50000)'    304     123     2.4715      0.20042     0.013781

    '[50000,60000)'    103      32     3.2188      0.46457     0.022144

    '[60000,Inf]'        8       1          8        1.375     0.010235

    'Totals'           803     397     2.0227          NaN      0.12035

cp =

       20000

       30000

       40000

       50000

       60000

The first and last bins contain very few points. To merge the first bin into the second
one, remove the first cut point. Similarly, to merge the last bin into the second-to-last
one, remove the last cut point. Then use modifybins to update the scorecard, and display
updated bin information.

cp(1)=[];

cp(end)=[];

sc = modifybins(sc,'CustIncome','CutPoints',cp);

bi = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue
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    _______________    ____    ___    _______    _________    _________

    '[0,30000)'         64      68    0.94118     -0.76504     0.070065

    '[30000,40000)'    324     173     1.8728    -0.076967    0.0024846

    '[40000,50000)'    304     123     2.4715      0.20042     0.013781

    '[50000,Inf]'      111      33     3.3636       0.5086     0.028028

    'Totals'           803     397     2.0227          NaN      0.11436

Modify Predictor Bins for Categorical Data

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

The binning map or rules for categorical data are summarized in a "category grouping"
table, returned as an optional output. By default, each category is placed in a separate
bin. Here is the information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         3        
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To group categories 'Tenant' and 'Other', modify the category grouping table cg,
so the bin number for 'Other' is the same as the bin number for 'Tenant'. Then use
modifybins to update the scorecard.

cg.BinNumber(3) = 2;

sc = modifybins(sc,'ResStatus','CatGrouping',cg);

Display the updated bin information. Note that the bin labels has been updated and that
the bin membership information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

      Bin       Good    Bad     Odds        WOE       InfoValue 

    ________    ____    ___    ______    _________    __________

    'Group1'    365     177    2.0621     0.019329     0.0001682

    'Group2'    438     220    1.9909    -0.015827    0.00013772

    'Totals'    803     397    2.0227          NaN    0.00030592

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         2        

Merge Bins for Numerical and Categorical Predictors

Create a creditscorecard object (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0);

For the numerical predictor CustAge, use the modifybins function to set the following
cut points:

cp = [25 37 49 65];
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sc = modifybins(sc,'CustAge','CutPoints',cp,'MinValue',0,'MaxValue',75);

bininfo(sc,'CustAge')

ans = 

       Bin       Good    Bad     Odds        WOE       InfoValue

    _________    ____    ___    ______    _________    _________

    '[0,25)'       9       8     1.125     -0.58664    0.0052464

    '[25,37)'    125      92    1.3587     -0.39789     0.030268

    '[37,49)'    340     183    1.8579    -0.084959    0.0031898

    '[49,65)'    298     108    2.7593      0.31054     0.030765

    '[65,75]'     31       6    5.1667      0.93781     0.022031

    'Totals'     803     397    2.0227          NaN       0.0915

Use the modifybins function to merge the 2nd and 3rd bins.

sc = modifybins(sc,'CustAge','CutPoints',cp([1 3 4]));

bininfo(sc,'CustAge')

ans = 

       Bin       Good    Bad     Odds       WOE       InfoValue

    _________    ____    ___    ______    ________    _________

    '[0,25)'       9       8     1.125    -0.58664    0.0052464

    '[25,49)'    465     275    1.6909    -0.17915     0.020355

    '[49,65)'    298     108    2.7593     0.31054     0.030765

    '[65,75]'     31       6    5.1667     0.93781     0.022031

    'Totals'     803     397    2.0227         NaN     0.078397

Display bin information for the categorical predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus');

disp(bi)

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638
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    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

Use the modifybins function to merge categories 2 and 3.

cg.BinNumber(3) = 2;

sc = modifybins(sc,'ResStatus','CatGrouping',cg);

bininfo(sc,'ResStatus')

ans = 

      Bin       Good    Bad     Odds        WOE       InfoValue 

    ________    ____    ___    ______    _________    __________

    'Group1'    365     177    2.0621     0.019329     0.0001682

    'Group2'    438     220    1.9909    -0.015827    0.00013772

    'Totals'    803     397    2.0227          NaN    0.00030592

Split Bins for Numerical and Categorical Predictors

Create a creditscorecard object (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

For the numerical predictor TmAtAddress, use the modifybins function to set the
following cut points:
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cp = [30 80 120];

sc = modifybins(sc,'TmAtAddress','CutPoints',cp,'MinValue',0,'MaxValue',210);

bininfo(sc,'TmAtAddress')

ans = 

        Bin        Good    Bad     Odds        WOE       InfoValue 

    ___________    ____    ___    ______    _________    __________

    '[0,30)'       330     154    2.1429     0.057722     0.0013305

    '[30,80)'      379     201    1.8856    -0.070187     0.0024086

    '[80,120)'      78      36    2.1667     0.068771    0.00044396

    '[120,210]'     16       6    2.6667      0.27641     0.0013301

    'Totals'       803     397    2.0227          NaN     0.0055131

Use the modifybins function to split the 2nd bin.

sc = modifybins(sc,'TmAtAddress','CutPoints',[cp(1) 50 cp(2:end)]);

bininfo(sc,'TmAtAddress')

ans = 

        Bin        Good    Bad     Odds        WOE       InfoValue 

    ___________    ____    ___    ______    _________    __________

    '[0,30)'       330     154    2.1429     0.057722     0.0013305

    '[30,50)'      211     104    2.0288    0.0030488    2.4387e-06

    '[50,80)'      168      97     1.732     -0.15517      0.005449

    '[80,120)'      78      36    2.1667     0.068771    0.00044396

    '[120,210]'     16       6    2.6667      0.27641     0.0013301

    'Totals'       803     397    2.0227          NaN     0.0085559

Display bin information for the categorical predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________
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    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         3        

Use the modifybins function to merge categories 2 and 3.

cg.BinNumber(3) = 2;

sc = modifybins(sc,'ResStatus','CatGrouping',cg);

bininfo(sc,'ResStatus')

ans = 

      Bin       Good    Bad     Odds        WOE       InfoValue 

    ________    ____    ___    ______    _________    __________

    'Group1'    365     177    2.0621     0.019329     0.0001682

    'Group2'    438     220    1.9909    -0.015827    0.00013772

    'Totals'    803     397    2.0227          NaN    0.00030592

Use the modifybins function to split bin 2 and put Other under bin 3.

cg.BinNumber(3) = 3;

sc = modifybins(sc,'ResStatus','CatGrouping',cg);

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________
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    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         3        

Modify Bin Labels

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Use modifybins to reset the minimum value and create three bins for the predictor
CustIncome and display updated bin information.

sc = modifybins(sc,'CustIncome','MinValue',0,'CutPoints',[30000 50000]);

bi = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds        WOE       InfoValue

    _______________    ____    ___    _______    ________    _________

    '[0,30000)'         64      68    0.94118    -0.76504     0.070065

    '[30000,50000)'    628     296     2.1216    0.047762    0.0017421

    '[50000,Inf]'      111      33     3.3636      0.5086     0.028028

    'Totals'           803     397     2.0227         NaN     0.099836

Modify the bin labels and display updated bin information.
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NewLabels = {'Up to 30k','30k to 50k','50k and more'};

sc = modifybins(sc,'CustIncome','BinLabels',NewLabels);

bi = bininfo(sc,'CustIncome')

bi = 

         Bin          Good    Bad     Odds        WOE       InfoValue

    ______________    ____    ___    _______    ________    _________

    'Up to 30k'        64      68    0.94118    -0.76504     0.070065

    '30k to 50k'      628     296     2.1216    0.047762    0.0017421

    '50k and more'    111      33     3.3636      0.5086     0.028028

    'Totals'          803     397     2.0227         NaN     0.099836

Bin labels should be the last bin-modification step. As in this example, user-defined bin
labels often contain information about the cut points, minimum, or maximum values for
numeric data, or information about category groupings for categorical data. To prevent
situations where user-defined labels and cut points are inconsistent (and labels are
misleading), the creditscorecard object overrides user-defined labels every time the
bins are modified using modifybins.

To illustrate modifybins overriding user-defined labels every time the bins are
modified, reset the first cut point to 31000 and display updated bin information. Note
that the bin labels are reset to their default format and accurately reflect the change in
the cut points.

sc = modifybins(sc,'CustIncome','CutPoints',[31000 50000]);

bi = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds        WOE       InfoValue

    _______________    ____    ___    _______    ________    _________

    '[0,31000)'         82      84    0.97619    -0.72852     0.079751

    '[31000,50000)'    610     280     2.1786    0.074251    0.0040364

    '[50000,Inf]'      111      33     3.3636      0.5086     0.028028

    'Totals'           803     397     2.0227         NaN      0.11182

• “Case Study for a Credit Scorecard Analysis” on page 8-75
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• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

PredictorName — Name of predictor
character vector

Name of predictor, specified as a character vector containing the name of the predictor.
PredictorName is case-sensitive.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: sc = modifybins(sc,PredictorName,'MinValue',10,'CutPoints',
[23, 44, 66, 88])

'MinValue' — Minimum acceptable value (numeric predictors only)
-Inf (default) | numeric

Minimum acceptable value, specified as a numeric value (for numeric predictors only).
Values below this number are considered out of range.
Data Types: double

'MaxValue' — Maximum acceptable value (numeric predictors only)
Inf (default) | numeric

Maximum acceptable value, specified as a numeric value (for numeric predictors only).
Values above this number are considered out of range.
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Data Types: double

'CutPoints' — Split points between bins
each observed value of the predictor is placed in a separate bin (default) | nondecreasing
numeric array

Split points between bins, specified using a nondecreasing numeric array. If there are
NumBins bins, there are n = NumBins – 1 cut points so that C1, C2,..., Cn describe the
bin boundaries with the following convention:

• The first bin includes any values >= MinValue, but < C1.
• The second bin includes any values >= C1, but < C2.
• The last bin includes any values >= Cn, and <= MaxValue.

Note: Cut points do not include MinValue or MaxValue.

By default, cut points are defined so that each observed value of the predictor is placed
in a separate bin. If the sorted observed values are V1, …, VM, the default cut points are
V2, …, VM, which define M bins.
Data Types: double

'CatGrouping' — Table with two columns named Category and BinNumber
each category is placed in a separate bin (default) | table with two columns named
Category and BinNumber

Table with two columns named Category and BinNumber specified using a table, where
the first column contains an exhaustive list of categories for the predictor, and the second
column contains the bin number to which each category belongs.

By default, each category is placed in a separate bin. If the observed categories are
'Cat1'…,'CatM', the default category grouping is as follows.

Category BinNumber

'Cat1' 1
'Cat2' 2
... ...
'CatM’' M
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Data Types: double

'BinLabels' — Bin labels for each bin
automatically generated bin labels depending on the predictor’s type (default) | cell array
of character vectors

Bin labels for each bin, specified using a cell array of character vectors with bin label
names. Bin labels are used to tag the bins in different object functions such as bininfo,
plotbins, and displaypoints. A creditscorecard object automatically sets default
bins whenever bins are modified. The default format for bin labels depends on the
predictor’s type.

The format for BinLabels is:

• Numeric data — Before any manual or automatic modification of the predictor bins,
there is a bin for each observed predictor value by default. In that case, the bin labels
simply show the predictor values. Once the predictor bins have been modified, there
are nondefault values for MinValue or MaxValue, or nondefault cut points C1, C2,...,
Cn. In that case, the bin labels are:

• Bin 1 label: '[MinValue, C1)'
• Bin 2 label: '[C1, C2)'
• Last bin label: '[Cn, MaxValue]'

For example, if there are three bins, MinValue is 0 and MaxValue is 40, and cut point
1 is 20 and cut point 2 is 30, then the corresponding three bin labels are:

'[0,20)'

'[20,30)'

'[30,40]'

• Categorical data — For categorical data, before any modification of the predictor bins,
there is one bin per category. In that case, the bin labels simply show the predictor
categories. Once the bins have been modified, the labels are set to ‘Group1’,
'Group2', etc., for bin 1, bin 2, etc., respectively. For example, suppose that we have
the following category grouping

Category BinNumber

'Cat1' 1
'Cat2' 2
'Cat3' 2
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Bin 1 contains 'Cat1' only and its bin label is set to 'Group1'. Bin 2 contains
'Cat2' and 'Cat3’ and its bin label is set to 'Group2'.

Tip Using BinLabels should be the last step (if needed) in modifying bins. BinLabels
definitions are overridden each time that the bins are modified using the modifybins or
autobinning functions.

Data Types: cell

Output Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object. For more
information on using the creditscorecard object, see creditscorecard.

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
autobinning | bindata | bininfo | creditscorecard | displaypoints |
fitmodel | formatpoints | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel
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Introduced in R2014b
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modifypredictor
Set properties of credit scorecard predictors

Syntax
sc = modifypredictor(sc,PredictorName)

sc = modifypredictor( ___ ,Name,Value)

Description
sc = modifypredictor(sc,PredictorName) sets the properties of the credit
scorecard predictors.

sc = modifypredictor( ___ ,Name,Value) sets the properties of the credit scorecard
predictors using optional name-value pair arguments.

Examples

Modify a Predictor to Change the Predictor Type from Numeric to Categorical

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). In practice, categorical data many times is
represented with numeric values. To show the case where categorical data is given
as numeric data, the data for the variable 'ResStatus' is intentionally converted to
numeric values.

load CreditCardData

data.ResStatus = double(data.ResStatus);

sc = creditscorecard(data,'IDVar','CustID')

[T,Stats] = predictorinfo(sc,'ResStatus')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'
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                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

T = 

                 PredictorType     LatestBinning 

                 _____________    _______________

    ResStatus    'Numeric'        'Original Data'

Stats = 

             Value 

            _______

    Min           1

    Max           3

    Mean     1.7017

    Std     0.71863

Note that 'ResStatus' appears as part of the NumericPredictors property.
Assume that you want 'ResStatus' to be treated as categorical data. For example,
you may want to allow automatic binning algorithms to reorder the categories.
Use modifypredictor to change the 'PredictorType' of the PredictorName
'ResStatus' from numeric to categorical.

sc = modifypredictor(sc,'ResStatus','PredictorType','Categorical')

[T,Stats] = predictorinfo(sc,'ResStatus')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}
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        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

T = 

                 PredictorType    Ordinal     LatestBinning 

                 _____________    _______    _______________

    ResStatus    'Categorical'    false      'Original Data'

Stats = 

          Count

          _____

    C1    542  

    C2    474  

    C3    184  

Notice that 'ResStatus' now appears as part of the 'Categorical' predictors.

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

PredictorName — Predictor name
character vector | cell array of character vectors

Predictor name, specified using a character vector or cell array of character vectors
containing the names of the credit scorecard predictors. PredictorName is case-
sensitive.
Data Types: char | cell
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: sc = modifypredictor(sc,
{'CustAge','CustIncome'},'PredictorType','Categorical','Ordinal',true)

'PredictorType' — Predictor type that one or more predictors are converted to
'' no conversion occurs (default) | character vector with values 'Numeric',
'Categorical'

Predictor type that one or more predictors are converted to, specified as a character
vector. Possible values are:

• '' — No conversion occurs.
• 'Numeric' — The predictor data specified by PredictorName is converted to

numeric.
• 'Categorical' — The predictor data specified by PredictorName is converted to

categorical.

Data Types: char

'Ordinal' — Indicator for whether predictors being converted to categorical are ordinal
false (default) | logical with values true, false

Indicator for whether predictors being converted to categorical or existing categorical
predictors are treated as ordinal data, specified as a logical with values true or false.

Note: This optional input parameter is only used for predictors of type 'Categorical'.

Data Types: logical

Output Arguments

sc — Credit scorecard model
creditscorecard object
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Credit scorecard model, returned as an updated creditscorecard object.

See Also
bininfo | modifybins | predictorinfo

Introduced in R2015b
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predictorinfo
Summary of credit scorecard predictor properties

Syntax

[T,Stats] = predictorinfo(sc,PredictorName)

Description

[T,Stats] = predictorinfo(sc,PredictorName) returns a summary of credit
scorecard predictor properties and some basic predictor statistics.

Examples

Obtain Information for a Specified PredictorName

Create a creditscorecard object using the CreditCardData.mat file to load the data
(using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]
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Obtain the predictor statistics for the PredictorName of CustAge.

[T,Stats] = predictorinfo(sc,'CustAge')

T = 

               PredictorType     LatestBinning 

               _____________    _______________

    CustAge    'Numeric'        'Original Data'

Stats = 

            Value 

            ______

    Min         21

    Max         74

    Mean    45.174

    Std     9.8343

Obtain the predictor statistics for the PredictorName of ResStatus.

[T,Stats] = predictorinfo(sc,'ResStatus')

T = 

                 PredictorType    Ordinal     LatestBinning 

                 _____________    _______    _______________

    ResStatus    'Categorical'    false      'Original Data'

Stats = 

                  Count

                  _____

    Home Owner    542  

    Tenant        474  

    Other         184  
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Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

PredictorName — Predictor name
character vector

Predictor name, specified using a character vector containing the names of the credit
scorecard predictor of interest. PredictorName is case-sensitive.

Data Types: char

Output Arguments

T — Summary information for specified predictor
table

Summary information for specified predictor, returned as table with the following
columns:

• 'PredictorType' — 'Numeric' or 'Categorical'.
• 'Ordinal' — For categorical predictors, a boolean indicating whether it is ordinal.
• 'LatestBinning' — Character vector indicating the last applied algorithm for the

input argument PredictorName. The values are:

• 'Original Data' — When no binning is applied to the predictor.
• 'Automatic / BinningName' — Where 'BinningName' is one of the following:

Monotone, Equal Width, or Equal Frequency.
• 'Manual' — After each call of modifybins, where either 'CutPoints',

'CatGrouping', 'MinValue', or 'MaxValue' are modified.

The predictor’s name is used as a row name in the table that is returned.
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Stats — Summary statistics for the input PredictorName
table

Summary statistics for the input PredictorName, returned as a table. The
corresponding value is stored in the 'Value' column.

The table’s row names indicate the relevant statistics for numeric predictors:

• 'Min' — Minimum value in the sample.
• 'Max' — Maximum value in the sample.
• 'Mean' — Mean value in the sample.
• 'Std' — Standard deviation of the sample.

Note: For data types other than 'double' or 'single', numeric precision may be lost for
the standard deviation. Data types other than 'double' or 'single' are cast as 'double'
before computing the standard deviation.

For categorical predictors, the row names contain the names of the categories, with
corresponding total count in the 'Count' column.

See Also
bininfo | modifybins | modifypredictor

Introduced in R2015b
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bininfo
Return predictor’s bin information

Syntax

bi = bininfo(sc,PredictorName)

bi = bininfo( ___ ,Name,Value)

[bi,bm] = bininfo(sc,PredictorName,Name,Value)

[bi,bm,mv] = bininfo(sc,PredictorName,Name,Value)

Description

bi = bininfo(sc,PredictorName) returns information at bin level, such
as frequencies of “Good,” “Bad,” and bin statistics for the predictor specified in
PredictorName.

bi = bininfo( ___ ,Name,Value) returns information at bin level, such
as frequencies of “Good,” “Bad,” and bin statistics for the predictor specified in
PredictorName using optional name-value pair arguments.

[bi,bm] = bininfo(sc,PredictorName,Name,Value) returns information at bin
level, such as frequencies of “Good,” “Bad," and bin statistics for the predictor specified
in PredictorName using optional name-value pair arguments. bininfo also optionally
returns the binning map or bin rules in the form of a vector of cut points for numeric
predictors, or a table of category groupings for categorical predictors.

[bi,bm,mv] = bininfo(sc,PredictorName,Name,Value) returns information
at bin level, such as frequencies of “Good,” “Bad," and bin statistics for the predictor
specified in PredictorName using optional name-value pair arguments. bininfo
optionally returns the binning map or bin rules in the form of a vector of cut points
for numeric predictors, or a table of category groupings for categorical predictors. In
addition, optional name-value pair arguments mv returns a numeric array containing the
minimum and maximum values, as set (or defined) by the user. The mv output argument
is set to an empty array for categorical predictors.
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Examples

Display Bin Information Using Default Options

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Display bin information for the categorical predictor ResStatus.

bi = bininfo(sc,'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

Display Bin Information Using Name-Value Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Display customized bin information for the categorical predictor ResStatus, keeping
only the WOE column.

bi = bininfo(sc,'ResStatus','Statistics','WOE')

bi = 

        Bin         Good    Bad       WOE   

    ____________    ____    ___    _________
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    'Home Owner'    365     177     0.019329

    'Tenant'        307     167    -0.095564

    'Other'         131      53      0.20049

    'Totals'        803     397          NaN

Display customized bin information for the categorical predictor ResStatus, keeping
only the Odds and WOE columns, without the Totals row.

bi = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE'},'Totals','Off')

bi = 

        Bin         Good    Bad     Odds        WOE   

    ____________    ____    ___    ______    _________

    'Home Owner'    365     177    2.0621     0.019329

    'Tenant'        307     167    1.8383    -0.095564

    'Other'         131      53    2.4717      0.20049

Display Bin Information and Binning Map for Categorical Data

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

The binning map or rules for categorical data are summarized in a "category grouping"
table, returned as an optional output. By default, each category is placed in a separate
bin. Here is the information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Tenant'        307     167    1.8383    -0.095564    0.0036638
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    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         3        

To group categories Tenant and Other, modify the category grouping table cg so that
the bin number for Other is the same as the bin number for Tenant. Then use the
modifybins function to update the scorecard.

cg.BinNumber(3) = 2;

sc = modifybins(sc,'ResStatus','CatGrouping',cg);

Display the updated bin information. The bin labels have been updated and that the bin
membership information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi = 

      Bin       Good    Bad     Odds        WOE       InfoValue 

    ________    ____    ___    ______    _________    __________

    'Group1'    365     177    2.0621     0.019329     0.0001682

    'Group2'    438     220    1.9909    -0.015827    0.00013772

    'Totals'    803     397    2.0227          NaN    0.00030592

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         2        
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Display Bin Information and Binning Map for Numeric Data

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

The predictor CustIncome is numeric. By default, each value of the predictor is placed in
a separate bin.

bi = bininfo(sc,'CustIncome')

bi = 

      Bin       Good    Bad     Odds         WOE       InfoValue 

    ________    ____    ___    _______    _________    __________

    '18000'       2       3    0.66667      -1.1099     0.0056227

    '19000'       1       2        0.5      -1.3976     0.0053002

    '20000'       4       2          2    -0.011271    6.3641e-07

    '21000'       6       3          2    -0.011271    9.5462e-07

    '22000'       4       2          2    -0.011271    6.3641e-07

    '23000'       4       4          1     -0.70442     0.0035885

    '24000'       5       5          1     -0.70442     0.0044856

    '25000'       4       9    0.44444      -1.5153      0.026805

    '26000'       4      11    0.36364       -1.716      0.038999

    '27000'       6       6          1     -0.70442     0.0053827

    '28000'      13      11     1.1818     -0.53736     0.0061896

    '29000'      11      10        1.1     -0.60911     0.0069988

    '30000'      18      16      1.125     -0.58664      0.010493

    '31000'      24       8          3      0.39419     0.0038382

    '32000'      21      15        1.4     -0.36795     0.0042797

    '33000'      35      19     1.8421    -0.093509    0.00039951

    '34000'      33      17     1.9412    -0.041124     7.095e-05

    '35000'      39      20       1.95    -0.036589    6.6225e-05

    '36000'      30      12        2.5      0.21187     0.0015113

    '37000'      57      22     2.5909      0.24759     0.0038545

    '38000'      28      22     1.2727     -0.46326     0.0095182

    '39000'      39      22     1.7727      -0.1319    0.00090321

    '40000'      42      17     2.4706      0.20004     0.0018969

    '41000'      26      17     1.5294     -0.27954     0.0029191
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    '42000'      39      16     2.4375      0.18655      0.001542

    '43000'      39      14     2.7857      0.32009     0.0042582

    '44000'      27      12       2.25      0.10651    0.00036184

    '45000'      35      12     2.9167      0.36602       0.00489

    '46000'      24      12          2    -0.011271    3.8185e-06

    '47000'      22       6     3.6667      0.59486     0.0073073

    '48000'      35       9     3.8889      0.65371      0.013673

    '49000'      15       8      1.875     -0.07581    0.00011153

    '50000'      26       3     8.6667       1.4551      0.036118

    '51000'      14       7          2    -0.011271    2.2274e-06

    '52000'      17       5        3.4      0.51936     0.0044541

    '53000'      15       6        2.5      0.21187    0.00075566

    '54000'      10       3     3.3333      0.49955     0.0024461

    '55000'       6       0        Inf          Inf           Inf

    '56000'       9       2        4.5      0.79966      0.004934

    '57000'       2       2          1     -0.70442     0.0017942

    '58000'       1       2        0.5      -1.3976     0.0053002

    '59000'       3       2        1.5     -0.29895    0.00038918

    '60000'       4       0        Inf          Inf           Inf

    '61000'       3       0        Inf          Inf           Inf

    '62000'       1       1          1     -0.70442    0.00089712

    'Totals'    803     397     2.0227          NaN           Inf

Reduce the number of bins using the autobinning function (the modifybins function
can also be used).

sc = autobinning(sc,'CustIncome');

Display the updated bin information. The binning map or rules for numeric data are
summarized as "cut points," returned as an optional output (cp).

[bi,cp] = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,33000)'     74      49     1.5102     -0.29217     0.0091366

    '[33000,35000)'     68      36     1.8889     -0.06843    0.00041042

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05
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    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12285

cp =

       29000

       33000

       35000

       40000

       42000

       47000

Manually remove the second cut point (the boundary between the second and third bins)
to merge bins two and three. Use the modifybins function to update the scorecard.

cp(2) = [];

sc = modifybins(sc,'CustIncome','CutPoints',cp,'MinValue',0);

Display the updated bin information.

[bi,cp,mv] = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[0,29000)'         53      58    0.91379     -0.79457       0.06364

    '[29000,35000)'    142      85     1.6706     -0.19124     0.0071274

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12043

cp =

       29000

       35000

       40000
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       42000

       47000

mv =

     0   Inf

Note, it is recommended to avoid having bins with frequencies of zero because they lead
to infinite or undefined (NaN) statistics. Use the modifybins or autobinning functions
to modify bins.

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.

PredictorName — Predictor name
character vector

Predictor name, specified using a character vector containing the name of the predictor.
PredictorName is case-sensitive.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: bi = bininfo(sc,
PredictorName,'Statistics','WOE','Totals','On')
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'Statistics' — List of statistics to include for bin information
{'Odds','WOE','InfoValue'} (default) | character vector with values 'Odds',
'WOE', 'InfoValue','Entropy' | cell array of character vectors with values 'Odds',
'WOE', 'InfoValue', 'Entropy'

List of statistics to include in the bin information, specified as a character vector or a cell
array of character vectors. For more information, see “Statistics for a Credit Scorecard ”
on page 18-2017. Possible values are:

• 'Odds' — Odds information is the ratio of “Goods” over “Bads.”
• 'WOE' — Weight of Evidence. The WOE Statistic measures the deviation between the

distribution of “Goods” and “Bads.”
• 'InfoValue' — Information value. Closely tied to the WOE, it is a statistic used

to determine how strong a predictor is to use in the fitting model. It measures
how strong the deviation is between the distributions of “Goods” and “Bads.”
However, bins with only “Good” or only “Bad” observations do lead to an infinite
Information Value. Consider modifying the bins in those cases by using modifybins
or autobinning.

• 'Entropy' — Entropy is a measure of unpredictability contained in the bins. The
more the number of “Goods” and “Bads” differ within the bins, the lower the entropy.

Note:  Avoid having bins with frequencies of zero because they lead to infinite or
undefined (NaN) statistics. Use modifybins or autobinning to modify bins.

Data Types: char | cell

'Totals' — Indicator to include row of totals at bottom information table
'On' (default) | character vector with values 'On', 'Off'

Indicator to include a row of totals at the bottom of the information table, specified as a
character vector with values On or Off.

Data Types: char

Output Arguments

bi — Bin information
table
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Bin information, returned as a table. The bin information table contains one row per
bin and a row of totals. The columns contain bin descriptions, frequencies of “Good” and
“Bad,” and bin statistics. Avoid having bins with frequencies of zero because they lead to
infinite or undefined (NaN) statistics. Use modifybins or autobinning to modify bins.

bm — Binning map or rules
vector of cut points for numeric predictors | table of category groupings for categorical
predictors

Binning map or rules, returned as a vector of cut points for numeric predictors, or a table
of category groupings for categorical predictors. For more information, see modifybins.

mv — Binning minimum and maximum values
numeric array

Binning minimum and maximum values (as set or defined by the user), returned as
a numeric array. The mv output argument is set to an empty array for categorical
predictors.

More About

Statistics for a Credit Scorecard

Weight of Evidence (WOE) is a measure of the difference of the distribution of “Goods”
and “Bads” within a bin.

Suppose the predictor's data takes on M possible values b1, ..., bM. For binned data, M
is a small number. The response takes on two values, “Good” and “Bad.” The frequency
table of the data is given by:

 Good Bad Total

b1: n11 n12 n1
b2: n21 n22 n2
bM: nM1 nM2 nM
Total: nGood nBad nTotal

The Weight of Evidence (WOE) is defined for each data value bi as

 WOE(i) = log((ni1/nGood)/(ni2/nBad)).
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If you define

 pGood(i) = ni1/nGood, pBad(i) = ni2/nBad

then pGood(i) is the proportion of “Good” observations that take on the value bi, and
similarly for pBad(i). In other words, pGood(i) gives the distribution of good observations
over the M observed values of the predictor, and similarly for pBad(i). With this, an
equivalent formula for the WOE is

WOE(i) = log(pGood(i)/pBad(i)).

Using the same frequency table, the odds for row i are defined as

Odds(i) = ni1 / ni2,

and the odds for the sample are defined as

OddsTotal = nGood / nBad.

For each row i, you can also compute its contribution to the total Information Value,
given by

InfoValue(i) = (pGood(i) - pBad(i)) * WOE(i),

and the total Information Value is simply the sum of all the InfoValuel(i) terms. (A
nansum is returned to discard contributions from rows with no observations at all.)

Likewise, for each row i, we can compute its contribution to the total Entropy, given by

 Entropy(i) = -1/log(2)*(ni1/ni*log(ni1/ni)+ni2/ni*log(ni2/ni),

and the total Entropy is simply the weighted sum of the row entropies,

Entropy = sum(ni/nTotal * Entropy(i)), i = 1...M

• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard
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See Also
autobinning | bindata | creditscorecard | displaypoints | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel

Introduced in R2014b
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autobinning

Perform automatic binning of given predictors

Syntax

sc = autobinning(sc)

sc = autobinning(sc,PredictorNames)

sc = autobinning( ___ ,Name,Value)

Description

sc = autobinning(sc) performs automatic binning of all predictors.

Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the creditscorecard
object. To apply the binning rules to the creditscorecard object data, or to a new
dataset, use bindata.

sc = autobinning(sc,PredictorNames) performs automatic binning of the
predictors given in PredictorNames.

Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the creditscorecard
object. To apply the binning rules to the creditscorecard object data, or to a new
dataset, use bindata.

sc = autobinning( ___ ,Name,Value) performs automatic binning of the predictors
given in PredictorNames using optional name-value pair arguments. See the name-
value argument Algorithm for a description of the supported binning algorithms.

Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the creditscorecard
object. To apply the binning rules to the creditscorecard object data, or to a new
dataset, use bindata.
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Examples

Perform Automatic Binning Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the data
(using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning using the default options. By default, autobinning bins all
predictors and uses the Monotone algorithm.

sc = autobinning(sc);

Use bininfo to display the binned data for the predictor CustIncome.

bi = bininfo(sc, 'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,33000)'     74      49     1.5102     -0.29217     0.0091366

    '[33000,35000)'     68      36     1.8889     -0.06843    0.00041042

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12285

Use plotbins to display the histogram and WOE curve for the predictor CustIncome.

plotbins(sc,'CustIncome')
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Perform Automatic Binning with a Named Predictor Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Perform automatic binning for the predictor CustIncome using the default options. By
default, autobinning uses the Monotone algorithm.

sc = autobinning(sc,'CustIncome');

Use bininfo to display the binned data.
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bi = bininfo(sc, 'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,29000)'      53      58    0.91379     -0.79457       0.06364

    '[29000,33000)'     74      49     1.5102     -0.29217     0.0091366

    '[33000,35000)'     68      36     1.8889     -0.06843    0.00041042

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,47000)'    164      66     2.4848      0.20579     0.0078175

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.12285

Perform Automatic Binning Using Two Name-Value Pair Arguments

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);

Perform automatic binning for the predictor CustIncome using the Monotone
algorithm with the initial number of bins set to 20. This example explicitly sets both the
Algorithm and the AlgorithmOptions name-value arguments.

AlgoOptions = {'InitialNumBins',20};

sc = autobinning(sc,'CustIncome','Algorithm','Monotone','AlgorithmOptions',...

     AlgoOptions);

Use bininfo to display the binned data. Here, the cut points, which delimit the bins, are
also displayed.

[bi,cp] = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________
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    '[-Inf,19000)'       2       3    0.66667      -1.1099     0.0056227

    '[19000,29000)'     51      55    0.92727     -0.77993      0.058516

    '[29000,31000)'     29      26     1.1154     -0.59522      0.017486

    '[31000,34000)'     80      42     1.9048    -0.060061     0.0003704

    '[34000,35000)'     33      17     1.9412    -0.041124     7.095e-05

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,43000)'     39      16     2.4375      0.18655      0.001542

    '[43000,47000)'    125      50        2.5      0.21187     0.0062972

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.13175

cp =

       19000

       29000

       31000

       34000

       35000

       40000

       42000

       43000

       47000

Perform Automatic Binning Using Multiple Name-Value Pair Arguments

This example shows how to use the autobinning default Monotone algorithm and
the AlgorithmOptions name-value pair arguments associated with the Monotone
algorithm. The AlgorithmOptions for the Monotone algorithm are three name-
value pair parameters: ‘InitialNumBins', 'Trend', and 'SortCategories'.
'InitialNumBins' and 'Trend' are applicable for numeric predictors and 'Trend'
and 'SortCategories' are applicable for categorical predictors.

Create a creditscorecard object using the CreditCardData.mat file to load the data
(using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning for the numeric predictor CustIncome using the Monotone
algorithm with 20 bins. This example explicitly sets both the Algorithm argument and
the AlgorithmOptions name-value arguments for 'InitialNumBins' and 'Trend'.
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AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};

sc = autobinning(sc,'CustIncome','Algorithm','Monotone',...

    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the binned data.

bi = bininfo(sc,'CustIncome')

bi = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,19000)'       2       3    0.66667      -1.1099     0.0056227

    '[19000,29000)'     51      55    0.92727     -0.77993      0.058516

    '[29000,31000)'     29      26     1.1154     -0.59522      0.017486

    '[31000,34000)'     80      42     1.9048    -0.060061     0.0003704

    '[34000,35000)'     33      17     1.9412    -0.041124     7.095e-05

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,43000)'     39      16     2.4375      0.18655      0.001542

    '[43000,47000)'    125      50        2.5      0.21187     0.0062972

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.13175

Perform Automatic Binning for Multiple Predictors

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID');

Perform automatic binning for the predictor CustIncome and CustAge using the default
Monotone algorithm with AlgorithmOptions for InitialNumBins and Trend.

AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};

sc = autobinning(sc,{'CustAge','CustIncome'},'Algorithm','Monotone',...

    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the binned data.
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bi1 = bininfo(sc, 'CustIncome')

bi2 = bininfo(sc, 'CustAge')

bi1 = 

          Bin          Good    Bad     Odds         WOE       InfoValue 

    _______________    ____    ___    _______    _________    __________

    '[-Inf,19000)'       2       3    0.66667      -1.1099     0.0056227

    '[19000,29000)'     51      55    0.92727     -0.77993      0.058516

    '[29000,31000)'     29      26     1.1154     -0.59522      0.017486

    '[31000,34000)'     80      42     1.9048    -0.060061     0.0003704

    '[34000,35000)'     33      17     1.9412    -0.041124     7.095e-05

    '[35000,40000)'    193      98     1.9694    -0.026696    0.00017359

    '[40000,42000)'     68      34          2    -0.011271    1.0819e-05

    '[42000,43000)'     39      16     2.4375      0.18655      0.001542

    '[43000,47000)'    125      50        2.5      0.21187     0.0062972

    '[47000,Inf]'      183      56     3.2679      0.47972      0.041657

    'Totals'           803     397     2.0227          NaN       0.13175

bi2 = 

        Bin        Good    Bad     Odds        WOE       InfoValue 

    ___________    ____    ___    ______    _________    __________

    '[-Inf,35)'     93      76    1.2237     -0.50255      0.038003

    '[35,40)'      114      71    1.6056      -0.2309     0.0085141

    '[40,42)'       52      30    1.7333     -0.15437     0.0016687

    '[42,44)'       58      32    1.8125     -0.10971    0.00091888

    '[44,47)'       97      51     1.902    -0.061533    0.00047174

    '[47,62)'      333     130    2.5615      0.23619      0.020605

    '[62,Inf]'      56       7         8        1.375      0.071647

    'Totals'       803     397    2.0227          NaN       0.14183

Perform Automatic Binning for a Categorical Predictor Using the Defaults

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data);
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Perform automatic binning for the predictor that is a categorical predictor called
ResStatus using the default options. By default, autobinning uses the Monotone
algorithm.

sc = autobinning(sc,'ResStatus');

Use bininfo to display the binned data.

bi = bininfo(sc, 'ResStatus')

bi = 

        Bin         Good    Bad     Odds        WOE       InfoValue

    ____________    ____    ___    ______    _________    _________

    'Tenant'        307     167    1.8383    -0.095564    0.0036638

    'Home Owner'    365     177    2.0621     0.019329    0.0001682

    'Other'         131      53    2.4717      0.20049    0.0059418

    'Totals'        803     397    2.0227          NaN    0.0097738

Perform Automatic Binning for a Categorical Predictor Using Name-Value Pair Arguments

This example shows how to modify the data (for this example only) to illustrate binning
categorical predictors using the Monotone algorithm.

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

Add two new categories and updating the response variable.

newdata = data;

rng('default'); %for reproducibility

Predictor = 'ResStatus';

Status    = newdata.status;

NumObs    = length(newdata.(Predictor));

Ind1 = randi(NumObs,100,1);

Ind2 = randi(NumObs,100,1);

newdata.(Predictor)(Ind1) = 'Subtenant';

newdata.(Predictor)(Ind2) = 'CoOwner';
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Status(Ind1) = randi(2,100,1)-1;

Status(Ind2) = randi(2,100,1)-1;

newdata.status = Status;

Update the creditscorecard object using the newdata and plot the bins for a later
comparison.

scnew = creditscorecard(newdata,'IDVar','CustID');

[bi,cg] = bininfo(scnew,Predictor)

plotbins(scnew,Predictor)

bi = 

        Bin         Good    Bad     Odds       WOE       InfoValue

    ____________    ____    ___    ______    ________    _________

    'Home Owner'    308     154         2    0.092373    0.0032392

    'Tenant'        264     136    1.9412     0.06252    0.0012907

    'Other'         109      49    2.2245     0.19875    0.0050386

    'Subtenant'      42      42         1    -0.60077     0.026813

    'CoOwner'        52      44    1.1818    -0.43372     0.015802

    'Totals'        775     425    1.8235         NaN     0.052183

cg = 

      Category      BinNumber

    ____________    _________

    'Home Owner'    1        

    'Tenant'        2        

    'Other'         3        

    'Subtenant'     4        

    'CoOwner'       5        
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Perform automatic binning for the categorical Predictor using the default
Monotone algorithm with the AlgorithmOptions name-value pair arguments for
'SortCategories' and 'Trend'.

AlgoOptions = {'SortCategories','Goods','Trend','Increasing'};

scnew = autobinning(scnew,Predictor,'Algorithm','Monotone',...

    'AlgorithmOptions',AlgoOptions);

Use bininfo to display the bin information. The second output parameter 'cg'
captures the bin membership, which is the bin number that each group belongs to.

[bi,cg] = bininfo(scnew,Predictor)
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bi = 

      Bin       Good    Bad     Odds       WOE       InfoValue

    ________    ____    ___    ______    ________    _________

    'Group1'     42      42         1    -0.60077     0.026813

    'Group2'     52      44    1.1818    -0.43372     0.015802

    'Group3'    681     339    2.0088    0.096788    0.0078459

    'Totals'    775     425    1.8235         NaN      0.05046

cg = 

      Category      BinNumber

    ____________    _________

    'Subtenant'     1        

    'CoOwner'       2        

    'Other'         3        

    'Tenant'        3        

    'Home Owner'    3        

Plot bins and compare with the histogram plotted pre-binning.

plotbins(scnew,Predictor)
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• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. The creditscorecard
function must be used to create a creditscorecard object.
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PredictorNames — Predictor or predictors names to automatically bin
character vector | cell array of character vectors

Predictor or predictors names to automatically bin, specified as a character vector or
a cell array of character vectors containing the name of the predictor or predictors.
PredictorNames are case-sensitive and when no PredictorNames are defined, all
predictors in the PredictorVars property of the creditscorecard object are binned.

Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: sc = autobinning(sc,'Algorithm','EqualFrequency')

'Algorithm' — Algorithm selection
'Monotone' (default) | character vector with values 'Monotone','EqualFrequency',
'EqualWidth'

Algorithm selection, specified using a character vector indicating which algorithm to use.
The same algorithm is used for all predictors in PredictorNames. Possible values are:

• 'Monotone' — (default) Monotone Adjacent Pooling Algorithm (MAPA), also known
as Maximum Likelihood Monotone Coarse Classifier (MLMCC). Supervised optimal
binning algorithm that aims to find bins with a monotone Weight-Of-Evidence (WOE)
trend. This algorithm assumes that only neighboring attributes can be grouped. Thus,
for categorical predictors, categories are sorted before applying the algorithm (see
'SortCategories'). For more information, see “Monotone” on page 18-2036.

• 'EqualFrequency' — Unsupervised algorithm that divides the data into a
predetermined number of bins that contain approximately the same number of
observations. This algorithm is also known as “equal height” or “equal depth.”
For categorical predictors, categories are sorted before applying the algorithm
(see 'SortCategories'). For more information, see “Equal Frequency” on page
18-2038.

• 'EqualWidth' — Unsupervised algorithm that divides the range of values in the
domain of the predictor variable into a predetermined number of bins of “equal
width.” For numeric data, the width is measured as the distance between bin edges.
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For categorical data, width is measured as the number of categories within a bin.
For categorical predictors, categories are sorted before applying the algorithm (see
'SortCategories'). For more information, see “Equal Width” on page 18-2039.

Data Types: char

'AlgorithmOptions' — Algorithm options for selected Algorithm
{'InitialNumBins',10,'Trend','Auto','SortCategories','Odds'} for
Monotone (default) | cell array with {'OptionName',OptionValue} for Algorithm
options

Algorithm options for the selected Algorithm, specified using a cell array. Possible
values are:

• For Monotone algorithm:

• {'InitialNumBins',n} — Initial number (n) of bins (default is 10).
'InitialNumBins' must be an integer > 2. Used for numeric predictors only.

• {'Trend','TrendOption'} — Determines whether the Weight-Of-Evidence
(WOE) monotonic trend is expected to be increasing or decreasing. The values for
'TrendOption' are:

• 'Auto' — (Default) Automatically determines if the WOE trend is increasing
or decreasing.

• 'Increasing' — Look for an increasing WOE trend.
• 'Decreasing' — Look for a decreasing WOE trend.

The value of the optional input parameter 'Trend' does not necessarily reflect
that of the resulting WOE curve. The parameter 'Trend' tells the algorithm to
“look for” an increasing or decreasing trend, but the outcome may not show the
desired trend. For example, the algorithm cannot find a decreasing trend when the
data actually has an increasing WOE trend. For more information on the 'Trend'
option, see “Monotone” on page 18-2036.

• {'SortCategories','SortOption'} — Used for categorical predictors only.
Used to determine how the predictor categories are sorted as a preprocessing step
before applying the algorithm. The values of 'SortOption' are:

• 'Odds' — (default) The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.
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• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total

number of observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm. (The existing order of the categories
can be seen in the category grouping optional output from bininfo.)

For more information, see Sort Categories on page 18-2039
• For EqualFrequency algorithm:

• {'NumBins',n} — Specifies the desired number (n) of bins. The default is
{'NumBins',5} and the number of bins must be a positive number.

• {'SortCategories','SortOption'} — Used for categorical predictors only.
Used to determine how the predictor categories are sorted as a preprocessing step
before applying the algorithm. The values of 'SortOption' are:

• 'Odds' — (default) The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total

number of observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm. (The existing order of the categories
can be seen in the category grouping optional output from bininfo.)

For more information, see Sort Categories on page 18-2039
• For EqualWidth algorithm:

• {'NumBins',n} — Specifies the desired number (n) of bins. The default is
{'NumBins',5} and the number of bins must be a positive number.

• {'SortCategories','SortOption'} — Used for categorical predictors only.
Used to determine how the predictor categories are sorted as a preprocessing step
before applying the algorithm. The values of 'SortOption' are:
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• 'Odds' — (default) The categories are sorted by order of increasing values
of odds, defined as the ratio of “Good” to “Bad” observations, for the given
category.

• 'Goods' — The categories are sorted by order of increasing values of “Good.”
• 'Bads' — The categories are sorted by order of increasing values of “Bad.”
• 'Totals' — The categories are sorted by order of increasing values of total

number of observations (“Good” plus “Bad”).
• 'None' — No sorting is applied. The existing order of the categories is

unchanged before applying the algorithm. (The existing order of the categories
can be seen in the category grouping optional output from bininfo.)

For more information, see Sort Categories on page 18-2039

Example: sc =
autobinning(sc,'CustAge','Algorithm','Monotone','AlgorithmOptions',

{'Trend','Increasing'})

Data Types: cell

'Display' — Indicator to display information on status of the binning process at command
line
'Off' (default) | character vector with values 'On', 'Off'

Indicator to display the information on status of the binning process at command line,
specified using a character vector with a value of 'On' or 'Off'.

Data Types: char

Output Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as an updated creditscorecard object containing the
automatically determined binning maps or rules (cut points or category groupings) for
one or more predictors. For more information on using the creditscorecard object, see
creditscorecard.
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Note: If you have previously used the modifybins function to manually modify bins,
these changes are lost when running autobinning because all the data is automatically
binned based on internal autobinning rules.

More About

Monotone

The 'Monotone' algorithm is an implementation of the Monotone Adjacent Pooling
Algorithm (MAPA), also known as Maximum Likelihood Monotone Coarse Classifier
(MLMCC); see Anderson or Thomas in the Bibliography.

Preprocessing

During the preprocessing phase, preprocessing of numeric predictors consists in
applying equal frequency binning, with the number of bins determined by the
'InitialNumBins' parameter (the default is 10 bins). The preprocessing of categorical
predictors consists in sorting the categories according to the 'SortCategories'
criterion (the default is to sort by odds in increasing order). Sorting is not applied
to ordinal predictors. See the “Sort Categories” on page 18-2039 definition or the
description of AlgorithmOptions option for 'SortCategories' for more information.

Main Algorithm

The following example illustrates how the 'Monotone' algorithm arrives at cut points
for numeric data.

Bin Good Bad Iteration1 Iteration2 Iteration3 Iteration4

'[-

Inf,33000)'

127 107 0.543      

'[33000,38000)'194 90 0.620 0.683    
'[38000,42000)'135 78 0.624 0.662    
'[42000,47000)'164 66 0.645 0.678 0.713  
'[47000,Inf]'183 56 0.669 0.700 0.740 0.766

Initially, the numeric data is preprocessed with an equal frequency binning. In this
example, for simplicity, only the five initial bins are used. The first column indicates
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the equal frequency bin ranges, and the second and third columns have the “Good”
and “Bad” counts per bin. (The number of observations is 1,200, so a perfect equal
frequency binning would result in five bins with 240 observations each. In this case, the
observations per bin do not match 240 exactly. This is a common situation when the data
has repeated values.)

Monotone finds break points based on the cumulative proportion of “Good” observations.
In the'Iteration1’ column, the first value (0.543) is the number of “Good”
observations in the first bin (127), divided by the total number of observations in the bin
(127+107). The second value (0.620) is the number of “Good” observations in bins 1 and
2, divided by the total number of observations in bins 1 and 2. And so forth. The first cut
point is set where the minimum of this cumulative ratio is found, which is in the first bin
in this example. This is the end of iteration 1.

Starting from the second bin (the first bin after the location of the minimum value in the
previous iteration), cumulative proportions of “Good” observations are computed again.
The second cut point is set where the minimum of this cumulative ratio is found. In this
case, it happens to be in bin number 3, therefore bins 2 and 3 are merged.

The algorithm proceeds the same way for two more iterations. In this particular example,
in the end it only merges bins 2 and 3. The final binning has four bins with cut points at
33,000, 42,000, and 47,000.

For categorical data, the only difference is that the preprocessing step consists in
reordering the categories. Consider the following categorical data:

Bin Good Bad Odds

'Home Owner' 365 177 2.062
'Tenant' 307 167 1.838
'Other' 131 53 2.474

The preprocessing step, by default, sorts the categories by 'Odds’. (See the “Sort
Categories” on page 18-2039 definition or the description of AlgorithmOptions option
for 'SortCategories' for more information.) Then, it applies the same steps described
above, shown in the following table:

Bin Good Bad Odds Iteration1 Iteration2 Iteration3

'Tenant' 307 167 1.838 0.648    

18-2037



18 Functions — Alphabetical List

Bin Good Bad Odds Iteration1 Iteration2 Iteration3

'Home
Owner'

365 177 2.062 0.661 0.673  

'Other' 131 53 2.472 0.669 0.683 0.712

In this case, the Monotone algorithm would not merge any categories. The only
difference, compared with the data before the application of the algorithm, is that the
categories are now sorted by 'Odds'.

In both the numeric and categorical examples above, the implicit 'Trend' choice is
'Increasing'. (See the description of AlgorithmOptions option for the 'Monotone'
'Trend' option.) If you set the trend to 'Decreasing', the algorithm looks for the
maximum (instead of the minimum) cumulative ratios to determine the cut points. In
that case, at iteration 1, the maximum would be in the last bin, which would imply that
all bins should be merged into a single bin. Binning into a single bin is a total loss of
information and has no practical use. Therefore, when the chosen trend leads to a single
bin, the Monotone implementation rejects it, and the algorithm returns the bins found
after the preprocessing step. This state is the initial equal frequency binning for numeric
data and the sorted categories for categorical data. The implementation of the Monotone
algorithm by default uses a heuristic to identify the trend ('Auto' option for 'Trend').

Equal Frequency

Unsupervised algorithm that divides the data into a predetermined number of bins that
contain approximately the same number of observations.

EqualFrequency is defined as:

Let v[1], v[2],..., v[N] be the sorted list of different values or categories observed in the
data. Let f[i] be the frequency of v[i]. Let F[k] = f[1]+...+f[k] be the cumulative sum of
frequencies up to the kth sorted value. Then F[N] is the same as the total number of
observations.

Define AvgFreq = F[N] / NumBins, which is the ideal average frequency per bin
after binning. The nth cut point index is the index k such that the distance abs(F[k] -
n*AvgFreq) is minimized.

This rule attempts to match the cumulative frequency up to the nth bin. If a single value
contains too many observations, equal frequency bins are not possible, and the above rule
yields less than NumBins total bins. In that case, the algorithm determines NumBins
bins by breaking up bins, in the order in which the bins were constructed.
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The preprocessing of categorical predictors consists in sorting the categories according
to the 'SortCategories' criterion (the default is to sort by odds in increasing order).
Sorting is not applied to ordinal predictors. See the “Sort Categories” on page 18-2039
definition or the description of AlgorithmOptions option for 'SortCategories' for
more information.

Equal Width

Unsupervised algorithm that divides the range of values in the domain of the predictor
variable into a predetermined number of bins of “equal width.” For numeric data, the
width is measured as the distance between bin edges. For categorical data, width is
measured as the number of categories within a bin.

The EqualWidth option is defined as:

For numeric data, if MinValue and MaxValue are the minimum and maximum data
values, then

Width = (MaxValue - MinValue)/NumBins

and the CutPoints are set to MinValue + Width, MinValue + 2*Width, ... MaxValue
– Width. If a MinValue or MaxValue have not been specified using the modifybins
function, the EqualWidth option sets MinValue and MaxValue to the minimum and
maximum values observed in the data.

For categorical data, if there are NumCats numbers of original categories, then

Width = NumCats / NumBins,

and set cut point indices to the rounded values of Width, 2*Width, ..., NumCats – Width,
plus 1.

The preprocessing of categorical predictors consists in sorting the categories according
to the 'SortCategories' criterion (the default is to sort by odds in increasing order).
Sorting is not applied to ordinal predictors. See the “Sort Categories” on page 18-2039
definition or the description of AlgorithmOptions option for 'SortCategories' for
more information.

Sort Categories

As a preprocessing step for categorical data, 'Monotone’, 'EqualFrequency', and
'EqualWidth' support the 'SortCategories' input. This serves the purpose of
reordering the categories before applying the main algorithm. The default sorting
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criterion is to sort by 'Odds'. For example, suppose that the data originally looks like
this:

Bin Good Bad Odds

'Home Owner' 365 177 2.062
'Tenant' 307 167 1.838
'Other' 131 53 2.472

After the preprocessing step, the rows would be sorted by 'Odds' and the table looks like
this:

Bin Good Bad Odds

'Tenant' 307 167 1.838
'Home Owner' 365 177 2.062
'Other' 131 53 2.472

The three algorithms only merge adjacent bins, so the initial order of the categories
makes a difference for the final binning. The 'None' option for 'SortCategories'
would leave the original table unchanged. For a description of the sorting
criteria supported, see the description of the AlgorithmOptions option for
'SortCategories'.

Upon the construction of a scorecard, the initial order of the categories, before any
algorithm or any binning modifications are applied, is the order shown in the first
output of bininfo. If the bins have been modified (either manually with modifybins or
automatically with autobinning), use the optional output (cg,'category grouping')
from bininfo to get the current order of the categories.

The 'SortCategories' option has no effect on categorical predictors for which the
'Ordinal' parameter is set to true (see the 'Ordinal' input parameter in MATLAB
categorical arrays for categorical. Ordinal data has a natural order, which is honored
in the preprocessing step of the algorithms by leaving the order of the categories
unchanged. Only categorical predictors whose 'Ordinal' parameter is false (default
option) are subject to reordering of categories according to the 'SortCategories'
criterion.
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
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• creditscorecard

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
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See Also
bindata | bininfo | creditscorecard | displaypoints | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | validatemodel

Introduced in R2014b
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probdefault
Likelihood of default for given data set

Syntax

pd = probdefault(sc)

pd = probdefault(sc,data)

Description

pd = probdefault(sc) computes the probability of default for sc, the data used to
build the creditscorecard object.

pd = probdefault(sc,data) computes the probability of default for a given data set
specified using the optional argument data.

By default, the data used to build the creditscorecard object are used. You can also
supply input data, to which the same computation of probability of default is applied.

Examples

Compute Probability for Default Using Credit ScoreCard Data

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'
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                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning using the default options. By default, autobinning uses the
Monotone algorithm.

sc = autobinning(sc);

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687

    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1
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Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Compute the probability of default.

pd = probdefault(sc);

disp(pd(1:15,:))

    0.2503

    0.1878

    0.3173

    0.1711

    0.1895

    0.1307

    0.5218

    0.2848

    0.2612

    0.3047

    0.3418

    0.2237

    0.2793

    0.3615

    0.1653

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. To create this object,
use the creditscorecard function.

data — (Optional) Dataset to apply probability of default rules
table

Dataset to apply probability of default rules, specified as a MATLAB table, where each
row corresponds to individual observations. The data must contain columns for each of
the predictors in the creditscorecard object.

Data Types: table
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Output Arguments

pd — Probability of default
array

Probability of default, returned as a NumObs-by-1 numerical array of default
probabilities.

More About

Default Probability

After the unscaled scores are computed (see “Algorithms for Computing and Scaling
Scores” on page 18-1888), the probability of the points being “Good” is represented by the
following formula:

ProbGood = 1./(1 + exp(-UnscaledScores))

Thus, the probability of default is

pd = 1 - ProbGood

• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
bindata | bininfo | creditscorecard | displaypoints | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
score | setmodel | table | validatemodel

Introduced in R2015a
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validatemodel

Validate quality of credit scorecard model

Syntax

Stats = validatemodel(sc)

Stats = validatemodel(sc,data)

[Stats,T] = validatemodel(sc,Name,Value)

[Stats,T,hf] = validatemodel(sc,Name,Value)

Description

Stats = validatemodel(sc) validates the quality of the creditscorecard model.

By default, the data used to build the creditscorecard object is used. You can also
supply input data to which the validation is applied.

Stats = validatemodel(sc,data) validates the quality of the creditscorecard
model for a given data set specified using the optional argument data.

[Stats,T] = validatemodel(sc,Name,Value) validates the quality of the
creditscorecard model using the optional name-value pair arguments, and returns
Stats and T outputs.

[Stats,T,hf] = validatemodel(sc,Name,Value) validates the quality of the
creditscorecard model using the optional name-value pair arguments, and returns
the figure handle hf to the CAP, ROC, and KS plots.

Examples

Validate a Credit Scorecard Model

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).
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load CreditCardData

sc = creditscorecard(data, 'IDVar','CustID')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

Perform automatic binning using the default options. By default, autobinning uses the
Monotone algorithm.

sc = autobinning(sc);

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08

2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06

3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601

4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257

5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306

6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078

7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:

    status ~ [Linear formula with 8 terms in 7 predictors]

    Distribution = Binomial

Estimated Coefficients:

                   Estimate       SE       tStat       pValue  

                   ________    ________    ______    __________

    (Intercept)    0.70239     0.064001    10.975    5.0538e-28

    CustAge        0.60833      0.24932      2.44      0.014687
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    ResStatus        1.377      0.65272    2.1097      0.034888

    EmpStatus      0.88565        0.293    3.0227     0.0025055

    CustIncome     0.70164      0.21844    3.2121     0.0013179

    TmWBank         1.1074      0.23271    4.7589    1.9464e-06

    OtherCC         1.0883      0.52912    2.0569      0.039696

    AMBalance        1.045      0.32214    3.2439     0.0011792

1200 observations, 1192 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Format the unscaled points.

sc = formatpoints(sc, 'PointsOddsAndPDO',[500,2,50]);

Score the data.

scores = score(sc);

Validate the credit scorecard model by generating the CAP, ROC, and KS plots.

[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});

disp(Stats)

disp(T(1:15,:))

           Measure             Value 

    ______________________    _______

    'Accuracy Ratio'          0.32258

    'Area under ROC curve'    0.66129

    'KS statistic'             0.2246

    'KS score'                 499.62

    Scores    ProbDefault    TrueBads    FalseBads    TrueGoods    FalseGoods    Sensitivity    FalseAlarm      PctObs  

    ______    ___________    ________    _________    _________    __________    ___________    __________    __________

    369.54    0.75313         0          1            802          397                   0      0.0012453     0.00083333

    378.19    0.73016         1          1            802          396           0.0025189      0.0012453      0.0016667

    380.28    0.72444         2          1            802          395           0.0050378      0.0012453         0.0025

    391.49    0.69234         3          1            802          394           0.0075567      0.0012453      0.0033333

    395.57    0.68017         4          1            802          393            0.010076      0.0012453      0.0041667

    396.14    0.67846         4          2            801          393            0.010076      0.0024907          0.005

    396.45    0.67752         5          2            801          392            0.012594      0.0024907      0.0058333
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    398.61    0.67094         6          2            801          391            0.015113      0.0024907      0.0066667

    398.68    0.67072         7          2            801          390            0.017632      0.0024907         0.0075

    401.33    0.66255         8          2            801          389            0.020151      0.0024907      0.0083333

    402.66    0.65842         8          3            800          389            0.020151       0.003736      0.0091667

    404.25    0.65346         9          3            800          388             0.02267       0.003736           0.01

    404.73    0.65193         9          4            799          388             0.02267      0.0049813       0.010833

    405.53    0.64941        11          4            799          386            0.027708      0.0049813         0.0125

     405.7    0.64887        11          5            798          386            0.027708      0.0062267       0.013333
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• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, specified as a creditscorecard object. To create this object,
use the creditscorecard function.
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data — (Optional) Validation data
table

(Optional) Validation data, specified as a MATLAB table, where each table row
corresponds to individual observations. The data must contain columns for each of
the predictors in the credit scorecard model. The columns of data can be any one of the
following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical

In addition, the table must contain a binary response variable.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: sc =
validatemodel(sc,data,'AnalysisLevel','Deciles','Plot','CAP')

'AnalysisLevel' — Type of analysis level
'Scores' (default) | character vector with values 'Deciles', 'Scores'

Type of analysis level, specified as character vector with one of the following values:

• 'Scores' — Returns the statistics (Stats) at the observation level. Scores are sorted
from riskiest to safest, and duplicates are removed.

• 'Deciles' — Returns the statistics (Stats) at decile level. Scores are sorted from
riskiest to safest and binned with their corresponding statistics into 10 deciles (10%,
20%, ..., 100%).

Data Types: char
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'Plot' — Type of plot
'None' (default) | character vector with values 'None', 'CAP', 'ROC','KS' | cell array
of character vectors with values 'None', 'CAP', 'ROC','KS'

Type of plot, specified as character vector with one of the following values:

• 'None' — No plot is displayed.
• 'CAP' — Cumulative Accuracy Profile. Plots the fraction of borrowers up to score “s”

versus the fraction of defaulters up to score “s” ('PctObs' versus 'Sensitivity'
columns of T optional output argument). For more details, see “Cumulative Accuracy
Profile (CAP)” on page 18-2055.

• 'ROC' — Receiver Operating Characteristic. Plots the fraction of non-defaulters up
to score “s” versus the fraction of defaulters up to score “s” ('FalseAlarm' versus
'Sensitivity' columns of T optional output argument). For more details, see
“Receiver Operating Characteristic (ROC)” on page 18-2055.

• 'KS' — Kolmogorov-Smirnov. Plots each score “s” versus the fraction of defaulters up
to score “s,” and also versus the fraction of non-defaulters up to score “s” ('Scores'
versus both 'Sensitivity' and 'FalseAlarm' columns of the optional output
argument T). For more details, see “Kolmogorov-Smirnov statistic (KS) ” on page
18-2056.

Tip For the Kolmogorov-Smirnov statistic option, you can enter 'KS' or 'K-S'.

Data Types: char | cell

Output Arguments

Stats — Validation measures
table

Validation measures, returned as a 4-by-2 table. The first column, 'Measure', contains
the names of the following measures:

• Accuracy ratio (AR)
• Area under the ROC curve (AUROC)
• The KS statistic
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• KS score

The second column, 'Value', contains the values corresponding to these measures.

T — Validation statistics data
array

Validation statistics data, returned as an N-by-9 table of validation statistics data,
sorted, by score, from riskiest to safest. When AnalysisLevel is set to 'Deciles', N
is equal to 10. Otherwise, N is equal to the total number of unique scores, that is, scores
without duplicates.

The table T contains the following nine columns, in this order:

• 'Scores' — Scores sorted from riskiest to safest. The data in this row corresponds to
all observations up to, and including the score in this row.

• 'ProbDefault' — Probability of default for observations in this row. For deciles, the
average probability of default for all observations in the given decile is reported.

• 'TrueBads' — Cumulative number of “bads” up to, and including, the corresponding
score.

• 'FalseBads' — Cumulative number of “goods” up to, and including, the
corresponding score.

• 'TrueGoods' — Cumulative number of “goods” above the corresponding score.
• 'FalseGoods' — Cumulative number of “bads” above the corresponding score.
• 'Sensitivity' — Fraction of defaulters (or the cumulative number of “bads”

divided by total number of “bads”). This is the distribution of “bads” up to and
including the corresponding score.

• 'FalseAlarm' — Fraction of non-defaulters (or the cumulative number of “goods”
divided by total number of “goods”). This is the distribution of “goods” up to and
including the corresponding score.

• 'PctObs' — Fraction of borrowers, or the cumulative number of observations,
divided by total number of observations up to and including the corresponding score.

hf — Handle to the plotted measures
figure handle

Figure handle to plotted measures, returned as a figure handle or array of handles. When
Plot is set to 'None', hf is an empty array.
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More About

Cumulative Accuracy Profile (CAP)

CAP is generally a concave curve and is also known as the Gini curve, Power curve, or
Lorenz curve. The scores of given observations are sorted from riskiest to safest. For a
given fraction M (0% to 100%) of the total borrowers, the height of the CAP curve is the
fraction of defaulters whose scores are less than or equal to the maximum score of the
fraction M, also known as “Sensitivity.”

The area under the CAP curve, known as the AUCAP, is then compared to that of the
perfect or “ideal” model, leading to the definition of a summary index known as the
accuracy ratio (AR) or the Gini coefficient:

AR
A

A

R

P

=

where AR is the area between the CAP curve and the diagonal, and AP is the area
between the perfect model and the diagonal. The diagonal represents a “random” model,
where scores are assigned randomly and therefore the proportion of defaulters and
non-defaulters is independent of the score. The perfect model is the model for which all
defaulters are assigned the lowest scores, and therefore, perfectly discriminates between
defaulters and nondefaulters. Thus, the closer to unity AR is, the better the scoring
model.

Receiver Operating Characteristic (ROC)

To find the receiver operating characteristic (ROC) curve, the proportion of defaulters
up to a given score “s,” or “Sensitivity,” is computed. This proportion is known as the
true positive rate (TPR). Additionally, the proportion of nondefaulters up to score “s,“ or
“False Alarm Rate,” is also computed. This proportion is also known as the false positive
rate (FPR). The ROC curve is the plot of the “Sensitivity” vs. the “False Alarm Rate.”
Computing the ROC curve is similar to computing the equivalent of a confusion matrix at
each score level.

Similar to the CAP, the ROC has a summary statistic known as the area under the ROC
curve (AUROC). The closer to unity, the better the scoring model. The accuracy ratio
(AR) is related to the area under the curve by the following formula:

AR AUROC= -2 1( )
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Kolmogorov-Smirnov statistic (KS)

The Kolmogorov-Smirnov (KS) plot, also known as the fish-eye graph, is a common
statistic used to measure the predictive power of scorecards.

The KS plot shows the distribution of defaulters and the distribution of non-defaulters
on the same plot. For the distribution of defaulters, each score “s” is plotted versus the
proportion of defaulters up to “s," or “Sensitivity." For the distribution of non-defaulters,
each score “s” is plotted versus the proportion of non-defaulters up to “s," or “False
Alarm." The statistic of interest is called the KS statistic and is the maximum difference
between these two distributions (“Sensitivity” minus “False Alarm”). The score at which
this maximum is attained is also of interest.
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• creditscorecard

References

“Basel Committee on Banking Supervision: Studies on the Validation of Internal Rating
Systems.” Working Paper No. 14, February 2005.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

Loeffler, G. and Posch, P. N. Credit Risk Modeling Using Excel and VBA. Wiley Finance,
2007.

See Also
bindata | bininfo | creditscorecard | displaypoints | fitmodel |
formatpoints | modifybins | modifypredictor | plotbins | predictorinfo |
probdefault | score | setmodel | table

Introduced in R2015a
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creditscorecard

Create creditscorecard object

Build a credit scorecard model by creating a creditscorecard object and specifying
input data in a table format. For more information on using a creditscorecard object,
see creditscorecard.

After creating a creditscorecard object, you can use the associated object functions to
bin the data and perform logistic regression analysis to develop a credit scorecard model
to guide credit decisions. This workflow shows how to develop a credit scorecard model.

1 Create a creditscorecard object.
2 Bin the data.
3 Fit a logistic regression model.
4 Review and format the credit scorecard points.
5 Score the data.
6 Calculate the probabilities of default for data.
7 Validate the quality of the credit scorecard model.

For details on this workflow, see “Credit Scorecard Modeling Workflow” on page 8-62.

Syntax

sc = creditscorecard(data)

sc = creditscorecard( ___ ,Name,Value)

Description

sc = creditscorecard(data) creates a creditscorecard object by specifying
data.

sc = creditscorecard( ___ ,Name,Value) creates a creditscorecard object by
specifying data and using optional name-value pair arguments.
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Examples

Create a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

In this example, the default values for the properties ResponseVar, PredictorVars
and GoodLabel are assigned when this object is created. By default, the property
ResponseVar is set to the variable name that is in the last column of the input data
('status' in this example). The property PredictorVars contains the names of all the
variables that are in VarNames, but excludes IDVar and ResponseVar. Also, by default
in the previous example, GoodLabel is set to 0, since it is the value in the response
variable (ResponseVar) with the highest count.

Display the creditscorecard object properties using dot notation.

sc.PredictorVars

sc.VarNames

ans =

  1×10 cell array
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  Columns 1 through 5

    'CustID'    'CustAge'    'TmAtAddress'    'ResStatus'    'EmpStatus'

  Columns 6 through 10

    'CustIncome'    'TmWBank'    'OtherCC'    'AMBalance'    'UtilRate'

ans =

  1×11 cell array

  Columns 1 through 5

    'CustID'    'CustAge'    'TmAtAddress'    'ResStatus'    'EmpStatus'

  Columns 6 through 10

    'CustIncome'    'TmWBank'    'OtherCC'    'AMBalance'    'UtilRate'

  Column 11

    'status'

Since IDVar and PredictorVars have public access, you can change their values at the
command line.

sc.IDVar = 'CustID'

sc.PredictorVars = {'CustIncome','ResStatus','AMBalance'}

disp(sc)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}
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                     Data: [1200×11 table]

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {'CustIncome'  'AMBalance'}

    CategoricalPredictors: {'ResStatus'}

                    IDVar: 'CustID'

            PredictorVars: {'CustIncome'  'ResStatus'  'AMBalance'}

                     Data: [1200×11 table]

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {'CustIncome'  'AMBalance'}

    CategoricalPredictors: {'ResStatus'}

                    IDVar: 'CustID'

            PredictorVars: {'CustIncome'  'ResStatus'  'AMBalance'}

                     Data: [1200×11 table]

Create a creditscorecard Object and Set GoodLabel and ResponseVar

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011). Then use name-value pair arguments for the
creditscorecard function to define GoodLabel and ResponseVar.

load CreditCardData

sc = creditscorecard(data,'IDVar','CustID','GoodLabel',0,'ResponseVar','status')

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

18-2060



 creditscorecard

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

GoodLabel and ResponseVar can only be set (enforced) when creating a
creditscorecard object using the creditscorecard function.

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65

Input Arguments

data — Data for creditscorecard object
table

Data for the creditscorecard object, specified as a MATLAB table, where each column
of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical

In addition, the table must contain a binary response variable. Before creating a
creditscorecard object, perform a data preparation task to have appropriately
structured data as input to a creditscorecard object.

Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: sc =
creditscorecard(data,'GoodLabel',0,'IDVar','CustID','ResponseVar','status','PredictorVars',

{'CustID','CustIncome'})

'GoodLabel' — Indicator for which of two possible values in response variable correspond
to “Good” observations
set to the response value with the highest count (default) | character vector | numeric
scalar | logical

Indicator for which of the two possible values in the response variable correspond to
“Good” observations, specified as a numeric scalar, logical, or character vector. When
specifying GoodLabel, follow these guidelines.

If Response Is... GoodLabel Must be...

numeric numeric
logical logical or numeric
cell array of character vectors character vector
character array character vector
categorical character vector

If not specified, GoodLabel is set to the response value with the highest count.
GoodLabel can only be set when creating the creditscorecard object. This parameter
cannot be set using dot notation.
Data Types: char | double

'IDVar' — Variable name used as ID or tag for observations
empty character vector '' (default) | character vector

Variable name used as ID or tag for the observations, specified as a character vector.
The IDVar data could be an ordinal number (for example, 1,2,3...), a Social Security
number. This is provided as a convenience to remove this column from the predictor
variables. IDVar is case-sensitive. You can set this optional parameter using the
creditscorecard function or by using dot notation at the command line, as follows.

Example: sc.IDVar = 'CustID’

Data Types: char

'ResponseVar' — Response variable name for “Good” or “Bad” indicator
last column of the data input (default) | character vector
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Response variable name for the “Good” or “Bad” indicator, specified as a character
vector. The response variable data must be binary. If not specified, ResponseVar is set
to the last column of the data input. ResponseVar can only be set when creating the
creditscorecard object using the creditscorecard function. ResponseVar is case-
sensitive.
Data Types: char

'PredictorVars' — Predictor variable names
set difference between VarNames and {IDVar, ResponseVar} (default) | cell array of
character vectors containing names

Predictor variable names, specified using a cell array of character vectors containing
names. By default, when you create a credit scorecard using creditscorecard, all
variables are predictors except for IDVar and ResponseVar. This property can be
modified by using dot notation or by using a name-value pair argument for the fitmodel
function. PredictorVars is case-sensitive and the predictor variable name cannot be
the same as the IDVar or ResponseVar.

Data Types: cell

Output Arguments

sc — Credit scorecard model
creditscorecard object

Credit scorecard model, returned as a creditscorecard object that contains the
binning maps or rules (cut points or category groupings) for one or more predictors. For
more information on using the creditscorecard object, see creditscorecard.

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
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Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also
autobinning | bindata | bininfo | displaypoints | fitmodel | formatpoints
| modifybins | modifypredictor | plotbins | predictorinfo | probdefault |
score | setmodel | table | validatemodel

Introduced in R2014b
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creditscorecard

Build credit scorecard model

Description

Build a credit scorecard model by creating a creditscorecard object and specify input
data in a table format.

After creating a creditscorecard object, you can use the associated object functions to
bin the data and perform logistic regression analysis to develop a credit scorecard model
to guide credit decisions. This workflow shows how to develop a credit scorecard model.

1 Create a creditscorecard object.
2 Bin the data.
3 Fit a logistic regression model.
4 Review and format the credit scorecard points.
5 Score the data.
6 Calculate the probabilities of default for the data.
7 Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see “Credit Scorecard Modeling
Workflow” on page 8-62.

Create Object

To create a creditscorecard object, use the creditscorecard function.

Properties

Data — Data used to create the creditscorecard object
table
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Data used to create the creditscorecard object, specified as a table when using the
creditscorecard constructor. In the Data property, categorical predictors are stored
as categorical arrays.
Example: sc.Data(1:10,:)

Data Types: table

IDVar — Name of the variable used as ID or tag for the observations
empty character vector '' (default) | character vector

Name of the variable used as ID or tag for the observations, specified as a character
vector. This property can be set as an optional parameter using the creditscorecard
function or by using dot notation at the command line. IDVar is case-sensitive.

Example: sc.IDVar = ‘CustID’

Data Types: char

VarNames — All variable names from the data input
VarNames come directly from data input to creditscorecard object (default)

This property is read only.

VarNames is a cell array of character vectors containing the names of all variables in the
data. The VarNames come directly from the data input to the creditscorecard object.
VarNames is case-sensitive.

Data Types: cell

ResponseVar — Name of the response variable, “Good” or “Bad” indicator
last column of the data input (default) | character vector

Name of the response variable, “Good” or “Bad” indicator, specified as a character vector.
The response variable data must be binary. If not specified, ResponseVar is set to the
last column of the data input. This property can only be set with an optional parameter
when using the creditscorecard function. ResponseVar is case-sensitive.

Data Types: char

GoodLabel — Indicator for which of the two possible values in the response variable
correspond to “Good” observations
set to the response value with the highest count (default) | character vector | numeric
scalar | logical
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Indicator for which of the two possible values in the response variable correspond to
“Good” observations. When specifying GoodLabel, follow these guidelines:

If Response is... GoodLabel must be:

numeric numeric
logical logical or numeric
cell array of character vectors character vector
character array character vector
categorical character vector

If not specified, GoodLabel is set to the response value with the highest count. This
property can only be set with an optional parameter when using the creditscorecard
function. This property cannot be set using dot notation.
Data Types: char | double

PredictorVars — Predictor variable names
set difference between VarNames and {IDVar,ResponseVar} (default) | cell array of
character vectors containing names

Predictor variable names, specified using a cell array of character vectors containing
names. By default, when you create a credit scorecard using creditscorecard, all
variables are predictors except for IDVar and ResponseVar. This property can be
modified using a name-value pair argument for the fitmodel function or by using dot
notation. PredictorVars is case-sensitive and the predictor variable name cannot be
the same as the IDVar or ResponseVar.

Example: sc.PredictorVars = {'CustID','CustIncome'}

Data Types: cell

NumericPredictors — Name of numeric predictors
empty character vector '' (default) | character vector

Name of numeric predictors, specified as a character vector. This property cannot
be set by using dot notation at the command line. It can only be modified using the
modifypredictor function.

Data Types: char

CategoricalPredictors — Name of categorical predictors
empty character vector '' (default) | character vector

18-2067



18 Functions — Alphabetical List

Name of categorical predictors, specified as a character vector. This property cannot
be set by using dot notation at the command line. It can only be modified using the
modifypredictor function.

Data Types: char

creditscorecard

Property
Set/Modify
Property From
Command Line Using
creditscorecard

Function

Modify Property Using
Dot Notation

Property Not User-
Defined and Value is
Defined Internally

Data No No Yes, copy of data
input

IDVar Yes Yes No, but the user
specifies this

VarNames No No Yes
ResponseVar Yes No If not specified, set to

last column of data
input

GoodLabel Yes No If not specified, set to
response value with
highest count

PredictorVars Yes (also modifiable
using fitmodel
function)

Yes Yes, but the user can
modify this

NumericPredictorsNo (can only be
modified using
modifypredictor

function)

No Yes, but the user can
modify this

CategoricalPredictorsNo (can only be
modified using
modifypredictor

function)

No Yes, but the user can
modify this

Object Functions
creditscorecard Create creditscorecard object
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autobinning Perform automatic binning of given
predictors

bininfo Return predictor’s bin information
predictorinfo Summary of credit scorecard predictor

properties
modifypredictor Set properties of credit scorecard predictors
modifybins Modify predictor’s bins
bindata Binned predictor variables
plotbins Plot histogram counts for predictor variables
fitmodel Fit logistic regression model to Weight of

Evidence (WOE) data
setmodel Set model predictors and coefficients
displaypoints Return points per predictor per bin
formatpoints Format scorecard points and scaling
score Compute credit scores for given data
probdefault Likelihood of default for given data set
validatemodel Validate quality of credit scorecard model

Examples

Create a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

18-2069



18 Functions — Alphabetical List

Display creditscorecard Object Properties

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

To display the creditscorecard object properties, use dot notation.

sc.PredictorVars

sc.VarNames

ans =

  1×10 cell array

  Columns 1 through 5

    'CustID'    'CustAge'    'TmAtAddress'    'ResStatus'    'EmpStatus'

  Columns 6 through 10

    'CustIncome'    'TmWBank'    'OtherCC'    'AMBalance'    'UtilRate'

ans =
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  1×11 cell array

  Columns 1 through 5

    'CustID'    'CustAge'    'TmAtAddress'    'ResStatus'    'EmpStatus'

  Columns 6 through 10

    'CustIncome'    'TmWBank'    'OtherCC'    'AMBalance'    'UtilRate'

  Column 11

    'status'

Change a Property Value for a creditscorecard Object

Create a creditscorecard object using the CreditCardData.mat file to load the
data (using a dataset from Refaat 2011).

load CreditCardData

sc = creditscorecard(data)

sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×7 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: ''

            PredictorVars: {1×10 cell}

                     Data: [1200×11 table]

Since the IDVar property has public access, you can change its value at the command
line.

sc.IDVar = 'CustID'
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sc = 

  creditscorecard with properties:

                GoodLabel: 0

              ResponseVar: 'status'

                 VarNames: {1×11 cell}

        NumericPredictors: {1×6 cell}

    CategoricalPredictors: {'ResStatus'  'EmpStatus'  'OtherCC'}

                    IDVar: 'CustID'

            PredictorVars: {1×9 cell}

                     Data: [1200×11 table]

• “Case Study for a Credit Scorecard Analysis” on page 8-75
• “Troubleshooting Credit Scorecard Results” on page 8-65
• “Binning Explorer Case Study Example”

References

Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

Refaat, M. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, 2006.

Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS.
lulu.com, 2011.

See Also

Functions
creditscorecard

Apps
Binning Explorer

More About
• “Credit Scorecard Modeling Workflow” on page 8-62
• “About Credit Scorecards” on page 8-57
• “Overview of Binning Explorer”
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Introduced in R2014b
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Bibliography

“Bond Pricing and Yields” on page A-2
“Term Structure of Interest Rates” on page A-3
“Derivatives Pricing and Yields” on page A-4
“Portfolio Analysis” on page A-5
“Investment Performance Metrics” on page A-6
“Financial Statistics” on page A-7
“Standard References” on page A-8
“Credit Risk Analysis” on page A-9
“Portfolio Optimization” on page A-11
“Stochastic Differential Equations” on page A-12
“Life Tables” on page A-13

Note: For the well-known algorithms and formulas used in Financial Toolbox software
(such as how to compute a loan payment given principal, interest rate, and length of the
loan), no references are given here. The references here pertain to less common formulas.



A Bond Pricing and Yields

Bond Pricing and Yields

The pricing and yield formulas for fixed-income securities come from:

[1] Golub, B.W. and L.M. Tilman. Risk Management: Approaches for Fixed Income
Markets. Wiley, 2000.

[2] Martellini, L., P. Priaulet, and S. Priaulet. Fixed Income Securities. Wiley, 2003.

[3] Mayle, Jan. Standard Securities Calculation Methods. New York: Securities
Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN
1-882936-02-7.

[4] Tuckman, B. Fixed Income Securities: Tools for Today's Markets. Wiley, 2002.

In many cases these formulas compute the price of a security given yield, dates,
rates, and other data. These formulas are nonlinear, however; so when solving for an
independent variable within a formula, Financial Toolbox software uses Newton's
method. See any elementary numerical methods textbook for the mathematics
underlying Newton's method.
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 Term Structure of Interest Rates

Term Structure of Interest Rates

The formulas and methodology for term structure functions come from:

[5] Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J. and T.
Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York, Irwin
Professional Publishing, 1995, ISBN 0-7863-0001-9.

[6] McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest Rates.”
Ch. 37 in Fabozzi and Fabozzi, ibid.

[7] Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative Financing.
Appendix to Ch. 8, pp. 219–225, New York, Irwin Professional Publishing., 1994, ISBN
1-55738-542-4.
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A Derivatives Pricing and Yields

Derivatives Pricing and Yields

The pricing and yield formulas for derivative securities come from:

[8] Chriss, Neil A. Black-Scholes and Beyond: Option Pricing Models. Chicago, Irwin
Professional Publishing, 1997, ISBN 0-7863-1025-1.

[9] Cox, J., S. Ross, and M. Rubenstein. “Option Pricing: A Simplified Approach.” Journal
of Financial Economics. Vol. 7, Sept. 1979, pp. 229–263.

[10] Hull, John C. Options, Futures, and Other Derivatives. 5th edition, Prentice Hall,
2003, ISBN 0-13-009056-5.
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 Portfolio Analysis

Portfolio Analysis

The Markowitz model is used for portfolio analysis computations. For a discussion of this
model see Chapter 7 of:

[11] Bodie, Zvi, Alex Kane, and Alan J. Marcus. Investments. 2nd. Edition. Burr Ridge,
IL, IrwinProfessional Publishing, 1993, ISBN 0-256-08342-8.
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Investment Performance Metrics

The risk and ratio formulas for investment performance metrics come from:

[12] Daniel Bernoulli. "Exposition of a New Theory on the Measurement of Risk."
Econometrica. Vol. 22, No 1, January 1954, pp. 23–36 (English translation of "Specimen
Theoriae Novae de Mensura Sortis." Commentarii Academiae Scientiarum Imperialis
Petropolitanae. Tomus V, 1738, pp. 175–192).

[13] Martin Eling and Frank Schuhmacher. Does the Choice of Performance Measure
Influence the Evaluation of Hedge Funds? Working Paper, November 2005.

[14] John Lintner. "The Valuation of Risk Assets and the Selection of Risky Investments
in Stocks Portfolios and Capital Budgets." Review of Economics and Statistics. Vol. 47,
No. 1, February 1965, pp. 13–37.

[15] Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-Mostafa. "On
the Maximum Drawdown of a Brownian Motion." Journal of Applied Probability. Volume
41, Number 1, March 2004, pp. 147–161.

[16] Malik Magdon-Ismail and Amir Atiya. "Maximum Drawdown." http://www.risk.net/
risk-magazine, October 2004.

[17] Harry Markowitz. "Portfolio Selection." Journal of Finance. Vol. 7, No. 1, March
1952, pp. 77–91.

[18] Harry Markowitz. Portfolio Selection: Efficient Diversification of Investments. John
Wiley & Sons, 1959.

[19] Jan Mossin. "Equilibrium in a Capital Asset Market." Econometrica. Vol. 34, No. 4,
October 1966, pp. 768–783.

[20] Christian S. Pedersen and Ted Rudholm-Alfvin. "Selecting a Risk-Adjusted
Shareholder Performance Measure." Journal of Asset Management. Vol. 4, No. 3, 2003,
pp. 152–172.

[21] William F. Sharpe. "Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk." Journal of Finance. Vol. 19, No. 3, September 1964, pp. 425–442.

[22] Katerina Simons. "Risk-Adjusted Performance of Mutual Funds." New England
Economic Review. September/October 1998, pp. 34–48.
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 Financial Statistics

Financial Statistics

The discussion of computing statistical values for portfolios containing missing data
elements derives from the following references:

[23] Little, Roderick J.A. and Donald B. Rubin. Statistical Analysis with Missing Data.
2nd Edition. John Wiley & Sons, Inc., 2002.

[24] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[25] Sexton, Joe and Anders Rygh Swensen. “ECM Algorithms That Converge at the Rate
of EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.
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Abstract

Glossary of financial terminology.

active return Amount of return achieved in excess of the return
produced by an appropriate benchmark (for example, an
index portfolio).

active risk Standard deviation of the active return. Also known as
the tracking error.

American option An option that can be exercised any time until its
expiration date. Contrast with European option.

amortization Reduction in value of an asset over some period for
accounting purposes. Generally used with intangible
assets. Depreciation is the term used with fixed or
tangible assets.

annuity A series of payments over a period of time. The payments
are usually in equal amounts and usually at regular
intervals such as quarterly, semiannually, or annually.

antithetic sampling A variance reduction technique that pairs a sequence
of independent normal random numbers with a second
sequence obtained by negating the random numbers
of the first. The first sequence simulates increments of
one path of Brownian motion, and the second sequence
simulates increments of its reflected, or antithetic, path.
These two paths form an antithetic pair independent of
any other pair.

arbitrage The purchase of securities on one market for immediate
resale on another market to profit from a price or
currency discrepancy.

basis point One hundredth of one percentage point, or 0.0001.

basis Day count basis determines how interest accrues over
time for various instruments and the amount transferred
on interest payment dates. The calculation of accrued
interest for dates between payments also uses day
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count basis. Day count basis is a fraction of Number of
interest accrual days / Days in the relevant
coupon period. Supported day count conventions and
basis values are:

Basis
Value

Day Count Convention

0 actual/actual (default) — Number of days in both
a period and a year is the actual number of days.

1 30/360 SIA — Year fraction is calculated based
on a 360 day year with 30-day months, after
applying the following rules: If the first date and
the second date are the last day of February,
the second date is changed to the 30th. If the
first date falls on the 31st or is the last day of
February, it is changed to the 30th. If after the
preceding test, the first day is the 30th and the
second day is the 31st, then the second day is
changed to the 30th.

2 actual/360 — Number of days in a period is equal
to the actual number of days, however the number
of days in a year is 360.

3 actual/365 — Number of days in a period is equal
to the actual number of days, however the number
of days in a year is 365 (even in a leap year).

4 30/360 PSA — Number of days in every month is
set to 30 (including February). If the start date of
the period is either the 31st of a month or the last
day of February, the start date is set to the 30th,
while if the start date is the 30th of a month and
the end date is the 31st, the end date is set to the
30th. The number of days in a year is 360.

Glossary-2



 Glossary

Basis
Value

Day Count Convention

5 30/360 ISDA — Number of days in every month
is set to 30, except for February where it is the
actual number of days. If the start date of the
period is the 31st of a month, the start date is set
to the 30th while if the start date is the 30th of a
month and the end date is the 31st, the end date
is set to the 30th. The number of days in a year is
360.

6 30E /360 — Number of days in every month is set
to 30 except for February where it is equal to the
actual number of days. If the start date or the end
date of the period is the 31st of a month, that date
is set to the 30th. The number of days in a year is
360.

7 actual/365 Japanese — Number of days in a
period is equal to the actual number of days,
except for leap days (29th February) which are
ignored. The number of days in a year is 365
(even in a leap year).

8 actual/actual ICMA — Number of days in both
a period and a year is the actual number of days
and the compounding frequency is annual.

9 actual/360 ICMA — Number of days in a period
is equal to the actual number of days, however
the number of days in a year is 360 and the
compounding frequency is annual.

10 actual/365 ICMA — Number of days in a period is
equal to the actual number of days, however the
number of days in a year is 365 (even in a leap
year) and the compounding frequency is annual.
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Basis
Value

Day Count Convention

11 30/360 ICMA — Number of days in every month
is set to 30, except for February where it is equal
to the actual number of days. If the start date or
the end date of the period is the 31st of a month,
that date is set to the 30th. The number of days
in a year is 360 and the compounding frequency is
annual.

12 actual/365 ISDA — The day count fraction is
calculated using the following formula: (Actual
number of days in period that fall in

a leap year / 366) + (Actual number of
days in period that fall in a normal

year / 365 ).
13 bus/252 — The number of days in a period is

equal to the actual number of business days. The
number of business days in a year is 252.

beta The price volatility of a financial instrument relative to
the price volatility of a market or index as a whole. Beta
is commonly used with respect to equities. A high-beta
instrument is riskier than a low-beta instrument.

binomial model A method of pricing options or other equity derivatives
in which the probability over time of each possible price
follows a binomial distribution. The basic assumption is
that prices can move to only two values (one higher and
one lower) over any short time period.

Black-Scholes model The first complete mathematical model for pricing
options, developed by Fischer Black and Myron Scholes.
It examines market price, strike price, volatility, time to
expiration, and interest rates. It is limited to only certain
kinds of options.

Bollinger band chart A financial chart that plots actual asset data along with
three other bands of data: the upper band is two standard
deviations above a user-specified moving average; the
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lower band is two standard deviations below that moving
average; and the middle band is the moving average itself.

bootstrapping, bootstrap
method

An arithmetic method for backing an implied zero curve
out of the par yield curve.

Brownian motion A zero-mean continuous-time stochastic process with
independent increments (also known as a Wiener process).

building a binomial tree For a binomial option model: plotting the two possible
short-term price-changes values, and then the subsequent
two values each, and then the subsequent two values
each, and so on over time, is known as “building a
binomial tree.” See also binomial model.

call a. An option to buy a certain quantity of a stock or
commodity for a specified price within a specified time.
See also put. b. A demand to submit bonds to the issuer
for redemption before the maturity date. c. A demand for
payment of a debt. d. A demand for payment due on stock
bought on margin.

callable bond A bond that allows the issuer to buy back the bond at a
predetermined price at specified future dates. The bond
contains an embedded call option; that is, the holder has
sold a call option to the issuer. See also puttable bond.

candlestick chart A financial chart usually used to plot the high, low, open,
and close price of a security over time. The body of the
“candle” is the region between the open and close price of
the security. Thin vertical lines extend up to the high and
down to the low, respectively. If the open price is greater
than the close price, the body is empty. If the close price
is greater than the open price, the body is filled. See also
high-low-close chart.

cap Interest-rate option that guarantees that the rate on a
floating-rate loan will not exceed a certain level.

cash flow Cash received and paid over time.

clean price The price of a bond excluding any interest that has
accrued since issue or the most recent coupon payment.
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collar Interest-rate option that guarantees that the rate on a
floating-rate loan will not exceed a certain upper level
nor fall below a lower level. It is designed to protect an
investor against wide fluctuations in interest rates.

convexity A measure of the rate of change in duration; measured
in time. The greater the rate of change, the more the
duration changes as yield changes.

correlation The simultaneous change in value of two random numeric
variables.

correlation coefficient A statistic in which the covariance is scaled to a value
between minus one (perfect negative correlation) and plus
one (perfect positive correlation).

coupon Detachable certificate attached to a bond that shows the
amount of interest payable at regular intervals, usually
semiannually. Originally coupons were actually attached
to the bonds and had to be cut off or “clipped” to redeem
them and receive the interest payment.

coupon dates The dates when the coupons are paid. Typically a bond
pays coupons annually or semiannually.

coupon rate The nominal interest rate that the issuer promises to pay
the buyer of a bond.

covariance A measure of the degree to which returns on two assets
move in tandem. A positive covariance means that asset
returns move together; a negative covariance means they
vary inversely.

credit rating A credit rating evaluates a potential borrower’s ability to
repay debt.

day count convention A convention used to determine the number of days
between two coupon dates, which is important in
calculating accrued interest and present value when the
next coupon payment is less than a full coupon period
away. See also basis
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delta The rate of change of the price of a derivative security
relative to the price of the underlying asset; that is, the
first derivative of the curve that relates the price of the
derivative to the price of the underlying security.

depreciation Reduction in value of fixed or tangible assets over some
period for accounting purposes. See also amortization .

derivative A financial instrument that is based on some underlying
asset. For example, an option is a derivative instrument
based on the right to buy or sell an underlying
instrument.

diffusion The function that characterizes the random (stochastic)
portion of a stochastic differential equation. See also
stochastic differential equation.

dirty price The price of a bond including the accrued interest.

discount curve The curve of discount rates versus maturity dates for
bonds.

discretization error Errors that may arise due to discrete-time sampling of
continuous stochastic processes.

drawdown The peak to trough decline during a specific record period
of an investment or fund.

drift The function that characterizes the deterministic portion
of a stochastic differential equation. See also stochastic
differential equation.

duration The expected life of a fixed-income security considering
its coupon yield, interest payments, maturity, and call
features. As market interest rates rise, the duration of
a financial instrument decreases. See also Macaulay
duration .

efficient frontier A graph representing a set of portfolios that maximizes
expected return at each level of portfolio risk. See also
Markowitz model .
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efficient portfolio Portfolios satisfying the criteria of minimum risk for a
given level of return and maximum return for a given
level of risk. See also Markowitz model .

elasticity See Lambda .

Euler approximation A simulation technique that provides a discrete-time
approximation of a continuous-time stochastic process.

European option An option that can be exercised only on its expiration
date. Contrast with American option.

ex-ante Referring to future events, such as the future price of a
stock.

ex-post Referring to past events, when uncertainty of the result
has been eliminated.

exercise price The price set for buying an asset (call) or selling an asset
(put). The strike price.

face value The maturity value of a security. Also known as par
value, principal value, or redemption value.

fixed-income security A security that pays a specified cash flow over a specific
period. Bonds are typical fixed-income securities.

floor Interest-rate option that guarantees that the rate on a
floating-rate loan will not fall below a certain level.

forward curve The curve of forward interest rates versus maturity dates
for bonds.

forward rate The future interest rate of a bond inferred from the term
structure, especially from the yield curve of zero-coupon
bonds, calculated from the growth factor of an investment
in a zero held until maturity.

future value The value that a sum of money (the present value)
earning compound interest will have in the future.

gamma The rate of change of delta for a derivative security
relative to the price of the underlying asset; that is,
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the second derivative of the option price relative to the
security price.

greeks Collectively, “greeks” refer to the financial measures beta,
delta, gamma, lambda, rho, theta, and vega, which are
sensitivity measures used in evaluating derivatives.

ISDA International Swaps and Derivatives Association.

ISMA International Securities Market Association.

hedge A securities transaction that reduces or offsets the risk on
an existing investment position.

high-low-close chart A financial chart usually used to plot the high, low, open,
and close price of a security over time. Plots are vertical
lines whose top is the high, bottom is the low, open is
a short horizontal tick to the left, and close is a short
horizontal tick to the right.

implied volatility For an option, the variance that makes a call option
price equal to the market price. Given the option price,
strike price, and other factors, the Black-Scholes model
computes implied volatility.

information ratio The ratio of relative return to relative risk.

internal rate of return a. The average annual yield earned by an investment
during the period held. b. The effective rate of interest
on a loan. c. The discount rate in discounted cash flow
analysis. d. The rate that adjusts the value of future cash
receipts earned by an investment so that interest earned
equals the original cost. See also yield .

issue date The date a security is first offered for sale. That date
usually determines when interest payments, known as
coupons, are made.

Ito process Statistical assumptions about the behavior of security
prices. For details, see the book by Hull in “Derivatives
Pricing and Yields” on page A-4.
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key rate duration Key rate duration measures the sensitivity of a portfolio’s
(or security’s) value in relation to changes in specific
maturities of the zero or spot curve.

Lambda The percentage change in the price of an option relative to
a 1% change in the price of the underlying security. Also
known as elasticity.

long position Outright ownership of a security or financial instrument.
The owner expects the price to rise in order to make a
profit on some future sale.

long rate The yield on a zero-coupon Treasury bond.

lower partial moment A model for the moments of asset returns that fall below a
minimum acceptable level of return.

Macaulay duration A widely used measure of price sensitivity to yield
changes developed by Frederick Macaulay in 1938. It
is measured in years and is a weighted average-time-
to-maturity of an instrument. The Macaulay duration
of an income stream, such as a coupon bond, measures
how long, on average, the owner waits before receiving
a payment. It is the weighted average of the times
payments are made, with the weights at time T equal to
the present value of the money received at time T.

Markowitz model A model for selecting an optimum investment portfolio,
devised by H. M. Markowitz. It uses a discrete-time,
continuous-outcome approach for modeling investment
problems, often called the mean-variance paradigm. See
also efficient portfolio and efficient frontier.

maturity date The date when the issuer returns the final face value of a
bond to the buyer.

mean a. A number that typifies a set of numbers, such as a
geometric mean or an arithmetic mean. b. The average
value of a set of numbers.

modified duration The Macaulay duration discounted by the per-period
interest rate; that is, divided by (1+rate/frequency).
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Monte-Carlo simulation A mathematical modeling process. For a model that
has several parameters with statistical properties, pick
a set of random values for the parameters and run a
simulation. Then pick another set of values, and run it
again. Run it many times (often 10,000 times) and build
up a statistical distribution of outcomes of the simulation.
This distribution of outcomes is then used to answer
whatever question you are asking.

moving average A price average that is adjusted by adding other
parametrically determined prices over some time period.

moving-averages chart A financial chart that plots leading and lagging moving
averages for prices or values of an asset.

normal (bell-shaped)
distribution

In statistics, a theoretical frequency distribution for a
set of variable data, usually represented by a bell-shaped
curve symmetrical about the mean.

odd first or last period Fixed-income securities may be purchased on dates that
do not coincide with coupon or payment dates. The length
of the first and last periods may differ from the regular
period between coupons, and thus the bond owner is not
entitled to the full value of the coupon for that period.
Instead, the coupon is prorated according to how long the
bond is held during that period.

on-the-run treasury bonds The most recently auctioned issue of a U.S. Treasury bond
or note of a particular maturity.

option A right to buy or sell specific securities or commodities at
a stated price (exercise or strike price) within a specified
time. An option is a type of derivative.

par value The maturity or face value of a security or other financial
instrument.

par yield curve The yield curve of bonds selling at par, or face, value.

point and figure chart A financial chart usually used to plot asset price
data. Upward price movements are plotted as X's and
downward price movements are plotted as O's.
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present value Today's value of an investment that yields some future
value when invested to earn compounded interest at a
known interest rate; that is, the future value at a known
period in time discounted by the interest rate over that
time period.

principal value See par value .

proportional sampling A stratified sampling technique that ensures that the
proportion of random draws matches its theoretical
probability. One of the most common examples of
proportional sampling involves stratifying the terminal
value of a price process in which each sample path is
associated with a single stratified terminal value such
that the number of paths equals the number of strata.

See also stratified sampling.

PSA Public Securities Association.

purchase price Price actually paid for a security. Typically the purchase
price of a bond is not the same as the redemption value.

put An option to sell a stipulated amount of stock or securities
within a specified time and at a fixed exercise price. See
also call.

puttable bond A bond that allows the holder to redeem the bond at a
predetermined price at specified future dates. The bond
contains an embedded put option; that is, the holder has
bought a put option. See also callable bond.

Quant A quantitative analyst; someone who does numerical
analysis of financial information in order to detect
relationships, disparities, or patterns that can lead to
making money.

redemption value See par value .

regression analysis Statistical analysis techniques that quantify the
relationship between two or more variables. The intent is
quantitative prediction or forecasting, particularly using
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a small population to forecast the behavior of a large
population.

rho The rate of change in a derivative's price relative to the
underlying security's risk-free interest rate.

return proxy The proxy for return is a function that characterizes
either the gross benefits or net benefits associated with
portfolio choices.

risk proxy The proxy for risk is a function that characterizes either
the variability or losses associated with portfolio choices.

sensitivity The “what if” relationship between variables; the degree
to which changes in one variable cause changes in another
variable. A specific synonym is volatility.

settlement date The date when money first changes hands; that is, when
a buyer actually pays for a security. It need not coincide
with the issue date.

Sharpe ratio The ratio of the excess return of an asset divided by the
asset's standard deviation of returns.

short rate The annualized one-period interest rate.

short sale, short position The sale of a security or financial instrument not owned,
in anticipation of a price decline and making a profit by
purchasing the instrument later at a lower price, and
then delivering the instrument to complete the sale. See
also long position.

SIA Securities Industry Association.

spot curve, spot yield curve See zero curve, zero-coupon yield curve .

spot rate The current interest rate appropriate for discounting a
cash flow of some given maturity.

spread For options, a combination of call or put options on the
same stock with differing exercise prices or maturity
dates.
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standard deviation A measure of the variation in a distribution, equal to the
square root of the arithmetic mean of the squares of the
deviations from the arithmetic mean; the square root of
the variance.

stochastic Involving or containing a random variable or variables;
involving chance or probability.

stochastic differential
equation

A generalization of an ordinary differential equation,
with the addition of a noise process, that yields random
variables as solutions.

straddle A strategy used in trading options or futures. It involves
simultaneously purchasing put and call options with the
same exercise price and expiration date, and it is most
profitable when the price of the underlying security is
very volatile.

strata See stratified sampling.

stratified sampling A variance reduction technique that constrains a
proportion of sample paths to specific subsets (or strata) of
the sample space.

strike Exercise a put or call option.

strike price See exercise price.

swap A contract between two parties to exchange cash flows in
the future according to some formula.

swaption A swap option; an option on an interest-rate swap. The
option gives the holder the right to enter into a contracted
interest-rate swap at a specified future date. See also
swap.

term structure The relationship between the yields on fixed-interest
securities and their maturity dates. Expectation of
changes in interest rates affects term structure, as do
liquidity preferences and hedging pressure. A yield curve
is one representation in the term structure.

Glossary-14



 Glossary

theta The rate of change in the price of a derivative security
relative to time. Theta is usually very small or negative
since the value of an option tends to drop as it approaches
maturity.

tracking error See active risk.

Treasury bill Short-term U.S. government security issued at a discount
from the face value and paying the face value at maturity.

Treasury bond Long-term debt obligation of the U.S. government that
makes coupon payments semiannually and is sold at or
near par value in $1000 denominations or higher. Face
value is paid at maturity.

variance The dispersion of a variable. The square of the standard
deviation.

vega The rate of change in the price of a derivative security
relative to the volatility of the underlying security. When
vega is large, the security is sensitive to small changes in
volatility.

volatility a. Another general term for sensitivity. b. The standard
deviation of the annualized continuously compounded rate
of return of an asset. c. A measure of uncertainty or risk.

Wiener process See  Brownian motion.

yield a. Measure of return on an investment, stated as a
percentage of price. Yield can be computed by dividing
return by purchase price, current market value, or other
measure of value. b. Income from a bond expressed as
an annualized percentage rate. c. The nominal annual
interest rate that gives a future value of the purchase
price equal to the redemption value of the security. Any
coupon payments determine part of that yield.

yield curve Graph of yields (vertical axis) of a particular type
of security versus the time to maturity (horizontal
axis). This curve usually slopes upward, indicating
that investors usually expect to receive a premium for
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securities that have a longer time to maturity. The
benchmark yield curve is for U.S. Treasury securities with
maturities ranging from three months to 30 years. See
also term structure.

yield to maturity A measure of the average rate of return that will be
earned on a bond if held to maturity.

zero curve, zero-coupon
yield curve

A yield curve for zero-coupon bonds; zero rates versus
maturity dates. Since the maturity and duration
(Macaulay duration) are identical for zeros, the zero
curve is a pure depiction of supply/demand conditions
for loanable funds across a continuum of durations and
maturities. Also known as spot curve or spot yield curve.

zero-coupon bond, or zero A bond that, instead of carrying a coupon, is sold at a
discount from its face value, pays no interest during its
life, and pays the principal only at maturity.
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